Code
library(tidyverse)
knitr::opts_chunk$set(echo = TRUE, warning=FALSE, message=FALSE)Meredith Rolfe
August 15, 2022
Today’s challenge is to
read in a dataset, and
describe the dataset using both words and any supporting information (e.g., tables, etc)
Read in one (or more) of the following data sets, using the correct R package and command.
Find the _data folder, located inside the posts folder. Then you can read in the data, using either one of the readr standard tidy read commands, or a specialized package such as readxl.
# A tibble: 2,930 × 3
   state county               total_employees
   <chr> <chr>                          <dbl>
 1 AE    APO                                2
 2 AK    ANCHORAGE                          7
 3 AK    FAIRBANKS NORTH STAR               2
 4 AK    JUNEAU                             3
 5 AK    MATANUSKA-SUSITNA                  2
 6 AK    SITKA                              1
 7 AK    SKAGWAY MUNICIPALITY              88
 8 AL    AUTAUGA                          102
 9 AL    BALDWIN                          143
10 AL    BARBOUR                            1
# … with 2,920 more rowsUsing a combination of words and results of R commands, can you provide a high level description of the data? Describe as efficiently as possible where/how the data was (likely) gathered, indicate the cases and variables (both the interpretation and any details you deem useful to the reader to fully understand your chosen data).
# A tibble: 1,709 × 1
   county              
   <chr>               
 1 APO                 
 2 ANCHORAGE           
 3 FAIRBANKS NORTH STAR
 4 JUNEAU              
 5 MATANUSKA-SUSITNA   
 6 SITKA               
 7 SKAGWAY MUNICIPALITY
 8 AUTAUGA             
 9 BALDWIN             
10 BARBOUR             
# … with 1,699 more rows# A tibble: 53 × 1
   state
   <chr>
 1 AE   
 2 AK   
 3 AL   
 4 AP   
 5 AR   
 6 AZ   
 7 CA   
 8 CO   
 9 CT   
10 DC   
# … with 43 more rows# A tibble: 30,977 × 14
   Domain Cod…¹ Domain Area …² Area  Eleme…³ Element Item …⁴ Item  Year …⁵  Year
   <chr>        <chr>    <dbl> <chr>   <dbl> <chr>     <dbl> <chr>   <dbl> <dbl>
 1 QA           Live …       2 Afgh…    5112 Stocks     1057 Chic…    1961  1961
 2 QA           Live …       2 Afgh…    5112 Stocks     1057 Chic…    1962  1962
 3 QA           Live …       2 Afgh…    5112 Stocks     1057 Chic…    1963  1963
 4 QA           Live …       2 Afgh…    5112 Stocks     1057 Chic…    1964  1964
 5 QA           Live …       2 Afgh…    5112 Stocks     1057 Chic…    1965  1965
 6 QA           Live …       2 Afgh…    5112 Stocks     1057 Chic…    1966  1966
 7 QA           Live …       2 Afgh…    5112 Stocks     1057 Chic…    1967  1967
 8 QA           Live …       2 Afgh…    5112 Stocks     1057 Chic…    1968  1968
 9 QA           Live …       2 Afgh…    5112 Stocks     1057 Chic…    1969  1969
10 QA           Live …       2 Afgh…    5112 Stocks     1057 Chic…    1970  1970
# … with 30,967 more rows, 4 more variables: Unit <chr>, Value <dbl>,
#   Flag <chr>, `Flag Description` <chr>, and abbreviated variable names
#   ¹`Domain Code`, ²`Area Code`, ³`Element Code`, ⁴`Item Code`, ⁵`Year Code`Add any comments or documentation as needed. More challenging data sets may require additional code chunks and documentation.
---
title: "Challenge 1 Instructions"
author: "Meredith Rolfe"
desription: "Reading in data and creating a post"
date: "08/15/2022"
format:
  html:
    toc: true
    code-fold: true
    code-copy: true
    code-tools: true
categories:
  - challenge_1
  - railroads
  - faostat
  - wildbirds
---
```{r}
#| label: setup
#| warning: false
#| message: false
library(tidyverse)
knitr::opts_chunk$set(echo = TRUE, warning=FALSE, message=FALSE)
```
## Challenge Overview
Today's challenge is to
1)  read in a dataset, and
2)  describe the dataset using both words and any supporting information (e.g., tables, etc)
## Read in the Data
Read in one (or more) of the following data sets, using the correct R package and command.
-   railroad_2012_clean_county.csv ⭐
-   birds.csv ⭐⭐
-   FAOstat\*.csv ⭐⭐
-   wild_bird_data.xlsx ⭐⭐⭐
Find the `_data` folder, located inside the `posts` folder. Then you can read in the data, using either one of the `readr` standard tidy read commands, or a specialized package such as `readxl`.
```{r}
library(readxl)
railroad<-read_csv("_data/railroad_2012_clean_county.csv")
railroad
```
# Railroad Dataset-
## Describe the data
Using a combination of words and results of R commands, can you provide a high level description of the data? Describe as efficiently as possible where/how the data was (likely) gathered, indicate the cases and variables (both the interpretation and any details you deem useful to the reader to fully understand your chosen data).
```{r}
railroad%>%
  select(county)%>%
  n_distinct(.)
```
```{r}
railroad%>%
  select(county)%>%
  distinct()
```
```{r}
railroad%>%
  select(state)%>%
  n_distinct(.)
```
```{r}
railroad%>%
  select(state)%>%
  distinct()
```
```{r}
railroad%>%
  select(total_employees)%>%
  n_distinct(.)
```
```{r}
railroad%>%
  select(total_employees)%>%
  distinct()
```
# Birds Dataset-
```{r}
library(readxl)
birds<-read_csv("_data/birds.csv")
birds
```
Add any comments or documentation as needed. More challenging data sets may require additional code chunks and documentation.