Code
library(tidyverse)
::opts_chunk$set(echo = TRUE, warning=FALSE, message=FALSE) knitr
Karla Barrett-Dexter
September 25, 2022
Today’s challenge is to
read in a dataset, and
describe the dataset using both words and any supporting information (e.g., tables, etc)
# A tibble: 30,977 × 14
Domain Cod…¹ Domain Area …² Area Eleme…³ Element Item …⁴ Item Year …⁵ Year
<chr> <chr> <dbl> <chr> <dbl> <chr> <dbl> <chr> <dbl> <dbl>
1 QA Live … 2 Afgh… 5112 Stocks 1057 Chic… 1961 1961
2 QA Live … 2 Afgh… 5112 Stocks 1057 Chic… 1962 1962
3 QA Live … 2 Afgh… 5112 Stocks 1057 Chic… 1963 1963
4 QA Live … 2 Afgh… 5112 Stocks 1057 Chic… 1964 1964
5 QA Live … 2 Afgh… 5112 Stocks 1057 Chic… 1965 1965
6 QA Live … 2 Afgh… 5112 Stocks 1057 Chic… 1966 1966
7 QA Live … 2 Afgh… 5112 Stocks 1057 Chic… 1967 1967
8 QA Live … 2 Afgh… 5112 Stocks 1057 Chic… 1968 1968
9 QA Live … 2 Afgh… 5112 Stocks 1057 Chic… 1969 1969
10 QA Live … 2 Afgh… 5112 Stocks 1057 Chic… 1970 1970
# … with 30,967 more rows, 4 more variables: Unit <chr>, Value <dbl>,
# Flag <chr>, `Flag Description` <chr>, and abbreviated variable names
# ¹`Domain Code`, ²`Area Code`, ³`Element Code`, ⁴`Item Code`, ⁵`Year Code`
It appears the data is showing the price per 1000 head of different types of birds.
Basic information about the data is as follows: There are 5 different categories of birds represented in the data set. There are 248 countries represented in the data set. The data was collected over 58 years, 1961-2018.
# A tibble: 5 × 2
Item n
<chr> <int>
1 Chickens 13074
2 Ducks 6909
3 Geese and guinea fowls 4136
4 Pigeons, other birds 1165
5 Turkeys 5693
# A tibble: 1 × 1
n
<int>
1 248
[1] 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
[16] 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
[31] 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
[46] 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
Using filters to drill down Armenia’s data: There are 2 different categories of birds, Chickens and Turkeys. Armenia data spans 27 years, 1992-2018.
# A tibble: 54 × 14
Domain Cod…¹ Domain Area …² Area Eleme…³ Element Item …⁴ Item Year …⁵ Year
<chr> <chr> <dbl> <chr> <dbl> <chr> <dbl> <chr> <dbl> <dbl>
1 QA Live … 1 Arme… 5112 Stocks 1057 Chic… 1992 1992
2 QA Live … 1 Arme… 5112 Stocks 1057 Chic… 1993 1993
3 QA Live … 1 Arme… 5112 Stocks 1057 Chic… 1994 1994
4 QA Live … 1 Arme… 5112 Stocks 1057 Chic… 1995 1995
5 QA Live … 1 Arme… 5112 Stocks 1057 Chic… 1996 1996
6 QA Live … 1 Arme… 5112 Stocks 1057 Chic… 1997 1997
7 QA Live … 1 Arme… 5112 Stocks 1057 Chic… 1998 1998
8 QA Live … 1 Arme… 5112 Stocks 1057 Chic… 1999 1999
9 QA Live … 1 Arme… 5112 Stocks 1057 Chic… 2000 2000
10 QA Live … 1 Arme… 5112 Stocks 1057 Chic… 2001 2001
# … with 44 more rows, 4 more variables: Unit <chr>, Value <dbl>, Flag <chr>,
# `Flag Description` <chr>, and abbreviated variable names ¹`Domain Code`,
# ²`Area Code`, ³`Element Code`, ⁴`Item Code`, ⁵`Year Code`
# A tibble: 2 × 2
Item n
<chr> <int>
1 Chickens 27
2 Turkeys 27
[1] 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
[16] 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
---
title: "Challenge 1"
author: "Karla Barrett-Dexter"
description: "Bird Data Summary"
date: "9/25/2022"
format:
html:
toc: true
code-fold: true
code-copy: true
code-tools: true
categories:
- challenge_1
- railroads
- faostat
- wildbirds
---
```{r}
#| label: setup
#| warning: false
#| message: false
library(tidyverse)
knitr::opts_chunk$set(echo = TRUE, warning=FALSE, message=FALSE)
```
## Challenge Overview
Today's challenge is to
1) read in a dataset, and
2) describe the dataset using both words and any supporting information (e.g., tables, etc)
## Read in the Data
```{r}
birds <- read_csv("_data/birds.csv")
birds
```
## Describe the data
It appears the data is showing the price per 1000 head of different types of birds.
Basic information about the data is as follows:
There are 5 different categories of birds represented in the data set.
There are 248 countries represented in the data set.
The data was collected over 58 years, 1961-2018.
```{r}
#| label: summary
birds %>% count(Item) #Used to find the summarize the categories of birds and total birds per category
Countries<- birds%>%count(Area) #Practiced creating a variable
count(Countries) #Used to find the total number of countries represented in the data
Years <- birds %>% count(Year)#I used this code to create a cleaner list of the years represented in the data
first(Years) #I used this code to order the years from earliest to latest
```
Using filters to drill down Armenia's data:
There are 2 different categories of birds, Chickens and Turkeys.
Armenia data spans 27 years, 1992-2018.
```{r}
#| label: Armenia
ArmeniaBirds <- filter(birds, Area == "Armenia")
ArmeniaBirds
ArmeniaBirds %>% count(Item)
ArmeniaYears <- ArmeniaBirds %>% count(Year)
first(ArmeniaYears)
```