Code
library(tidyverse)
library(readxl)
library(summarytools)
::opts_chunk$set(echo = TRUE, warning=FALSE, message=FALSE) knitr
Aleacia Messiah
September 26, 2022
Today’s challenge is to:
pivot_longer
Read in one (or more) of the following datasets, using the correct R package and command.
# read in the Table 2 sheet in the dataset marriage, removing the first 7 rows
table2 <- read_excel("_data/australian_marriage_law_postal_survey_2017_-_response_final.xls", sheet = "Table 2", col_names = c("Divisions", "Response_Clear_Yes", "Response_Clear_Yes_Percent", "Response_Clear_No", "Response_Clear_No_Percent", "Response_Clear_Total", "Response_Clear_Total_Percent", "delete", "Eligible_Response_Clear", "Eligible_Response_Clear_Percent", "Eligible_Response_Not_Clear", "Eligible_Response_Not_Clear_Percent", "Eligible_Response_Non_Responding", "Eligible_Response_Non_Responding_Percent", "Eligible_Response_Total", "Eligible_Response_Total_Percent"), skip = 7)
# view the first 6 rows of Table 2
head(table2)
# A tibble: 6 × 16
Divis…¹ Respo…² Respo…³ Respo…⁴ Respo…⁵ Respo…⁶ Respo…⁷ delete Eligi…⁸ Eligi…⁹
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <lgl> <dbl> <dbl>
1 New So… NA NA NA NA NA NA NA NA NA
2 Banks 37736 44.9 46343 55.1 84079 100 NA 84079 79.9
3 Barton 37153 43.6 47984 56.4 85137 100 NA 85137 77.8
4 Bennel… 42943 49.8 43215 50.2 86158 100 NA 86158 81
5 Berowra 48471 54.6 40369 45.4 88840 100 NA 88840 84.5
6 Blaxla… 20406 26.1 57926 73.9 78332 100 NA 78332 75
# … with 6 more variables: Eligible_Response_Not_Clear <dbl>,
# Eligible_Response_Not_Clear_Percent <dbl>,
# Eligible_Response_Non_Responding <dbl>,
# Eligible_Response_Non_Responding_Percent <dbl>,
# Eligible_Response_Total <dbl>, Eligible_Response_Total_Percent <dbl>, and
# abbreviated variable names ¹Divisions, ²Response_Clear_Yes,
# ³Response_Clear_Yes_Percent, ⁴Response_Clear_No, …
# remove rows with totals and NAs
table2 <- table2[-c(1, 49:51, 89:91, 122:124, 136:138, 155:157, 163:165, 168:170, 173:184),]
# remove the "delete" column with NAs
table2 <- select(table2, !contains("delete"))
# remove columns with totals
table2 <- select(table2, !contains("Total") & !contains("Percent"))
# view a summary of Table 2
dfSummary(table2)
Data Frame Summary
table2
Dimensions: 150 x 6
Duplicates: 0
----------------------------------------------------------------------------------------------------------------------------------------
No Variable Stats / Values Freqs (% of Valid) Graph Valid Missing
---- ---------------------------------- ------------------------------- --------------------- --------------------- ---------- ---------
1 Divisions 1. Adelaide 1 ( 0.7%) 150 0
[character] 2. Aston 1 ( 0.7%) (100.0%) (0.0%)
3. Ballarat 1 ( 0.7%)
4. Banks 1 ( 0.7%)
5. Barker 1 ( 0.7%)
6. Barton 1 ( 0.7%)
7. Bass 1 ( 0.7%)
8. Batman 1 ( 0.7%)
9. Bendigo 1 ( 0.7%)
10. Bennelong 1 ( 0.7%)
[ 140 others ] 140 (93.3%) IIIIIIIIIIIIIIIIII
2 Response_Clear_Yes Mean (sd) : 52115 (12315.1) 150 distinct values : : 150 0
[numeric] min < med < max: : : (100.0%) (0.0%)
19026 < 51782.5 < 89590 : : :
IQR (CV) : 15259 (0.2) . : : :
. : : : : . .
3 Response_Clear_No Mean (sd) : 32493.2 (8262.8) 150 distinct values : 150 0
[numeric] min < med < max: : (100.0%) (0.0%)
14860 < 31653.5 < 57926 : :
IQR (CV) : 8274.5 (0.3) : : : :
: : : : : : : : .
4 Eligible_Response_Clear Mean (sd) : 84608.2 (10318.9) 149 distinct values : . 150 0
[numeric] min < med < max: : : (100.0%) (0.0%)
34924 < 85726.5 < 120951 : :
IQR (CV) : 10149 (0.1) : : :
. : : : : .
5 Eligible_Response_Not_Clear Mean (sd) : 244.6 (55.9) 109 distinct values : 150 0
[numeric] min < med < max: : : (100.0%) (0.0%)
106 < 240 < 377 : : :
IQR (CV) : 68.8 (0.2) : : : .
. : : : : :
6 Eligible_Response_Non_Responding Mean (sd) : 21855.1 (4197.5) 149 distinct values : 150 0
[numeric] min < med < max: . : : (100.0%) (0.0%)
13092 < 21416.5 < 35841 : : : : :
IQR (CV) : 5562.2 (0.2) : : : : : .
: : : : : : : : .
----------------------------------------------------------------------------------------------------------------------------------------
Describe the data, and be sure to comment on why you are planning to pivot it to make it “tidy”
Looking at the dataset, we can see this dataset is data collected from an Australian Marriage Law Postal Survey in which each observation is the Federal Electoral Division and the variables are clear affirmative responses, clear negative responses, clear eligible participants’ responses, not clear eligible participants’ responses, and non-responding eligible participants’ responses. Most of these variables such as the divisions variable have 150 distinct values (i.e. 150 distinct divisions). The data is current as of August 24, 2017 and there are some variables that include blank responses and more territories listed in the explanatory notes. There are some variables that can be condensed to make it easier to analyze so it is necessary to use pivot functions to make it tidy.
The first step in pivoting the data is to try to come up with a concrete vision of what the end product should look like - that way you will know whether or not your pivoting was successful.
One easy way to do this is to think about the dimensions of your current data (tibble, dataframe, or matrix), and then calculate what the dimensions of the pivoted data should be.
Suppose you have a dataset with \(n\) rows and \(k\) variables. In our example, 3 of the variables are used to identify a case, so you will be pivoting \(k-3\) variables into a longer format where the \(k-3\) variable names will move into the names_to
variable and the current values in each of those columns will move into the values_to
variable. Therefore, we would expect \(n * (k-3)\) rows in the pivoted dataframe!
Lets see if this works with a simple example.
# A tibble: 6 × 5
country year trade outgoing incoming
<chr> <dbl> <chr> <dbl> <dbl>
1 Mexico 1980 NAFTA 346. 232.
2 USA 1990 NAFTA 1068. 902.
3 France 1980 EU 766. 1199.
4 Mexico 1990 NAFTA 2090. 1688.
5 USA 1980 NAFTA 523. 298.
6 France 1990 EU 1739. 239.
[1] 6
[1] 5
[1] 12
[1] 5
Our simple example has \(n = 6\) rows and \(k - 3 = 2\) variables being pivoted, so we expect a new dataframe to have \(n * 2 = 12\) rows x \(3 + 2 = 5\) columns.
Document your work here.
[1] 150
[1] 6
[1] 750
[1] 3
Any additional comments?
The current number of rows in Table 2 is 150 while the current number of columns is 6. There should be 750 rows and 3 columns in the pivoted dataset since the five response columns will be consolidated into rows.
Now we will pivot the data, and compare our pivoted data dimensions to the dimensions calculated above as a “sanity” check.
# A tibble: 12 × 5
country year trade trade_direction trade_value
<chr> <dbl> <chr> <chr> <dbl>
1 Mexico 1980 NAFTA outgoing 346.
2 Mexico 1980 NAFTA incoming 232.
3 USA 1990 NAFTA outgoing 1068.
4 USA 1990 NAFTA incoming 902.
5 France 1980 EU outgoing 766.
6 France 1980 EU incoming 1199.
7 Mexico 1990 NAFTA outgoing 2090.
8 Mexico 1990 NAFTA incoming 1688.
9 USA 1980 NAFTA outgoing 523.
10 USA 1980 NAFTA incoming 298.
11 France 1990 EU outgoing 1739.
12 France 1990 EU incoming 239.
Yes, once it is pivoted long, our resulting data are \(12x5\) - exactly what we expected!
Document your work here. What will a new “case” be once you have pivoted the data? How does it meet requirements for tidy data?
# A tibble: 750 × 3
Divisions Type_of_Response No_of_Responses
<chr> <chr> <dbl>
1 Banks Response_Clear_Yes 37736
2 Banks Response_Clear_No 46343
3 Banks Eligible_Response_Clear 84079
4 Banks Eligible_Response_Not_Clear 247
5 Banks Eligible_Response_Non_Responding 20928
6 Barton Response_Clear_Yes 37153
7 Barton Response_Clear_No 47984
8 Barton Eligible_Response_Clear 85137
9 Barton Eligible_Response_Not_Clear 226
10 Barton Eligible_Response_Non_Responding 24008
# … with 740 more rows
Any additional comments?
The new observations represent the type of response (clear, not clear, or non-responding) and how many responses were captured for that type for each division. This new dataset meets the requirements of tidy data in that each variable (division, type of response, and number of responses) is in a column, each observation is in a row, and the values are in the cells.
---
title: "Challenge 3"
author: "Aleacia Messiah"
desription: "Tidy Data: Pivoting"
date: "09/26/2022"
format:
html:
toc: true
code-fold: true
code-copy: true
code-tools: true
categories:
- challenge_3
- Aleacia Messiah
- australian_marriage
- tidyverse
- readxl
- summarytools
---
```{r}
#| label: setup
#| warning: false
#| message: false
library(tidyverse)
library(readxl)
library(summarytools)
knitr::opts_chunk$set(echo = TRUE, warning=FALSE, message=FALSE)
```
## Challenge Overview
Today's challenge is to:
1. read in a data set, and describe the data set using both words and any supporting information (e.g., tables, etc)
2. identify what needs to be done to tidy the current data
3. anticipate the shape of pivoted data
4. pivot the data into tidy format using `pivot_longer`
## Read in data
Read in one (or more) of the following datasets, using the correct R package and command.
- animal_weights.csv ⭐
- eggs_tidy.csv ⭐⭐ or organiceggpoultry.xls ⭐⭐⭐
- australian_marriage\*.xls ⭐⭐⭐
- USA Households\*.xlsx ⭐⭐⭐⭐
- sce_labor_chart_data_public.xlsx 🌟🌟🌟🌟🌟
```{r}
# read in the Table 2 sheet in the dataset marriage, removing the first 7 rows
table2 <- read_excel("_data/australian_marriage_law_postal_survey_2017_-_response_final.xls", sheet = "Table 2", col_names = c("Divisions", "Response_Clear_Yes", "Response_Clear_Yes_Percent", "Response_Clear_No", "Response_Clear_No_Percent", "Response_Clear_Total", "Response_Clear_Total_Percent", "delete", "Eligible_Response_Clear", "Eligible_Response_Clear_Percent", "Eligible_Response_Not_Clear", "Eligible_Response_Not_Clear_Percent", "Eligible_Response_Non_Responding", "Eligible_Response_Non_Responding_Percent", "Eligible_Response_Total", "Eligible_Response_Total_Percent"), skip = 7)
# view the first 6 rows of Table 2
head(table2)
# remove rows with totals and NAs
table2 <- table2[-c(1, 49:51, 89:91, 122:124, 136:138, 155:157, 163:165, 168:170, 173:184),]
# remove the "delete" column with NAs
table2 <- select(table2, !contains("delete"))
# remove columns with totals
table2 <- select(table2, !contains("Total") & !contains("Percent"))
# view a summary of Table 2
dfSummary(table2)
```
### Briefly describe the data
Describe the data, and be sure to comment on why you are planning to pivot it to make it "tidy"
Looking at the dataset, we can see this dataset is data collected from an Australian Marriage Law Postal Survey in which each observation is the Federal Electoral Division and the variables are clear affirmative responses, clear negative responses, clear eligible participants' responses, not clear eligible participants' responses, and non-responding eligible participants' responses. Most of these variables such as the divisions variable have 150 distinct values (i.e. 150 distinct divisions). The data is current as of August 24, 2017 and there are some variables that include blank responses and more territories listed in the explanatory notes. There are some variables that can be condensed to make it easier to analyze so it is necessary to use pivot functions to make it tidy.
## Anticipate the End Result
The first step in pivoting the data is to try to come up with a concrete vision of what the end product *should* look like - that way you will know whether or not your pivoting was successful.
One easy way to do this is to think about the dimensions of your current data (tibble, dataframe, or matrix), and then calculate what the dimensions of the pivoted data should be.
Suppose you have a dataset with $n$ rows and $k$ variables. In our example, 3 of the variables are used to identify a case, so you will be pivoting $k-3$ variables into a longer format where the $k-3$ variable names will move into the `names_to` variable and the current values in each of those columns will move into the `values_to` variable. Therefore, we would expect $n * (k-3)$ rows in the pivoted dataframe!
### Example: find current and future data dimensions
Lets see if this works with a simple example.
```{r}
#| tbl-cap: Example
df<-tibble(country = rep(c("Mexico", "USA", "France"),2),
year = rep(c(1980,1990), 3),
trade = rep(c("NAFTA", "NAFTA", "EU"),2),
outgoing = rnorm(6, mean=1000, sd=500),
incoming = rlogis(6, location=1000,
scale = 400))
df
#existing rows/cases
nrow(df)
#existing columns/cases
ncol(df)
#expected rows/cases
nrow(df) * (ncol(df)-3)
# expected columns
3 + 2
```
Our simple example has $n = 6$ rows and $k - 3 = 2$ variables being pivoted, so we expect a new dataframe to have $n * 2 = 12$ rows x $3 + 2 = 5$ columns.
### Challenge: Describe the final dimensions
Document your work here.
```{r}
# view the number of current rows/observations in Table 2
nrow(table2)
# view the number of current columns/variables in Table 2
ncol(table2)
# find the expected number of rows/observations in Table 2
nrow(table2) * (ncol(table2)-1)
# find the expected number of columns/variables in Table 2
ncol(table2)-3
```
Any additional comments?
The current number of rows in Table 2 is 150 while the current number of columns is 6. There should be 750 rows and 3 columns in the pivoted dataset since the five response columns will be consolidated into rows.
## Pivot the Data
Now we will pivot the data, and compare our pivoted data dimensions to the dimensions calculated above as a "sanity" check.
### Example
```{r}
#| tbl-cap: Pivoted Example
df<-pivot_longer(df, col = c(outgoing, incoming),
names_to="trade_direction",
values_to = "trade_value")
df
```
Yes, once it is pivoted long, our resulting data are $12x5$ - exactly what we expected!
### Challenge: Pivot the Chosen Data
Document your work here. What will a new "case" be once you have pivoted the data? How does it meet requirements for tidy data?
```{r}
table2_new <- pivot_longer(table2, col = c(Response_Clear_Yes, Response_Clear_No, Eligible_Response_Clear, Eligible_Response_Not_Clear, Eligible_Response_Non_Responding), names_to = "Type_of_Response", values_to = "No_of_Responses")
table2_new
```
Any additional comments?
The new observations represent the type of response (clear, not clear, or non-responding) and how many responses were captured for that type for each division. This new dataset meets the requirements of tidy data in that each variable (division, type of response, and number of responses) is in a column, each observation is in a row, and the values are in the cells.