DACSS 601: Data Science Fundamentals - FALL 2022
  • Fall 2022 Posts
  • Contributors
  • DACSS

Challenge 8 Solutions

  • Course information
    • Overview
    • Instructional Team
    • Course Schedule
  • Weekly materials
    • Fall 2022 posts
    • final posts

On this page

  • Challenge Overview
  • Read in data
    • Briefly describe the data
  • Tidy Data and Mutate Variables (as needed)
  • Join Data

Challenge 8 Solutions

challenge_8
railroads
snl
faostat
debt
Joining Data
Author

Vinitha Maheswaran

Published

December 6, 2022

library(tidyverse)
library(ggplot2)

knitr::opts_chunk$set(echo = TRUE, warning=FALSE, message=FALSE)

Challenge Overview

Today’s challenge is to:

  1. read in multiple data sets, and describe the data set using both words and any supporting information (e.g., tables, etc)
  2. tidy data (as needed, including sanity checks)
  3. mutate variables as needed (including sanity checks)
  4. join two or more data sets and analyze some aspect of the joined data

(be sure to only include the category tags for the data you use!)

Read in data

Read in one (or more) of the following datasets, using the correct R package and command.

  • military marriages ⭐⭐
  • faostat ⭐⭐
  • railroads ⭐⭐⭐
  • fed_rate ⭐⭐⭐
  • debt ⭐⭐⭐
  • us_hh ⭐⭐⭐⭐
  • snl ⭐⭐⭐⭐⭐

For this challenge I will be working with the SNL data set.

# Reading the SNL csv files

snl_actors <- read_csv("_data/snl_actors.csv")
snl_casts <- read_csv("_data/snl_casts.csv")
snl_seasons <- read_csv("_data/snl_seasons.csv")
# Displaying snl_actors dataset
snl_actors
# A tibble: 2,306 × 4
   aid            url           type  gender 
   <chr>          <chr>         <chr> <chr>  
 1 Kate McKinnon  /Cast/?KaMc   cast  female 
 2 Alex Moffat    /Cast/?AlMo   cast  male   
 3 Ego Nwodim     /Cast/?EgNw   cast  unknown
 4 Chris Redd     /Cast/?ChRe   cast  male   
 5 Kenan Thompson /Cast/?KeTh   cast  male   
 6 Carey Mulligan /Guests/?3677 guest andy   
 7 Marcus Mumford /Guests/?3679 guest male   
 8 Aidy Bryant    /Cast/?AiBr   cast  female 
 9 Steve Higgins  /Crew/?StHi   crew  male   
10 Mikey Day      /Cast/?MiDa   cast  male   
# … with 2,296 more rows
# Displaying snl_casts dataset
snl_casts
# A tibble: 614 × 8
   aid                sid featured first_epid last_epid update…¹ n_epi…² seaso…³
   <chr>            <dbl> <lgl>         <dbl>     <dbl> <lgl>      <dbl>   <dbl>
 1 A. Whitney Brown    11 TRUE       19860222        NA FALSE          8   0.444
 2 A. Whitney Brown    12 TRUE             NA        NA FALSE         20   1    
 3 A. Whitney Brown    13 TRUE             NA        NA FALSE         13   1    
 4 A. Whitney Brown    14 TRUE             NA        NA FALSE         20   1    
 5 A. Whitney Brown    15 TRUE             NA        NA FALSE         20   1    
 6 A. Whitney Brown    16 TRUE             NA        NA FALSE         20   1    
 7 Alan Zweibel         5 TRUE       19800409        NA FALSE          5   0.25 
 8 Sasheer Zamata      39 TRUE       20140118        NA FALSE         11   0.524
 9 Sasheer Zamata      40 TRUE             NA        NA FALSE         21   1    
10 Sasheer Zamata      41 FALSE            NA        NA FALSE         21   1    
# … with 604 more rows, and abbreviated variable names ¹​update_anchor,
#   ²​n_episodes, ³​season_fraction
# Displaying snl_seasons dataset
snl_seasons
# A tibble: 46 × 5
     sid  year first_epid last_epid n_episodes
   <dbl> <dbl>      <dbl>     <dbl>      <dbl>
 1     1  1975   19751011  19760731         24
 2     2  1976   19760918  19770521         22
 3     3  1977   19770924  19780520         20
 4     4  1978   19781007  19790526         20
 5     5  1979   19791013  19800524         20
 6     6  1980   19801115  19810411         13
 7     7  1981   19811003  19820522         20
 8     8  1982   19820925  19830514         20
 9     9  1983   19831008  19840512         19
10    10  1984   19841006  19850413         17
# … with 36 more rows
# Finding dimension of all 3 snl datasets
dim(snl_actors)
[1] 2306    4
dim(snl_casts)
[1] 614   8
dim(snl_seasons)
[1] 46  5
# Structure of snl_actors dataset
str(snl_actors)
spc_tbl_ [2,306 × 4] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
 $ aid   : chr [1:2306] "Kate McKinnon" "Alex Moffat" "Ego Nwodim" "Chris Redd" ...
 $ url   : chr [1:2306] "/Cast/?KaMc" "/Cast/?AlMo" "/Cast/?EgNw" "/Cast/?ChRe" ...
 $ type  : chr [1:2306] "cast" "cast" "cast" "cast" ...
 $ gender: chr [1:2306] "female" "male" "unknown" "male" ...
 - attr(*, "spec")=
  .. cols(
  ..   aid = col_character(),
  ..   url = col_character(),
  ..   type = col_character(),
  ..   gender = col_character()
  .. )
 - attr(*, "problems")=<externalptr> 
# Structure of snl_casts dataset
str(snl_casts)
spc_tbl_ [614 × 8] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
 $ aid            : chr [1:614] "A. Whitney Brown" "A. Whitney Brown" "A. Whitney Brown" "A. Whitney Brown" ...
 $ sid            : num [1:614] 11 12 13 14 15 16 5 39 40 41 ...
 $ featured       : logi [1:614] TRUE TRUE TRUE TRUE TRUE TRUE ...
 $ first_epid     : num [1:614] 19860222 NA NA NA NA ...
 $ last_epid      : num [1:614] NA NA NA NA NA NA NA NA NA NA ...
 $ update_anchor  : logi [1:614] FALSE FALSE FALSE FALSE FALSE FALSE ...
 $ n_episodes     : num [1:614] 8 20 13 20 20 20 5 11 21 21 ...
 $ season_fraction: num [1:614] 0.444 1 1 1 1 ...
 - attr(*, "spec")=
  .. cols(
  ..   aid = col_character(),
  ..   sid = col_double(),
  ..   featured = col_logical(),
  ..   first_epid = col_double(),
  ..   last_epid = col_double(),
  ..   update_anchor = col_logical(),
  ..   n_episodes = col_double(),
  ..   season_fraction = col_double()
  .. )
 - attr(*, "problems")=<externalptr> 
# Structure of snl_seasons dataset
str(snl_seasons)
spc_tbl_ [46 × 5] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
 $ sid       : num [1:46] 1 2 3 4 5 6 7 8 9 10 ...
 $ year      : num [1:46] 1975 1976 1977 1978 1979 ...
 $ first_epid: num [1:46] 19751011 19760918 19770924 19781007 19791013 ...
 $ last_epid : num [1:46] 19760731 19770521 19780520 19790526 19800524 ...
 $ n_episodes: num [1:46] 24 22 20 20 20 13 20 20 19 17 ...
 - attr(*, "spec")=
  .. cols(
  ..   sid = col_double(),
  ..   year = col_double(),
  ..   first_epid = col_double(),
  ..   last_epid = col_double(),
  ..   n_episodes = col_double()
  .. )
 - attr(*, "problems")=<externalptr> 
#Summary of snl_actors
library(summarytools)
print(summarytools::dfSummary(snl_actors,
                        varnumbers = FALSE,
                        plain.ascii  = FALSE, 
                        style        = "grid", 
                        graph.magnif = 0.60, 
                        valid.col    = FALSE),
      method = 'render',
      table.classes = 'table-condensed')

Data Frame Summary

snl_actors

Dimensions: 2306 x 4
Duplicates: 0
Variable Stats / Values Freqs (% of Valid) Graph Missing
aid [character]
1. 'N Sync
2. 070 Shake
3. 10,000 Maniacs
4. 14 Karat Soul
5. 2 Chainz
6. 3-D
7. 3RDEYEGIRL
8. 50 Cent
9. A Tribe Called Quest
10. A$AP Rocky
[ 2296 others ]
1(0.0%)
1(0.0%)
1(0.0%)
1(0.0%)
1(0.0%)
1(0.0%)
1(0.0%)
1(0.0%)
1(0.0%)
1(0.0%)
2296(99.6%)
0 (0.0%)
url [character]
1. /Cast/?AbEl
2. /Cast/?AdSa
3. /Cast/?AiBr
4. /Cast/?AlFr
5. /Cast/?AlMo
6. /Cast/?AlZw
7. /Cast/?AmPo
8. /Cast/?AnDi
9. /Cast/?AnGa
10. /Cast/?AnMH
[ 2239 others ]
1(0.0%)
1(0.0%)
1(0.0%)
1(0.0%)
1(0.0%)
1(0.0%)
1(0.0%)
1(0.0%)
1(0.0%)
1(0.0%)
2239(99.6%)
57 (2.5%)
type [character]
1. cast
2. crew
3. guest
4. unknown
154(6.7%)
170(7.4%)
1926(83.5%)
56(2.4%)
0 (0.0%)
gender [character]
1. andy
2. female
3. male
4. unknown
21(0.9%)
671(29.1%)
1226(53.2%)
388(16.8%)
0 (0.0%)

Generated by summarytools 1.0.1 (R version 4.2.1)
2022-12-22

#Summary of snl_casts
library(summarytools)
print(summarytools::dfSummary(snl_casts,
                        varnumbers = FALSE,
                        plain.ascii  = FALSE, 
                        style        = "grid", 
                        graph.magnif = 0.60, 
                        valid.col    = FALSE),
      method = 'render',
      table.classes = 'table-condensed')

Data Frame Summary

snl_casts

Dimensions: 614 x 8
Duplicates: 0
Variable Stats / Values Freqs (% of Valid) Graph Missing
aid [character]
1. Kenan Thompson
2. Darrell Hammond
3. Seth Meyers
4. Al Franken
5. Fred Armisen
6. Kate McKinnon
7. Tim Meadows
8. Aidy Bryant
9. Bobby Moynihan
10. Cecily Strong
[ 146 others ]
18(2.9%)
14(2.3%)
13(2.1%)
11(1.8%)
11(1.8%)
10(1.6%)
10(1.6%)
9(1.5%)
9(1.5%)
9(1.5%)
500(81.4%)
0 (0.0%)
sid [numeric]
Mean (sd) : 25.5 (13.1)
min ≤ med ≤ max:
1 ≤ 26 ≤ 46
IQR (CV) : 22 (0.5)
46 distinct values 0 (0.0%)
featured [logical]
1. FALSE
2. TRUE
451(73.5%)
163(26.5%)
0 (0.0%)
first_epid [numeric]
Mean (sd) : 19909635 (111264.8)
min ≤ med ≤ max:
19770115 ≤ 19901110 ≤ 20141025
IQR (CV) : 156624.2 (0)
35 distinct values 564 (91.9%)
last_epid [numeric]
Mean (sd) : 19944038 (126122.2)
min ≤ med ≤ max:
19751011 ≤ 19950225 ≤ 20140201
IQR (CV) : 190005 (0)
17 distinct values 597 (97.2%)
update_anchor [logical]
1. FALSE
2. TRUE
541(88.1%)
73(11.9%)
0 (0.0%)
n_episodes [numeric]
Mean (sd) : 18.7 (4)
min ≤ med ≤ max:
1 ≤ 20 ≤ 24
IQR (CV) : 2 (0.2)
22 distinct values 0 (0.0%)
season_fraction [numeric]
Mean (sd) : 0.9 (0.2)
min ≤ med ≤ max:
0 ≤ 1 ≤ 1
IQR (CV) : 0 (0.2)
36 distinct values 0 (0.0%)

Generated by summarytools 1.0.1 (R version 4.2.1)
2022-12-22

#Summary of snl_seasons
library(summarytools)
print(summarytools::dfSummary(snl_seasons,
                        varnumbers = FALSE,
                        plain.ascii  = FALSE, 
                        style        = "grid", 
                        graph.magnif = 0.60, 
                        valid.col    = FALSE),
      method = 'render',
      table.classes = 'table-condensed')

Data Frame Summary

snl_seasons

Dimensions: 46 x 5
Duplicates: 0
Variable Stats / Values Freqs (% of Valid) Graph Missing
sid [numeric]
Mean (sd) : 23.5 (13.4)
min ≤ med ≤ max:
1 ≤ 23.5 ≤ 46
IQR (CV) : 22.5 (0.6)
46 distinct values 0 (0.0%)
year [numeric]
Mean (sd) : 1997.5 (13.4)
min ≤ med ≤ max:
1975 ≤ 1997.5 ≤ 2020
IQR (CV) : 22.5 (0)
46 distinct values 0 (0.0%)
first_epid [numeric]
Mean (sd) : 19975965 (134209.3)
min ≤ med ≤ max:
19751011 ≤ 19975927 ≤ 20201003
IQR (CV) : 224910.2 (0)
46 distinct values 0 (0.0%)
last_epid [numeric]
Mean (sd) : 19985509 (134223.9)
min ≤ med ≤ max:
19760731 ≤ 19985512 ≤ 20210410
IQR (CV) : 225066.2 (0)
46 distinct values 0 (0.0%)
n_episodes [numeric]
Mean (sd) : 19.7 (2.3)
min ≤ med ≤ max:
12 ≤ 20 ≤ 24
IQR (CV) : 1 (0.1)
12:1(2.2%)
13:2(4.3%)
17:2(4.3%)
18:2(4.3%)
19:3(6.5%)
20:23(50.0%)
21:7(15.2%)
22:5(10.9%)
24:1(2.2%)
0 (0.0%)

Generated by summarytools 1.0.1 (R version 4.2.1)
2022-12-22

Briefly describe the data

Saturday Night Live is an American late-night live television sketch comedy and variety show that premiered on NBC in 1975. The snl has 3 datasets “snl_actors.csv”, “snl_casts.csv”, “snl_seasons.csv”. There are no duplicates in all 3 datasets. The “snl_actors.csv” dataset has 2306 observations and 4 variables/attributes and contains information (such as actor name, url, type and gender) about the list of actors who have featured in the SNL show. The “aid” variable has 2306 unique values and acts as the primary key / unique identifier for the dataset. All 4 attributes in this dataset are of datatype character. The “snl_casts.csv” dataset has 614 observations and 8 attributes. This dataset contains information about the cast name “aid”, the seasons in which they have been featured, the number of times they have featured in the show along with each cast’s first and last episode. The “snl_seasons.csv” dataset has 46 observations and 5 attributes. The “sid” variable has 46 unique values and acts as a unique identifier for the dataset. This also indicates that SNL has 46 seasons. All the variables in this dataset are of numerical datatype and contains information about the season number, year it was telecasted, date of the first episode of that season, date of the last episode of that season and the number of episodes in that season. The first premiered season had 24 episodes which is the highest and the season 33 had the lowest number of episodes i.e 12.

Tidy Data and Mutate Variables (as needed)

Is your data already tidy, or is there work to be done? Be sure to anticipate your end result to provide a sanity check, and document your work here.

Are there any variables that require mutation to be usable in your analysis stream? For example, do you need to calculate new values in order to graph them? Can string values be represented numerically? Do you need to turn any variables into factors and reorder for ease of graphics and visualization?

We observe that the “url” attribute in snl_actors dataset has 57 missing values.

#Check for missing/null data in the snl_actors
sum(is.na(snl_actors))
[1] 57
sum(is.null(snl_actors))
[1] 0
# Checking which columns have NA values in snl_actors
col <- colnames(snl_actors)
for (c in col){
  print(paste0("NA values in ", c, ": ", sum(is.na(snl_actors[,c]))))
}
[1] "NA values in aid: 0"
[1] "NA values in url: 57"
[1] "NA values in type: 0"
[1] "NA values in gender: 0"

We observe that out of the 57 observations which have missing “url” value, 56 of them have “unknown” value for ‘type’ attribute. This may be the reason for missing “url” value.

# Displaying the 57 actors with missing "url" value.
filter(snl_actors,is.na(snl_actors$url))
# A tibble: 57 × 4
   aid               url   type    gender
   <chr>             <chr> <chr>   <chr> 
 1 Don Roy King      <NA>  unknown male  
 2 Liam Payne        <NA>  unknown male  
 3 Louis Tomlinson   <NA>  unknown male  
 4 Zayn Malik        <NA>  unknown male  
 5 Caleb Followill   <NA>  unknown male  
 6 Jared Followill   <NA>  unknown male  
 7 Matthew Followill <NA>  unknown male  
 8 Nathan Followill  <NA>  unknown male  
 9 Regine Chassagne  <NA>  unknown female
10 William Butler    <NA>  unknown male  
# … with 47 more rows

The “url” contains information in the form of type of actor enclosed in ‘/’ and ‘/?’ followed by a identifier for each actor. Since, we have a unique identifier “aid” and there are no duplicates in the dataset, the attribute “url” seems unnecessary and I am dropping it. We are now left with 2306 observations and 3 attributes for snl_actors.

# Dropping the attribute "url" from the snl_actors
snl_actors <- snl_actors%>%
  subset(select = -c(2))
snl_actors
# A tibble: 2,306 × 3
   aid            type  gender 
   <chr>          <chr> <chr>  
 1 Kate McKinnon  cast  female 
 2 Alex Moffat    cast  male   
 3 Ego Nwodim     cast  unknown
 4 Chris Redd     cast  male   
 5 Kenan Thompson cast  male   
 6 Carey Mulligan guest andy   
 7 Marcus Mumford guest male   
 8 Aidy Bryant    cast  female 
 9 Steve Higgins  crew  male   
10 Mikey Day      cast  male   
# … with 2,296 more rows

The “type” attribute has 56 “unknown” values. We are retaining these observations for now as we have less data.

table(snl_actors$type)

   cast    crew   guest unknown 
    154     170    1926      56 
# Displaying the 56 actors with type as "unknown".
filter(snl_actors,snl_actors$type=="unknown")
# A tibble: 56 × 3
   aid               type    gender
   <chr>             <chr>   <chr> 
 1 Don Roy King      unknown male  
 2 Liam Payne        unknown male  
 3 Louis Tomlinson   unknown male  
 4 Zayn Malik        unknown male  
 5 Caleb Followill   unknown male  
 6 Jared Followill   unknown male  
 7 Matthew Followill unknown male  
 8 Nathan Followill  unknown male  
 9 Regine Chassagne  unknown female
10 William Butler    unknown male  
# … with 46 more rows

The “gender” attribute has 388 “unknown” values. 21 actors have been assigned the gender as “andy” which seems to be a mistake. I changed the value from “andy” to “unknown” for these 21 actors.

table(snl_actors$gender)

   andy  female    male unknown 
     21     671    1226     388 
# Changing the gender from "andy" to "unknown" for the 21 observations
snl_actors <- snl_actors%>%
  mutate(gender = replace(gender, gender == "andy", "unknown"))
snl_actors
# A tibble: 2,306 × 3
   aid            type  gender 
   <chr>          <chr> <chr>  
 1 Kate McKinnon  cast  female 
 2 Alex Moffat    cast  male   
 3 Ego Nwodim     cast  unknown
 4 Chris Redd     cast  male   
 5 Kenan Thompson cast  male   
 6 Carey Mulligan guest unknown
 7 Marcus Mumford guest male   
 8 Aidy Bryant    cast  female 
 9 Steve Higgins  crew  male   
10 Mikey Day      cast  male   
# … with 2,296 more rows
# Sanity check: Check that the "gender" attribute does not have "andy" values. There should be 388+21 = 409 "unknown" values.
table(snl_actors$gender)

 female    male unknown 
    671    1226     409 

The “snl_actors” dataset is now tidy. Next, we move on to the “snl_casts” dataset.

We observe that the “first_epid” and “last_epid” attributes have 564 and 597 missing values respectively.

#Check for missing/null data in the snl_casts.
sum(is.na(snl_casts))
[1] 1161
sum(is.null(snl_casts))
[1] 0
# Checking which columns have NA values in snl_casts
col <- colnames(snl_casts)
for (c in col){
  print(paste0("NA values in ", c, ": ", sum(is.na(snl_casts[,c]))))
}
[1] "NA values in aid: 0"
[1] "NA values in sid: 0"
[1] "NA values in featured: 0"
[1] "NA values in first_epid: 564"
[1] "NA values in last_epid: 597"
[1] "NA values in update_anchor: 0"
[1] "NA values in n_episodes: 0"
[1] "NA values in season_fraction: 0"

Since the attributes “first_epid” and “last_epid” have more than 90% of the values missing and it is difficult to impute the missing values, I decided to drop them from the dataset.

# Dropping the attributes "first_epid" and "last_epid" from the snl_casts
snl_casts <- snl_casts%>%
  subset(select = -c(4,5))
snl_casts
# A tibble: 614 × 6
   aid                sid featured update_anchor n_episodes season_fraction
   <chr>            <dbl> <lgl>    <lgl>              <dbl>           <dbl>
 1 A. Whitney Brown    11 TRUE     FALSE                  8           0.444
 2 A. Whitney Brown    12 TRUE     FALSE                 20           1    
 3 A. Whitney Brown    13 TRUE     FALSE                 13           1    
 4 A. Whitney Brown    14 TRUE     FALSE                 20           1    
 5 A. Whitney Brown    15 TRUE     FALSE                 20           1    
 6 A. Whitney Brown    16 TRUE     FALSE                 20           1    
 7 Alan Zweibel         5 TRUE     FALSE                  5           0.25 
 8 Sasheer Zamata      39 TRUE     FALSE                 11           0.524
 9 Sasheer Zamata      40 TRUE     FALSE                 21           1    
10 Sasheer Zamata      41 FALSE    FALSE                 21           1    
# … with 604 more rows

The “snl_casts” dataset is tidy and left with 614 observations and 6 variables. Finally, we move on to the last dataset “snl_seasons”.

The snl_seasons dataset has no missing/null data.

#Check for missing/null data in the snl_seasons.
sum(is.na(snl_seasons))
[1] 0
sum(is.null(snl_seasons))
[1] 0

I converted the “first_epid” and “last_epid” attributes to ymd date format which will be useful while creating visualizations.

# Converting "first_epid" and "last_epid" attributes to ymd date format
library(lubridate)
snl_seasons$first_epid <- ymd(snl_seasons$first_epid)
snl_seasons$last_epid <- ymd(snl_seasons$last_epid)
snl_seasons
# A tibble: 46 × 5
     sid  year first_epid last_epid  n_episodes
   <dbl> <dbl> <date>     <date>          <dbl>
 1     1  1975 1975-10-11 1976-07-31         24
 2     2  1976 1976-09-18 1977-05-21         22
 3     3  1977 1977-09-24 1978-05-20         20
 4     4  1978 1978-10-07 1979-05-26         20
 5     5  1979 1979-10-13 1980-05-24         20
 6     6  1980 1980-11-15 1981-04-11         13
 7     7  1981 1981-10-03 1982-05-22         20
 8     8  1982 1982-09-25 1983-05-14         20
 9     9  1983 1983-10-08 1984-05-12         19
10    10  1984 1984-10-06 1985-04-13         17
# … with 36 more rows

Since, the attribute “n_episodes” is present in both snl_casts and snl_seasons datasets, I renamed the attribute “n_episodes” to “seasons_n_episodes” in the snl_seasons dataset.

# Renaming the "n_episodes" column
snl_seasons <- snl_seasons%>%
  rename(seasons_n_episodes = n_episodes)
# Displaying the renamed column names
colnames(snl_seasons)
[1] "sid"                "year"               "first_epid"        
[4] "last_epid"          "seasons_n_episodes"

Join Data

Be sure to include a sanity check, and double-check that case count is correct!

I performed left join on snl_casts and snl_actors datasets by using the “aid” attribute as the key. The joined dataset snl_actors_casts has 614 observations and 8 attributes which makes sense as the snl_casts dataset had 614 observations and snl_casts and snl_actors datasets had 6 and 3 attributes respectively. Since, the “aid” attribute is common in both datasets we count it only once.

# performed left join for snl_casts and snl_actors datasets.
snl_actors_casts = merge(x=snl_casts, y=snl_actors, by="aid", all.x=TRUE)
snl_actors_casts
                     aid sid featured update_anchor n_episodes season_fraction
1       A. Whitney Brown  11     TRUE         FALSE          8      0.44444444
2       A. Whitney Brown  12     TRUE         FALSE         20      1.00000000
3       A. Whitney Brown  13     TRUE         FALSE         13      1.00000000
4       A. Whitney Brown  14     TRUE         FALSE         20      1.00000000
5       A. Whitney Brown  15     TRUE         FALSE         20      1.00000000
6       A. Whitney Brown  16     TRUE         FALSE         20      1.00000000
7           Abby Elliott  34     TRUE         FALSE         15      0.68181818
8           Abby Elliott  35     TRUE         FALSE         22      1.00000000
9           Abby Elliott  36    FALSE         FALSE         22      1.00000000
10          Abby Elliott  37    FALSE         FALSE         22      1.00000000
11          Adam Sandler  16     TRUE         FALSE          9      0.45000000
12          Adam Sandler  17     TRUE         FALSE         20      1.00000000
13          Adam Sandler  18     TRUE         FALSE         20      1.00000000
14          Adam Sandler  19    FALSE         FALSE         20      1.00000000
15          Adam Sandler  20    FALSE         FALSE         20      1.00000000
16           Aidy Bryant  38     TRUE         FALSE         21      1.00000000
17           Aidy Bryant  39    FALSE         FALSE         21      1.00000000
18           Aidy Bryant  40    FALSE         FALSE         21      1.00000000
19           Aidy Bryant  41    FALSE         FALSE         21      1.00000000
20           Aidy Bryant  42    FALSE         FALSE         21      1.00000000
21           Aidy Bryant  43    FALSE         FALSE         21      1.00000000
22           Aidy Bryant  44    FALSE         FALSE         21      1.00000000
23           Aidy Bryant  45    FALSE         FALSE         18      1.00000000
24           Aidy Bryant  46    FALSE         FALSE         17      1.00000000
25            Al Franken   3     TRUE         FALSE         20      1.00000000
26            Al Franken   4     TRUE         FALSE         20      1.00000000
27            Al Franken   5     TRUE         FALSE         14      0.70000000
28            Al Franken  11     TRUE         FALSE          6      0.33333333
29            Al Franken  14     TRUE         FALSE         20      1.00000000
30            Al Franken  15     TRUE         FALSE         20      1.00000000
31            Al Franken  16     TRUE         FALSE         20      1.00000000
32            Al Franken  17     TRUE         FALSE         20      1.00000000
33            Al Franken  18     TRUE         FALSE         20      1.00000000
34            Al Franken  19     TRUE         FALSE         20      1.00000000
35            Al Franken  20     TRUE         FALSE         20      1.00000000
36          Alan Zweibel   5     TRUE         FALSE          5      0.25000000
37           Alex Moffat  42     TRUE         FALSE         21      1.00000000
38           Alex Moffat  43     TRUE         FALSE         21      1.00000000
39           Alex Moffat  44    FALSE         FALSE         21      1.00000000
40           Alex Moffat  45    FALSE         FALSE         18      1.00000000
41           Alex Moffat  46    FALSE         FALSE         17      1.00000000
42           Amy Poehler  27     TRUE         FALSE         20      1.00000000
43           Amy Poehler  28    FALSE         FALSE         20      1.00000000
44           Amy Poehler  29    FALSE         FALSE         20      1.00000000
45           Amy Poehler  30    FALSE          TRUE         20      1.00000000
46           Amy Poehler  31    FALSE          TRUE         19      1.00000000
47           Amy Poehler  32    FALSE          TRUE         20      1.00000000
48           Amy Poehler  33    FALSE          TRUE         12      1.00000000
49           Amy Poehler  34    FALSE          TRUE         11      0.50000000
50          Ana Gasteyer  22    FALSE         FALSE         20      1.00000000
51          Ana Gasteyer  23    FALSE         FALSE         20      1.00000000
52          Ana Gasteyer  24    FALSE         FALSE         19      1.00000000
53          Ana Gasteyer  25    FALSE         FALSE         20      1.00000000
54          Ana Gasteyer  26    FALSE         FALSE         20      1.00000000
55          Ana Gasteyer  27    FALSE         FALSE         20      1.00000000
56       Andrew Dismukes  46     TRUE         FALSE         17      1.00000000
57          Andy Samberg  31     TRUE         FALSE         19      1.00000000
58          Andy Samberg  32    FALSE         FALSE         20      1.00000000
59          Andy Samberg  33    FALSE         FALSE         12      1.00000000
60          Andy Samberg  34    FALSE         FALSE         22      1.00000000
61          Andy Samberg  35    FALSE         FALSE         22      1.00000000
62          Andy Samberg  36    FALSE         FALSE         22      1.00000000
63          Andy Samberg  37    FALSE         FALSE         22      1.00000000
64            Ann Risley   6    FALSE         FALSE         13      1.00000000
65  Anthony Michael Hall  11    FALSE         FALSE         18      1.00000000
66          Beck Bennett  39     TRUE         FALSE         21      1.00000000
67          Beck Bennett  40     TRUE         FALSE         21      1.00000000
68          Beck Bennett  41    FALSE         FALSE         21      1.00000000
69          Beck Bennett  42    FALSE         FALSE         21      1.00000000
70          Beck Bennett  43    FALSE         FALSE         21      1.00000000
71          Beck Bennett  44    FALSE         FALSE         21      1.00000000
72          Beck Bennett  45    FALSE         FALSE         18      1.00000000
73          Beck Bennett  46    FALSE         FALSE         17      1.00000000
74           Ben Stiller  14     TRUE         FALSE          6      0.30000000
75           Beth Cahill  17     TRUE         FALSE         15      0.75000000
76            Bill Hader  31     TRUE         FALSE         19      1.00000000
77            Bill Hader  32    FALSE         FALSE         20      1.00000000
78            Bill Hader  33    FALSE         FALSE         12      1.00000000
79            Bill Hader  34    FALSE         FALSE         22      1.00000000
80            Bill Hader  35    FALSE         FALSE         22      1.00000000
81            Bill Hader  36    FALSE         FALSE         22      1.00000000
82            Bill Hader  37    FALSE         FALSE         22      1.00000000
83            Bill Hader  38    FALSE         FALSE         21      1.00000000
84           Bill Murray   2    FALSE         FALSE         12      0.54545455
85           Bill Murray   3    FALSE         FALSE         20      1.00000000
86           Bill Murray   4    FALSE          TRUE         20      1.00000000
87           Bill Murray   5    FALSE          TRUE         20      1.00000000
88         Billy Crystal  10    FALSE         FALSE         17      1.00000000
89        Bobby Moynihan  34     TRUE         FALSE         22      1.00000000
90        Bobby Moynihan  35     TRUE         FALSE         22      1.00000000
91        Bobby Moynihan  36    FALSE         FALSE         22      1.00000000
92        Bobby Moynihan  37    FALSE         FALSE         22      1.00000000
93        Bobby Moynihan  38    FALSE         FALSE         21      1.00000000
94        Bobby Moynihan  39    FALSE         FALSE         21      1.00000000
95        Bobby Moynihan  40    FALSE         FALSE         21      1.00000000
96        Bobby Moynihan  41    FALSE         FALSE         21      1.00000000
97        Bobby Moynihan  42    FALSE         FALSE         21      1.00000000
98            Bowen Yang  45     TRUE         FALSE         18      1.00000000
99            Bowen Yang  46     TRUE         FALSE         17      1.00000000
100            Brad Hall   8    FALSE          TRUE         20      1.00000000
101            Brad Hall   9    FALSE          TRUE         19      1.00000000
102   Brian Doyle-Murray   5     TRUE         FALSE         12      0.60000000
103   Brian Doyle-Murray   7     TRUE          TRUE         20      1.00000000
104       Brooks Wheelan  39     TRUE         FALSE         21      1.00000000
105         Casey Wilson  33     TRUE         FALSE          8      0.66666667
106         Casey Wilson  34     TRUE         FALSE         22      1.00000000
107        Cecily Strong  38     TRUE         FALSE         21      1.00000000
108        Cecily Strong  39    FALSE          TRUE         21      1.00000000
109        Cecily Strong  40    FALSE         FALSE         21      1.00000000
110        Cecily Strong  41    FALSE         FALSE         21      1.00000000
111        Cecily Strong  42    FALSE         FALSE         21      1.00000000
112        Cecily Strong  43    FALSE         FALSE         21      1.00000000
113        Cecily Strong  44    FALSE         FALSE         21      1.00000000
114        Cecily Strong  45    FALSE         FALSE         18      1.00000000
115        Cecily Strong  46    FALSE         FALSE         17      1.00000000
116       Charles Rocket   6    FALSE          TRUE         13      1.00000000
117          Cheri Oteri  21    FALSE         FALSE         20      1.00000000
118          Cheri Oteri  22    FALSE         FALSE         20      1.00000000
119          Cheri Oteri  23    FALSE         FALSE         20      1.00000000
120          Cheri Oteri  24    FALSE         FALSE         19      1.00000000
121          Cheri Oteri  25    FALSE         FALSE         20      1.00000000
122          Chevy Chase   1    FALSE          TRUE         24      1.00000000
123          Chevy Chase   2    FALSE          TRUE          6      0.27272727
124        Chloe Fineman  45     TRUE         FALSE         18      1.00000000
125        Chloe Fineman  46     TRUE         FALSE         17      1.00000000
126        Chris Elliott  20    FALSE         FALSE         20      1.00000000
127         Chris Farley  16     TRUE         FALSE         20      1.00000000
128         Chris Farley  17    FALSE         FALSE         20      1.00000000
129         Chris Farley  18    FALSE         FALSE         20      1.00000000
130         Chris Farley  19    FALSE         FALSE         20      1.00000000
131         Chris Farley  20    FALSE         FALSE         20      1.00000000
132         Chris Kattan  21     TRUE         FALSE          6      0.30000000
133         Chris Kattan  22    FALSE         FALSE         20      1.00000000
134         Chris Kattan  23    FALSE         FALSE         20      1.00000000
135         Chris Kattan  24    FALSE         FALSE         19      1.00000000
136         Chris Kattan  25    FALSE         FALSE         20      1.00000000
137         Chris Kattan  26    FALSE         FALSE         20      1.00000000
138         Chris Kattan  27    FALSE         FALSE         20      1.00000000
139         Chris Kattan  28    FALSE         FALSE         20      1.00000000
140        Chris Parnell  24     TRUE         FALSE         19      1.00000000
141        Chris Parnell  25    FALSE         FALSE         20      1.00000000
142        Chris Parnell  26    FALSE         FALSE         20      1.00000000
143        Chris Parnell  27    FALSE         FALSE          8      0.40000000
144        Chris Parnell  28    FALSE         FALSE         20      1.00000000
145        Chris Parnell  29    FALSE         FALSE         20      1.00000000
146        Chris Parnell  30    FALSE         FALSE         20      1.00000000
147        Chris Parnell  31    FALSE         FALSE         19      1.00000000
148           Chris Redd  43     TRUE         FALSE         21      1.00000000
149           Chris Redd  44     TRUE         FALSE         21      1.00000000
150           Chris Redd  45    FALSE         FALSE         18      1.00000000
151           Chris Redd  46    FALSE         FALSE         17      1.00000000
152           Chris Rock  16     TRUE         FALSE         20      1.00000000
153           Chris Rock  17    FALSE         FALSE         20      1.00000000
154           Chris Rock  18    FALSE         FALSE         20      1.00000000
155   Christine Ebersole   7    FALSE          TRUE         20      1.00000000
156    Christopher Guest  10    FALSE          TRUE         17      1.00000000
157           Colin Jost  39     TRUE          TRUE          8      0.38095238
158           Colin Jost  40     TRUE          TRUE         21      1.00000000
159           Colin Jost  41    FALSE          TRUE         21      1.00000000
160           Colin Jost  42    FALSE          TRUE         21      1.00000000
161           Colin Jost  43    FALSE          TRUE         21      1.00000000
162           Colin Jost  44    FALSE          TRUE         21      1.00000000
163           Colin Jost  45    FALSE          TRUE         18      1.00000000
164           Colin Jost  46    FALSE          TRUE         17      1.00000000
165          Colin Quinn  21     TRUE         FALSE         20      1.00000000
166          Colin Quinn  22     TRUE         FALSE         20      1.00000000
167          Colin Quinn  23    FALSE          TRUE         20      1.00000000
168          Colin Quinn  24    FALSE          TRUE         19      1.00000000
169          Colin Quinn  25    FALSE          TRUE         20      1.00000000
170         Damon Wayans  11     TRUE         FALSE         12      0.66666667
171          Dan Aykroyd   1    FALSE         FALSE         24      1.00000000
172          Dan Aykroyd   2    FALSE         FALSE         22      1.00000000
173          Dan Aykroyd   3    FALSE          TRUE         20      1.00000000
174          Dan Aykroyd   4    FALSE         FALSE         20      1.00000000
175           Dan Vitale  11     TRUE         FALSE         18      1.00000000
176          Dana Carvey  12    FALSE         FALSE         20      1.00000000
177          Dana Carvey  13    FALSE         FALSE         13      1.00000000
178          Dana Carvey  14    FALSE         FALSE         20      1.00000000
179          Dana Carvey  15    FALSE         FALSE         20      1.00000000
180          Dana Carvey  16    FALSE         FALSE         20      1.00000000
181          Dana Carvey  17    FALSE         FALSE         20      1.00000000
182          Dana Carvey  18    FALSE         FALSE         12      0.60000000
183        Danitra Vance  11    FALSE         FALSE         18      1.00000000
184      Darrell Hammond  21    FALSE         FALSE         20      1.00000000
185      Darrell Hammond  22    FALSE         FALSE         20      1.00000000
186      Darrell Hammond  23    FALSE         FALSE         20      1.00000000
187      Darrell Hammond  24    FALSE         FALSE         19      1.00000000
188      Darrell Hammond  25    FALSE         FALSE         20      1.00000000
189      Darrell Hammond  26    FALSE         FALSE         20      1.00000000
190      Darrell Hammond  27    FALSE         FALSE         20      1.00000000
191      Darrell Hammond  28    FALSE         FALSE         20      1.00000000
192      Darrell Hammond  29    FALSE         FALSE         20      1.00000000
193      Darrell Hammond  30    FALSE         FALSE         20      1.00000000
194      Darrell Hammond  31    FALSE         FALSE         19      1.00000000
195      Darrell Hammond  32    FALSE         FALSE         20      1.00000000
196      Darrell Hammond  33    FALSE         FALSE         12      1.00000000
197      Darrell Hammond  34    FALSE         FALSE         22      1.00000000
198       David Koechner  21    FALSE         FALSE         20      1.00000000
199          David Spade  16     TRUE         FALSE         16      0.80000000
200          David Spade  17     TRUE         FALSE         20      1.00000000
201          David Spade  18     TRUE         FALSE         20      1.00000000
202          David Spade  19    FALSE         FALSE         20      1.00000000
203          David Spade  20    FALSE         FALSE         20      1.00000000
204          David Spade  21    FALSE         FALSE         20      1.00000000
205         Dean Edwards  27     TRUE         FALSE         20      1.00000000
206         Dean Edwards  28     TRUE         FALSE         20      1.00000000
207        Dennis Miller  11    FALSE          TRUE         18      1.00000000
208        Dennis Miller  12    FALSE          TRUE         20      1.00000000
209        Dennis Miller  13    FALSE          TRUE         13      1.00000000
210        Dennis Miller  14    FALSE          TRUE         20      1.00000000
211        Dennis Miller  15    FALSE          TRUE         20      1.00000000
212        Dennis Miller  16    FALSE          TRUE         20      1.00000000
213         Denny Dillon   6    FALSE         FALSE         13      1.00000000
214          Don Novello   5     TRUE         FALSE         20      1.00000000
215          Don Novello  11     TRUE         FALSE         18      1.00000000
216         Eddie Murphy   6    FALSE         FALSE         10      0.76923077
217         Eddie Murphy   7    FALSE         FALSE         20      1.00000000
218         Eddie Murphy   8    FALSE         FALSE         20      1.00000000
219         Eddie Murphy   9    FALSE         FALSE         14      0.73684211
220           Ego Nwodim  44     TRUE         FALSE         21      1.00000000
221           Ego Nwodim  45     TRUE         FALSE         18      1.00000000
222           Ego Nwodim  46    FALSE         FALSE         17      1.00000000
223      Ellen Cleghorne  17     TRUE         FALSE         20      1.00000000
224      Ellen Cleghorne  18     TRUE         FALSE         20      1.00000000
225      Ellen Cleghorne  19    FALSE         FALSE         20      1.00000000
226      Ellen Cleghorne  20    FALSE         FALSE         20      1.00000000
227         Emily Prager   6     TRUE         FALSE          1      0.07692308
228     Finesse Mitchell  29     TRUE         FALSE         20      1.00000000
229     Finesse Mitchell  30     TRUE         FALSE         20      1.00000000
230     Finesse Mitchell  31    FALSE         FALSE         19      1.00000000
231         Fred Armisen  28     TRUE         FALSE         20      1.00000000
232         Fred Armisen  29     TRUE         FALSE         20      1.00000000
233         Fred Armisen  30    FALSE         FALSE         20      1.00000000
234         Fred Armisen  31    FALSE         FALSE         19      1.00000000
235         Fred Armisen  32    FALSE         FALSE         20      1.00000000
236         Fred Armisen  33    FALSE         FALSE         12      1.00000000
237         Fred Armisen  34    FALSE         FALSE         22      1.00000000
238         Fred Armisen  35    FALSE         FALSE         22      1.00000000
239         Fred Armisen  36    FALSE         FALSE         22      1.00000000
240         Fred Armisen  37    FALSE         FALSE         22      1.00000000
241         Fred Armisen  38    FALSE         FALSE         21      1.00000000
242            Fred Wolf  21     TRUE         FALSE         20      1.00000000
243            Fred Wolf  22     TRUE         FALSE          3      0.15000000
244        Gail Matthius   6    FALSE          TRUE         13      1.00000000
245       Garrett Morris   1    FALSE         FALSE         24      1.00000000
246       Garrett Morris   2    FALSE         FALSE         22      1.00000000
247       Garrett Morris   3    FALSE         FALSE         20      1.00000000
248       Garrett Morris   4    FALSE         FALSE         20      1.00000000
249       Garrett Morris   5    FALSE         FALSE         20      1.00000000
250         Gary Kroeger   8    FALSE         FALSE         20      1.00000000
251         Gary Kroeger   9    FALSE         FALSE         19      1.00000000
252         Gary Kroeger  10    FALSE         FALSE         17      1.00000000
253           George Coe   1    FALSE         FALSE          1      0.04166667
254    Gilbert Gottfried   6    FALSE         FALSE         13      1.00000000
255         Gilda Radner   1    FALSE         FALSE         24      1.00000000
256         Gilda Radner   2    FALSE         FALSE         22      1.00000000
257         Gilda Radner   3    FALSE         FALSE         20      1.00000000
258         Gilda Radner   4    FALSE         FALSE         20      1.00000000
259         Gilda Radner   5    FALSE         FALSE         20      1.00000000
260        Harry Shearer   5    FALSE         FALSE         20      1.00000000
261        Harry Shearer  10    FALSE         FALSE         10      0.58823529
262        Heidi Gardner  43     TRUE         FALSE         21      1.00000000
263        Heidi Gardner  44     TRUE         FALSE         21      1.00000000
264        Heidi Gardner  45    FALSE         FALSE         18      1.00000000
265        Heidi Gardner  46    FALSE         FALSE         17      1.00000000
266         Horatio Sanz  24     TRUE         FALSE         19      1.00000000
267         Horatio Sanz  25    FALSE         FALSE         20      1.00000000
268         Horatio Sanz  26    FALSE         FALSE         20      1.00000000
269         Horatio Sanz  27    FALSE         FALSE         20      1.00000000
270         Horatio Sanz  28    FALSE         FALSE         20      1.00000000
271         Horatio Sanz  29    FALSE         FALSE         20      1.00000000
272         Horatio Sanz  30    FALSE         FALSE         20      1.00000000
273         Horatio Sanz  31    FALSE          TRUE         19      1.00000000
274            Jan Hooks  12    FALSE         FALSE         20      1.00000000
275            Jan Hooks  13    FALSE         FALSE         13      1.00000000
276            Jan Hooks  14    FALSE         FALSE         20      1.00000000
277            Jan Hooks  15    FALSE         FALSE         20      1.00000000
278            Jan Hooks  16    FALSE         FALSE         20      1.00000000
279          Jane Curtin   1    FALSE         FALSE         24      1.00000000
280          Jane Curtin   2    FALSE          TRUE         22      1.00000000
281          Jane Curtin   3    FALSE          TRUE         20      1.00000000
282          Jane Curtin   4    FALSE          TRUE         20      1.00000000
283          Jane Curtin   5    FALSE          TRUE         20      1.00000000
284     Janeane Garofalo  20    FALSE         FALSE         14      0.70000000
285       Jason Sudeikis  30     TRUE         FALSE          3      0.15000000
286       Jason Sudeikis  31     TRUE         FALSE         19      1.00000000
287       Jason Sudeikis  32    FALSE         FALSE         20      1.00000000
288       Jason Sudeikis  33    FALSE         FALSE         12      1.00000000
289       Jason Sudeikis  34    FALSE         FALSE         22      1.00000000
290       Jason Sudeikis  35    FALSE         FALSE         22      1.00000000
291       Jason Sudeikis  36    FALSE         FALSE         22      1.00000000
292       Jason Sudeikis  37    FALSE         FALSE         22      1.00000000
293       Jason Sudeikis  38    FALSE         FALSE         21      1.00000000
294             Jay Mohr  19     TRUE         FALSE         18      0.90000000
295             Jay Mohr  20     TRUE         FALSE         20      1.00000000
296          Jay Pharoah  36     TRUE         FALSE         22      1.00000000
297          Jay Pharoah  37     TRUE         FALSE         22      1.00000000
298          Jay Pharoah  38    FALSE         FALSE         21      1.00000000
299          Jay Pharoah  39    FALSE         FALSE         21      1.00000000
300          Jay Pharoah  40    FALSE         FALSE         21      1.00000000
301          Jay Pharoah  41    FALSE         FALSE         21      1.00000000
302        Jeff Richards  27     TRUE         FALSE         20      1.00000000
303        Jeff Richards  28     TRUE         FALSE         20      1.00000000
304        Jeff Richards  29    FALSE         FALSE         10      0.50000000
305          Jenny Slate  35     TRUE         FALSE         22      1.00000000
306          Jerry Minor  26     TRUE         FALSE         20      1.00000000
307          Jim Belushi   9    FALSE         FALSE         19      1.00000000
308          Jim Belushi  10    FALSE         FALSE         17      1.00000000
309           Jim Breuer  21    FALSE         FALSE         20      1.00000000
310           Jim Breuer  22    FALSE         FALSE         20      1.00000000
311           Jim Breuer  23    FALSE         FALSE         20      1.00000000
312           Jim Downey   5     TRUE         FALSE         12      0.60000000
313         Jimmy Fallon  24     TRUE         FALSE         19      1.00000000
314         Jimmy Fallon  25    FALSE         FALSE         20      1.00000000
315         Jimmy Fallon  26    FALSE          TRUE         20      1.00000000
316         Jimmy Fallon  27    FALSE          TRUE         20      1.00000000
317         Jimmy Fallon  28    FALSE          TRUE         20      1.00000000
318         Jimmy Fallon  29    FALSE          TRUE         20      1.00000000
319          Joan Cusack  11    FALSE         FALSE         18      1.00000000
320          Joe Piscopo   6    FALSE         FALSE         13      1.00000000
321          Joe Piscopo   7    FALSE         FALSE         20      1.00000000
322          Joe Piscopo   8    FALSE         FALSE         20      1.00000000
323          Joe Piscopo   9    FALSE         FALSE         19      1.00000000
324         John Belushi   1    FALSE         FALSE         24      1.00000000
325         John Belushi   2    FALSE         FALSE         22      1.00000000
326         John Belushi   3    FALSE         FALSE         20      1.00000000
327         John Belushi   4    FALSE         FALSE         20      1.00000000
328        John Milhiser  39     TRUE         FALSE         21      1.00000000
329           Jon Lovitz  11    FALSE         FALSE         18      1.00000000
330           Jon Lovitz  12    FALSE         FALSE         20      1.00000000
331           Jon Lovitz  13    FALSE         FALSE         13      1.00000000
332           Jon Lovitz  14    FALSE         FALSE         20      1.00000000
333           Jon Lovitz  15    FALSE         FALSE         20      1.00000000
334        Jon Rudnitsky  41     TRUE         FALSE         21      1.00000000
335  Julia Louis-Dreyfus   8    FALSE         FALSE         20      1.00000000
336  Julia Louis-Dreyfus   9    FALSE         FALSE         19      1.00000000
337  Julia Louis-Dreyfus  10    FALSE         FALSE         17      1.00000000
338        Julia Sweeney  16     TRUE         FALSE         16      0.80000000
339        Julia Sweeney  17    FALSE         FALSE         20      1.00000000
340        Julia Sweeney  18    FALSE         FALSE         20      1.00000000
341        Julia Sweeney  19    FALSE         FALSE         20      1.00000000
342        Kate McKinnon  37     TRUE         FALSE          5      0.22727273
343        Kate McKinnon  38     TRUE         FALSE         21      1.00000000
344        Kate McKinnon  39    FALSE         FALSE         21      1.00000000
345        Kate McKinnon  40    FALSE         FALSE         21      1.00000000
346        Kate McKinnon  41    FALSE         FALSE         21      1.00000000
347        Kate McKinnon  42    FALSE         FALSE         21      1.00000000
348        Kate McKinnon  43    FALSE         FALSE         21      1.00000000
349        Kate McKinnon  44    FALSE         FALSE         21      1.00000000
350        Kate McKinnon  45    FALSE         FALSE         18      1.00000000
351        Kate McKinnon  46    FALSE         FALSE         17      1.00000000
352       Kenan Thompson  29     TRUE         FALSE         20      1.00000000
353       Kenan Thompson  30     TRUE         FALSE         20      1.00000000
354       Kenan Thompson  31    FALSE         FALSE         19      1.00000000
355       Kenan Thompson  32    FALSE         FALSE         20      1.00000000
356       Kenan Thompson  33    FALSE         FALSE         12      1.00000000
357       Kenan Thompson  34    FALSE         FALSE         22      1.00000000
358       Kenan Thompson  35    FALSE         FALSE         22      1.00000000
359       Kenan Thompson  36    FALSE         FALSE         22      1.00000000
360       Kenan Thompson  37    FALSE         FALSE         22      1.00000000
361       Kenan Thompson  38    FALSE         FALSE         21      1.00000000
362       Kenan Thompson  39    FALSE         FALSE         21      1.00000000
363       Kenan Thompson  40    FALSE         FALSE         21      1.00000000
364       Kenan Thompson  41    FALSE         FALSE         21      1.00000000
365       Kenan Thompson  42    FALSE         FALSE         21      1.00000000
366       Kenan Thompson  43    FALSE         FALSE         21      1.00000000
367       Kenan Thompson  44    FALSE         FALSE         21      1.00000000
368       Kenan Thompson  45    FALSE         FALSE         18      1.00000000
369       Kenan Thompson  46    FALSE         FALSE         17      1.00000000
370         Kevin Nealon  12     TRUE         FALSE         20      1.00000000
371         Kevin Nealon  13    FALSE         FALSE         13      1.00000000
372         Kevin Nealon  14    FALSE         FALSE         20      1.00000000
373         Kevin Nealon  15    FALSE         FALSE         20      1.00000000
374         Kevin Nealon  16    FALSE         FALSE         20      1.00000000
375         Kevin Nealon  17    FALSE          TRUE         20      1.00000000
376         Kevin Nealon  18    FALSE          TRUE         20      1.00000000
377         Kevin Nealon  19    FALSE          TRUE         20      1.00000000
378         Kevin Nealon  20    FALSE         FALSE         20      1.00000000
379         Kristen Wiig  31     TRUE         FALSE         15      0.78947368
380         Kristen Wiig  32    FALSE         FALSE         20      1.00000000
381         Kristen Wiig  33    FALSE         FALSE         12      1.00000000
382         Kristen Wiig  34    FALSE         FALSE         22      1.00000000
383         Kristen Wiig  35    FALSE         FALSE         22      1.00000000
384         Kristen Wiig  36    FALSE         FALSE         22      1.00000000
385         Kristen Wiig  37    FALSE         FALSE         22      1.00000000
386          Kyle Mooney  39     TRUE         FALSE         21      1.00000000
387          Kyle Mooney  40     TRUE         FALSE         21      1.00000000
388          Kyle Mooney  41    FALSE         FALSE         21      1.00000000
389          Kyle Mooney  42    FALSE         FALSE         21      1.00000000
390          Kyle Mooney  43    FALSE         FALSE         21      1.00000000
391          Kyle Mooney  44    FALSE         FALSE         21      1.00000000
392          Kyle Mooney  45    FALSE         FALSE         18      1.00000000
393          Kyle Mooney  46    FALSE         FALSE         17      1.00000000
394       Laraine Newman   1    FALSE         FALSE         24      1.00000000
395       Laraine Newman   2    FALSE         FALSE         22      1.00000000
396       Laraine Newman   3    FALSE         FALSE         20      1.00000000
397       Laraine Newman   4    FALSE         FALSE         20      1.00000000
398       Laraine Newman   5    FALSE         FALSE         20      1.00000000
399    Laura Kightlinger  20     TRUE         FALSE         20      1.00000000
400          Lauren Holt  46     TRUE         FALSE         17      1.00000000
401       Laurie Metcalf   6     TRUE         FALSE          1      0.07692308
402         Leslie Jones  40     TRUE         FALSE         18      0.85714286
403         Leslie Jones  41     TRUE         FALSE         21      1.00000000
404         Leslie Jones  42    FALSE         FALSE         21      1.00000000
405         Leslie Jones  43    FALSE         FALSE         21      1.00000000
406         Leslie Jones  44    FALSE         FALSE         21      1.00000000
407            Luke Null  43     TRUE         FALSE         21      1.00000000
408        Mark McKinney  20    FALSE         FALSE         11      0.55000000
409        Mark McKinney  21    FALSE         FALSE         20      1.00000000
410        Mark McKinney  22    FALSE         FALSE         20      1.00000000
411         Martin Short  10    FALSE         FALSE         17      1.00000000
412           Mary Gross   7    FALSE          TRUE         20      1.00000000
413           Mary Gross   8    FALSE         FALSE         20      1.00000000
414           Mary Gross   9    FALSE         FALSE         19      1.00000000
415           Mary Gross  10    FALSE         FALSE         17      1.00000000
416     Matthew Laurance   6     TRUE         FALSE         10      0.76923077
417         Maya Rudolph  25     TRUE         FALSE          3      0.15000000
418         Maya Rudolph  26     TRUE         FALSE         20      1.00000000
419         Maya Rudolph  27    FALSE         FALSE         20      1.00000000
420         Maya Rudolph  28    FALSE         FALSE         20      1.00000000
421         Maya Rudolph  29    FALSE         FALSE         20      1.00000000
422         Maya Rudolph  30    FALSE         FALSE         20      1.00000000
423         Maya Rudolph  31    FALSE         FALSE         19      1.00000000
424         Maya Rudolph  32    FALSE         FALSE         20      1.00000000
425         Maya Rudolph  33    FALSE         FALSE          4      0.33333333
426      Melanie Hutsell  17     TRUE         FALSE         15      0.75000000
427      Melanie Hutsell  18     TRUE         FALSE         20      1.00000000
428      Melanie Hutsell  19    FALSE         FALSE         20      1.00000000
429   Melissa Villasenor  42     TRUE         FALSE         21      1.00000000
430   Melissa Villasenor  43     TRUE         FALSE         21      1.00000000
431   Melissa Villasenor  44    FALSE         FALSE         21      1.00000000
432   Melissa Villasenor  45    FALSE         FALSE         18      1.00000000
433   Melissa Villasenor  46    FALSE         FALSE         17      1.00000000
434          Michael Che  40     TRUE          TRUE         21      1.00000000
435          Michael Che  41     TRUE          TRUE         21      1.00000000
436          Michael Che  42    FALSE          TRUE         21      1.00000000
437          Michael Che  43    FALSE          TRUE         21      1.00000000
438          Michael Che  44    FALSE          TRUE         21      1.00000000
439          Michael Che  45    FALSE          TRUE         18      1.00000000
440          Michael Che  46    FALSE          TRUE         17      1.00000000
441       Michael McKean  19    FALSE         FALSE          6      0.30000000
442       Michael McKean  20    FALSE         FALSE         20      1.00000000
443   Michael O'Donoghue   1    FALSE         FALSE          4      0.16666667
444     Michaela Watkins  34     TRUE         FALSE         15      0.68181818
445           Mike Myers  14     TRUE         FALSE         11      0.55000000
446           Mike Myers  15    FALSE         FALSE         20      1.00000000
447           Mike Myers  16    FALSE         FALSE         20      1.00000000
448           Mike Myers  17    FALSE         FALSE         20      1.00000000
449           Mike Myers  18    FALSE         FALSE         20      1.00000000
450           Mike Myers  19    FALSE         FALSE         20      1.00000000
451           Mike Myers  20    FALSE         FALSE         11      0.55000000
452         Mike O'Brien  39     TRUE         FALSE         21      1.00000000
453            Mikey Day  42     TRUE         FALSE         21      1.00000000
454            Mikey Day  43     TRUE         FALSE         21      1.00000000
455            Mikey Day  44    FALSE         FALSE         21      1.00000000
456            Mikey Day  45    FALSE         FALSE         18      1.00000000
457            Mikey Day  46    FALSE         FALSE         17      1.00000000
458        Molly Shannon  20     TRUE         FALSE          7      0.35000000
459        Molly Shannon  21    FALSE         FALSE         20      1.00000000
460        Molly Shannon  22    FALSE         FALSE         20      1.00000000
461        Molly Shannon  23    FALSE         FALSE         20      1.00000000
462        Molly Shannon  24    FALSE         FALSE         19      1.00000000
463        Molly Shannon  25    FALSE         FALSE         20      1.00000000
464        Molly Shannon  26    FALSE         FALSE         12      0.60000000
465       Morwenna Banks  20    FALSE         FALSE          4      0.20000000
466          Nancy Walls  21    FALSE         FALSE         20      1.00000000
467         Nasim Pedrad  35     TRUE         FALSE         22      1.00000000
468         Nasim Pedrad  36     TRUE         FALSE         22      1.00000000
469         Nasim Pedrad  37    FALSE         FALSE         22      1.00000000
470         Nasim Pedrad  38    FALSE         FALSE         21      1.00000000
471         Nasim Pedrad  39    FALSE         FALSE         21      1.00000000
472           Noel Wells  39     TRUE         FALSE         21      1.00000000
473            Nora Dunn  11    FALSE         FALSE         18      1.00000000
474            Nora Dunn  12    FALSE         FALSE         20      1.00000000
475            Nora Dunn  13    FALSE         FALSE         13      1.00000000
476            Nora Dunn  14    FALSE         FALSE         20      1.00000000
477            Nora Dunn  15    FALSE         FALSE         20      1.00000000
478       Norm MacDonald  19     TRUE         FALSE         19      0.95000000
479       Norm MacDonald  20    FALSE          TRUE         20      1.00000000
480       Norm MacDonald  21    FALSE          TRUE         20      1.00000000
481       Norm MacDonald  22    FALSE          TRUE         20      1.00000000
482       Norm MacDonald  23    FALSE          TRUE         16      0.80000000
483    Pamela Stephenson  10    FALSE         FALSE         17      1.00000000
484     Patrick Weathers   6     TRUE         FALSE         10      0.76923077
485        Paul Brittain  36     TRUE         FALSE         22      1.00000000
486        Paul Brittain  37     TRUE         FALSE         12      0.54545455
487         Paul Shaffer   5     TRUE         FALSE         16      0.80000000
488        Pete Davidson  40     TRUE         FALSE         21      1.00000000
489        Pete Davidson  41     TRUE         FALSE         21      1.00000000
490        Pete Davidson  42    FALSE         FALSE         21      1.00000000
491        Pete Davidson  43    FALSE         FALSE         21      1.00000000
492        Pete Davidson  44    FALSE         FALSE         21      1.00000000
493        Pete Davidson  45    FALSE         FALSE         18      1.00000000
494        Pete Davidson  46    FALSE         FALSE         17      1.00000000
495        Peter Aykroyd   5     TRUE         FALSE         12      0.60000000
496         Phil Hartman  12    FALSE         FALSE         20      1.00000000
497         Phil Hartman  13    FALSE         FALSE         13      1.00000000
498         Phil Hartman  14    FALSE         FALSE         20      1.00000000
499         Phil Hartman  15    FALSE         FALSE         20      1.00000000
500         Phil Hartman  16    FALSE         FALSE         20      1.00000000
501         Phil Hartman  17    FALSE         FALSE         20      1.00000000
502         Phil Hartman  18    FALSE         FALSE         20      1.00000000
503         Phil Hartman  19    FALSE         FALSE         20      1.00000000
504       Punkie Johnson  46     TRUE         FALSE         17      1.00000000
505        Rachel Dratch  25     TRUE         FALSE         18      0.90000000
506        Rachel Dratch  26     TRUE         FALSE         20      1.00000000
507        Rachel Dratch  27    FALSE         FALSE         20      1.00000000
508        Rachel Dratch  28    FALSE         FALSE         20      1.00000000
509        Rachel Dratch  29    FALSE         FALSE         20      1.00000000
510        Rachel Dratch  30    FALSE         FALSE         20      1.00000000
511        Rachel Dratch  31    FALSE         FALSE         19      1.00000000
512          Randy Quaid  11    FALSE         FALSE         18      1.00000000
513            Rich Hall  10    FALSE         FALSE         17      1.00000000
514           Rob Riggle  30     TRUE         FALSE         20      1.00000000
515        Rob Schneider  16     TRUE         FALSE         17      0.85000000
516        Rob Schneider  17     TRUE         FALSE         20      1.00000000
517        Rob Schneider  18    FALSE         FALSE         20      1.00000000
518        Rob Schneider  19    FALSE         FALSE         20      1.00000000
519    Robert Downey Jr.  11    FALSE         FALSE         18      1.00000000
520        Robert Smigel  17     TRUE         FALSE         20      1.00000000
521        Robert Smigel  18     TRUE         FALSE         20      1.00000000
522           Robin Duke   6    FALSE         FALSE          1      0.07692308
523           Robin Duke   7    FALSE         FALSE         20      1.00000000
524           Robin Duke   8    FALSE         FALSE         20      1.00000000
525           Robin Duke   9    FALSE         FALSE         19      1.00000000
526      Sarah Silverman  19     TRUE         FALSE         18      0.90000000
527       Sasheer Zamata  39     TRUE         FALSE         11      0.52380952
528       Sasheer Zamata  40     TRUE         FALSE         21      1.00000000
529       Sasheer Zamata  41    FALSE         FALSE         21      1.00000000
530       Sasheer Zamata  42    FALSE         FALSE         21      1.00000000
531          Seth Meyers  27     TRUE         FALSE         20      1.00000000
532          Seth Meyers  28     TRUE         FALSE         20      1.00000000
533          Seth Meyers  29    FALSE         FALSE         20      1.00000000
534          Seth Meyers  30    FALSE         FALSE         20      1.00000000
535          Seth Meyers  31    FALSE         FALSE         19      1.00000000
536          Seth Meyers  32    FALSE          TRUE         20      1.00000000
537          Seth Meyers  33    FALSE          TRUE         12      1.00000000
538          Seth Meyers  34    FALSE          TRUE         22      1.00000000
539          Seth Meyers  35    FALSE          TRUE         22      1.00000000
540          Seth Meyers  36    FALSE          TRUE         22      1.00000000
541          Seth Meyers  37    FALSE          TRUE         22      1.00000000
542          Seth Meyers  38    FALSE          TRUE         21      1.00000000
543          Seth Meyers  39    FALSE          TRUE         13      0.61904762
544       Siobhan Fallon  17     TRUE         FALSE         20      1.00000000
545         Taran Killam  36     TRUE         FALSE         22      1.00000000
546         Taran Killam  37     TRUE         FALSE         22      1.00000000
547         Taran Killam  38    FALSE         FALSE         21      1.00000000
548         Taran Killam  39    FALSE         FALSE         21      1.00000000
549         Taran Killam  40    FALSE         FALSE         21      1.00000000
550         Taran Killam  41    FALSE         FALSE         21      1.00000000
551        Terry Sweeney  11    FALSE         FALSE         18      1.00000000
552       Tim Kazurinsky   6    FALSE         FALSE          1      0.07692308
553       Tim Kazurinsky   7    FALSE         FALSE         20      1.00000000
554       Tim Kazurinsky   8    FALSE         FALSE         20      1.00000000
555       Tim Kazurinsky   9    FALSE         FALSE         19      1.00000000
556          Tim Meadows  16     TRUE         FALSE          9      0.45000000
557          Tim Meadows  17     TRUE         FALSE         20      1.00000000
558          Tim Meadows  18     TRUE         FALSE         20      1.00000000
559          Tim Meadows  19    FALSE         FALSE         20      1.00000000
560          Tim Meadows  20    FALSE         FALSE         20      1.00000000
561          Tim Meadows  21    FALSE         FALSE         20      1.00000000
562          Tim Meadows  22    FALSE         FALSE         20      1.00000000
563          Tim Meadows  23    FALSE         FALSE         20      1.00000000
564          Tim Meadows  24    FALSE         FALSE         19      1.00000000
565          Tim Meadows  25    FALSE         FALSE         20      1.00000000
566         Tim Robinson  38     TRUE         FALSE         21      1.00000000
567             Tina Fey  26     TRUE          TRUE         20      1.00000000
568             Tina Fey  27    FALSE          TRUE         20      1.00000000
569             Tina Fey  28    FALSE          TRUE         20      1.00000000
570             Tina Fey  29    FALSE          TRUE         20      1.00000000
571             Tina Fey  30    FALSE          TRUE         20      1.00000000
572             Tina Fey  31    FALSE          TRUE         19      1.00000000
573            Tom Davis   3     TRUE         FALSE         20      1.00000000
574            Tom Davis   4     TRUE         FALSE         20      1.00000000
575            Tom Davis   5     TRUE         FALSE         16      0.80000000
576         Tom Schiller   5     TRUE         FALSE          5      0.25000000
577          Tony Rosato   6    FALSE         FALSE          1      0.07692308
578          Tony Rosato   7    FALSE         FALSE         20      1.00000000
579         Tracy Morgan  22    FALSE         FALSE         20      1.00000000
580         Tracy Morgan  23    FALSE         FALSE         20      1.00000000
581         Tracy Morgan  24    FALSE         FALSE         19      1.00000000
582         Tracy Morgan  25    FALSE         FALSE         20      1.00000000
583         Tracy Morgan  26    FALSE         FALSE         20      1.00000000
584         Tracy Morgan  27    FALSE         FALSE         20      1.00000000
585         Tracy Morgan  28    FALSE         FALSE         20      1.00000000
586        Vanessa Bayer  36     TRUE         FALSE         22      1.00000000
587        Vanessa Bayer  37     TRUE         FALSE         22      1.00000000
588        Vanessa Bayer  38    FALSE         FALSE         21      1.00000000
589        Vanessa Bayer  39    FALSE         FALSE         21      1.00000000
590        Vanessa Bayer  40    FALSE         FALSE         21      1.00000000
591        Vanessa Bayer  41    FALSE         FALSE         21      1.00000000
592        Vanessa Bayer  42    FALSE         FALSE         21      1.00000000
593     Victoria Jackson  12    FALSE         FALSE         20      1.00000000
594     Victoria Jackson  13    FALSE         FALSE         13      1.00000000
595     Victoria Jackson  14    FALSE         FALSE         20      1.00000000
596     Victoria Jackson  15    FALSE         FALSE         20      1.00000000
597     Victoria Jackson  16    FALSE         FALSE         20      1.00000000
598     Victoria Jackson  17    FALSE         FALSE         20      1.00000000
599         Will Ferrell  21    FALSE         FALSE         20      1.00000000
600         Will Ferrell  22    FALSE         FALSE         20      1.00000000
601         Will Ferrell  23    FALSE         FALSE         20      1.00000000
602         Will Ferrell  24    FALSE         FALSE         19      1.00000000
603         Will Ferrell  25    FALSE         FALSE         20      1.00000000
604         Will Ferrell  26    FALSE         FALSE         20      1.00000000
605         Will Ferrell  27    FALSE         FALSE         20      1.00000000
606           Will Forte  28     TRUE         FALSE         20      1.00000000
607           Will Forte  29    FALSE         FALSE         20      1.00000000
608           Will Forte  30    FALSE         FALSE         20      1.00000000
609           Will Forte  31    FALSE         FALSE         19      1.00000000
610           Will Forte  32    FALSE         FALSE         20      1.00000000
611           Will Forte  33    FALSE         FALSE         12      1.00000000
612           Will Forte  34    FALSE         FALSE         22      1.00000000
613           Will Forte  35    FALSE         FALSE         22      1.00000000
614        Yvonne Hudson   6     TRUE         FALSE          9      0.69230769
       type  gender
1      cast    male
2      cast    male
3      cast    male
4      cast    male
5      cast    male
6      cast    male
7      cast  female
8      cast  female
9      cast  female
10     cast  female
11     cast    male
12     cast    male
13     cast    male
14     cast    male
15     cast    male
16     cast  female
17     cast  female
18     cast  female
19     cast  female
20     cast  female
21     cast  female
22     cast  female
23     cast  female
24     cast  female
25     cast    male
26     cast    male
27     cast    male
28     cast    male
29     cast    male
30     cast    male
31     cast    male
32     cast    male
33     cast    male
34     cast    male
35     cast    male
36     cast    male
37     cast    male
38     cast    male
39     cast    male
40     cast    male
41     cast    male
42     cast  female
43     cast  female
44     cast  female
45     cast  female
46     cast  female
47     cast  female
48     cast  female
49     cast  female
50     cast  female
51     cast  female
52     cast  female
53     cast  female
54     cast  female
55     cast  female
56     cast    male
57     cast    male
58     cast    male
59     cast    male
60     cast    male
61     cast    male
62     cast    male
63     cast    male
64     cast  female
65     cast    male
66     cast    male
67     cast    male
68     cast    male
69     cast    male
70     cast    male
71     cast    male
72     cast    male
73     cast    male
74     cast    male
75     cast  female
76     cast    male
77     cast    male
78     cast    male
79     cast    male
80     cast    male
81     cast    male
82     cast    male
83     cast    male
84     cast    male
85     cast    male
86     cast    male
87     cast    male
88     cast    male
89     cast    male
90     cast    male
91     cast    male
92     cast    male
93     cast    male
94     cast    male
95     cast    male
96     cast    male
97     cast    male
98     cast    male
99     cast    male
100    cast    male
101    cast    male
102    cast    male
103    cast    male
104    cast    male
105    cast  female
106    cast  female
107    cast  female
108    cast  female
109    cast  female
110    cast  female
111    cast  female
112    cast  female
113    cast  female
114    cast  female
115    cast  female
116    cast    male
117    cast  female
118    cast  female
119    cast  female
120    cast  female
121    cast  female
122    cast    male
123    cast    male
124    cast  female
125    cast  female
126    cast    male
127    cast    male
128    cast    male
129    cast    male
130    cast    male
131    cast    male
132    cast    male
133    cast    male
134    cast    male
135    cast    male
136    cast    male
137    cast    male
138    cast    male
139    cast    male
140    cast    male
141    cast    male
142    cast    male
143    cast    male
144    cast    male
145    cast    male
146    cast    male
147    cast    male
148    cast    male
149    cast    male
150    cast    male
151    cast    male
152    cast    male
153    cast    male
154    cast    male
155    cast  female
156    cast    male
157    cast    male
158    cast    male
159    cast    male
160    cast    male
161    cast    male
162    cast    male
163    cast    male
164    cast    male
165    cast    male
166    cast    male
167    cast    male
168    cast    male
169    cast    male
170    cast    male
171    cast    male
172    cast    male
173    cast    male
174    cast    male
175    cast    male
176    cast    male
177    cast    male
178    cast    male
179    cast    male
180    cast    male
181    cast    male
182    cast    male
183    cast  female
184    cast    male
185    cast    male
186    cast    male
187    cast    male
188    cast    male
189    cast    male
190    cast    male
191    cast    male
192    cast    male
193    cast    male
194    cast    male
195    cast    male
196    cast    male
197    cast    male
198    cast    male
199 unknown    male
200 unknown    male
201 unknown    male
202 unknown    male
203 unknown    male
204 unknown    male
205    cast    male
206    cast    male
207    cast    male
208    cast    male
209    cast    male
210    cast    male
211    cast    male
212    cast    male
213    cast    male
214    cast    male
215    cast    male
216    cast    male
217    cast    male
218    cast    male
219    cast    male
220    cast unknown
221    cast unknown
222    cast unknown
223    cast  female
224    cast  female
225    cast  female
226    cast  female
227    cast  female
228    cast    male
229    cast    male
230    cast    male
231    cast    male
232    cast    male
233    cast    male
234    cast    male
235    cast    male
236    cast    male
237    cast    male
238    cast    male
239    cast    male
240    cast    male
241    cast    male
242    cast    male
243    cast    male
244    cast  female
245    cast    male
246    cast    male
247    cast    male
248    cast    male
249    cast    male
250    cast    male
251    cast    male
252    cast    male
253    cast    male
254 unknown    male
255    cast  female
256    cast  female
257    cast  female
258    cast  female
259    cast  female
260    cast    male
261    cast    male
262    cast  female
263    cast  female
264    cast  female
265    cast  female
266    cast    male
267    cast    male
268    cast    male
269    cast    male
270    cast    male
271    cast    male
272    cast    male
273    cast    male
274    cast  female
275    cast  female
276    cast  female
277    cast  female
278    cast  female
279    cast  female
280    cast  female
281    cast  female
282    cast  female
283    cast  female
284    cast  female
285    cast    male
286    cast    male
287    cast    male
288    cast    male
289    cast    male
290    cast    male
291    cast    male
292    cast    male
293    cast    male
294    cast    male
295    cast    male
296    cast    male
297    cast    male
298    cast    male
299    cast    male
300    cast    male
301    cast    male
302    cast    male
303    cast    male
304    cast    male
305    cast  female
306    cast    male
307    cast    male
308    cast    male
309    cast    male
310    cast    male
311    cast    male
312    cast    male
313    cast    male
314    cast    male
315    cast    male
316    cast    male
317    cast    male
318    cast    male
319    cast  female
320    cast    male
321    cast    male
322    cast    male
323    cast    male
324    cast    male
325    cast    male
326    cast    male
327    cast    male
328    cast    male
329    cast    male
330    cast    male
331    cast    male
332    cast    male
333    cast    male
334    cast    male
335    cast  female
336    cast  female
337    cast  female
338    cast  female
339    cast  female
340    cast  female
341    cast  female
342    cast  female
343    cast  female
344    cast  female
345    cast  female
346    cast  female
347    cast  female
348    cast  female
349    cast  female
350    cast  female
351    cast  female
352    cast    male
353    cast    male
354    cast    male
355    cast    male
356    cast    male
357    cast    male
358    cast    male
359    cast    male
360    cast    male
361    cast    male
362    cast    male
363    cast    male
364    cast    male
365    cast    male
366    cast    male
367    cast    male
368    cast    male
369    cast    male
370    cast    male
371    cast    male
372    cast    male
373    cast    male
374    cast    male
375    cast    male
376    cast    male
377    cast    male
378    cast    male
379    cast  female
380    cast  female
381    cast  female
382    cast  female
383    cast  female
384    cast  female
385    cast  female
386    cast    male
387    cast    male
388    cast    male
389    cast    male
390    cast    male
391    cast    male
392    cast    male
393    cast    male
394    cast  female
395    cast  female
396    cast  female
397    cast  female
398    cast  female
399    cast  female
400    cast  female
401    cast  female
402    cast  female
403    cast  female
404    cast  female
405    cast  female
406    cast  female
407    cast    male
408    cast    male
409    cast    male
410    cast    male
411    cast    male
412    cast  female
413    cast  female
414    cast  female
415    cast  female
416    cast    male
417    cast  female
418    cast  female
419    cast  female
420    cast  female
421    cast  female
422    cast  female
423    cast  female
424    cast  female
425    cast  female
426    cast  female
427    cast  female
428    cast  female
429    cast  female
430    cast  female
431    cast  female
432    cast  female
433    cast  female
434    cast    male
435    cast    male
436    cast    male
437    cast    male
438    cast    male
439    cast    male
440    cast    male
441    cast    male
442    cast    male
443    cast    male
444    cast  female
445    cast    male
446    cast    male
447    cast    male
448    cast    male
449    cast    male
450    cast    male
451    cast    male
452    cast    male
453    cast    male
454    cast    male
455    cast    male
456    cast    male
457    cast    male
458    cast  female
459    cast  female
460    cast  female
461    cast  female
462    cast  female
463    cast  female
464    cast  female
465    cast  female
466    cast  female
467    cast  female
468    cast  female
469    cast  female
470    cast  female
471    cast  female
472    cast  female
473    cast  female
474    cast  female
475    cast  female
476    cast  female
477    cast  female
478    cast    male
479    cast    male
480    cast    male
481    cast    male
482    cast    male
483    cast  female
484    cast    male
485    cast    male
486    cast    male
487    cast    male
488    cast    male
489    cast    male
490    cast    male
491    cast    male
492    cast    male
493    cast    male
494    cast    male
495    cast    male
496    cast    male
497    cast    male
498    cast    male
499    cast    male
500    cast    male
501    cast    male
502    cast    male
503    cast    male
504    cast unknown
505    cast  female
506    cast  female
507    cast  female
508    cast  female
509    cast  female
510    cast  female
511    cast  female
512    cast    male
513    cast    male
514    cast    male
515    cast    male
516    cast    male
517    cast    male
518    cast    male
519    cast    male
520    cast    male
521    cast    male
522    cast  female
523    cast  female
524    cast  female
525    cast  female
526    cast  female
527    cast  female
528    cast  female
529    cast  female
530    cast  female
531    cast    male
532    cast    male
533    cast    male
534    cast    male
535    cast    male
536    cast    male
537    cast    male
538    cast    male
539    cast    male
540    cast    male
541    cast    male
542    cast    male
543    cast    male
544    cast  female
545    cast    male
546    cast    male
547    cast    male
548    cast    male
549    cast    male
550    cast    male
551    cast    male
552    cast    male
553    cast    male
554    cast    male
555    cast    male
556    cast    male
557    cast    male
558    cast    male
559    cast    male
560    cast    male
561    cast    male
562    cast    male
563    cast    male
564    cast    male
565    cast    male
566    cast    male
567    cast  female
568    cast  female
569    cast  female
570    cast  female
571    cast  female
572    cast  female
573    cast    male
574    cast    male
575    cast    male
576    cast    male
577    cast    male
578    cast    male
579    cast    male
580    cast    male
581    cast    male
582    cast    male
583    cast    male
584    cast    male
585    cast    male
586    cast  female
587    cast  female
588    cast  female
589    cast  female
590    cast  female
591    cast  female
592    cast  female
593    cast  female
594    cast  female
595    cast  female
596    cast  female
597    cast  female
598    cast  female
599    cast    male
600    cast    male
601    cast    male
602    cast    male
603    cast    male
604    cast    male
605    cast    male
606    cast    male
607    cast    male
608    cast    male
609    cast    male
610    cast    male
611    cast    male
612    cast    male
613    cast    male
614    cast  female

Next, I performed left join on snl_actors_casts and snl_seasons datasets by using the “sid” attribute as the key. The joined dataset snl_actors_casts_seasons has 614 observations and 12 attributes which makes sense as the snl_actors_casts dataset has 614 observations and snl_actors_casts and snl_seasons datasets had 8 and 5 attributes respectively. Since, the “sid” attribute is common in both datasets we count it only once.

# performed left join for snl_actors_casts and snl_seasons datasets.
snl_actors_casts_seasons = merge(x=snl_actors_casts, y=snl_seasons, by="sid", all.x=TRUE)
snl_actors_casts_seasons
    sid                  aid featured update_anchor n_episodes season_fraction
1     1           George Coe    FALSE         FALSE          1      0.04166667
2     1       Laraine Newman    FALSE         FALSE         24      1.00000000
3     1   Michael O'Donoghue    FALSE         FALSE          4      0.16666667
4     1          Jane Curtin    FALSE         FALSE         24      1.00000000
5     1          Chevy Chase    FALSE          TRUE         24      1.00000000
6     1         Gilda Radner    FALSE         FALSE         24      1.00000000
7     1       Garrett Morris    FALSE         FALSE         24      1.00000000
8     1         John Belushi    FALSE         FALSE         24      1.00000000
9     1          Dan Aykroyd    FALSE         FALSE         24      1.00000000
10    2         Gilda Radner    FALSE         FALSE         22      1.00000000
11    2         John Belushi    FALSE         FALSE         22      1.00000000
12    2          Bill Murray    FALSE         FALSE         12      0.54545455
13    2          Chevy Chase    FALSE          TRUE          6      0.27272727
14    2          Dan Aykroyd    FALSE         FALSE         22      1.00000000
15    2       Laraine Newman    FALSE         FALSE         22      1.00000000
16    2       Garrett Morris    FALSE         FALSE         22      1.00000000
17    2          Jane Curtin    FALSE          TRUE         22      1.00000000
18    3           Al Franken     TRUE         FALSE         20      1.00000000
19    3          Jane Curtin    FALSE          TRUE         20      1.00000000
20    3         John Belushi    FALSE         FALSE         20      1.00000000
21    3          Bill Murray    FALSE         FALSE         20      1.00000000
22    3       Garrett Morris    FALSE         FALSE         20      1.00000000
23    3       Laraine Newman    FALSE         FALSE         20      1.00000000
24    3          Dan Aykroyd    FALSE          TRUE         20      1.00000000
25    3            Tom Davis     TRUE         FALSE         20      1.00000000
26    3         Gilda Radner    FALSE         FALSE         20      1.00000000
27    4            Tom Davis     TRUE         FALSE         20      1.00000000
28    4         John Belushi    FALSE         FALSE         20      1.00000000
29    4           Al Franken     TRUE         FALSE         20      1.00000000
30    4       Laraine Newman    FALSE         FALSE         20      1.00000000
31    4          Dan Aykroyd    FALSE         FALSE         20      1.00000000
32    4       Garrett Morris    FALSE         FALSE         20      1.00000000
33    4         Gilda Radner    FALSE         FALSE         20      1.00000000
34    4          Jane Curtin    FALSE          TRUE         20      1.00000000
35    4          Bill Murray    FALSE          TRUE         20      1.00000000
36    5         Tom Schiller     TRUE         FALSE          5      0.25000000
37    5        Harry Shearer    FALSE         FALSE         20      1.00000000
38    5           Jim Downey     TRUE         FALSE         12      0.60000000
39    5          Don Novello     TRUE         FALSE         20      1.00000000
40    5        Peter Aykroyd     TRUE         FALSE         12      0.60000000
41    5         Paul Shaffer     TRUE         FALSE         16      0.80000000
42    5          Jane Curtin    FALSE          TRUE         20      1.00000000
43    5         Gilda Radner    FALSE         FALSE         20      1.00000000
44    5           Al Franken     TRUE         FALSE         14      0.70000000
45    5         Alan Zweibel     TRUE         FALSE          5      0.25000000
46    5       Garrett Morris    FALSE         FALSE         20      1.00000000
47    5       Laraine Newman    FALSE         FALSE         20      1.00000000
48    5            Tom Davis     TRUE         FALSE         16      0.80000000
49    5   Brian Doyle-Murray     TRUE         FALSE         12      0.60000000
50    5          Bill Murray    FALSE          TRUE         20      1.00000000
51    6         Eddie Murphy    FALSE         FALSE         10      0.76923077
52    6     Patrick Weathers     TRUE         FALSE         10      0.76923077
53    6         Denny Dillon    FALSE         FALSE         13      1.00000000
54    6          Tony Rosato    FALSE         FALSE          1      0.07692308
55    6     Matthew Laurance     TRUE         FALSE         10      0.76923077
56    6    Gilbert Gottfried    FALSE         FALSE         13      1.00000000
57    6           Robin Duke    FALSE         FALSE          1      0.07692308
58    6        Gail Matthius    FALSE          TRUE         13      1.00000000
59    6       Laurie Metcalf     TRUE         FALSE          1      0.07692308
60    6        Yvonne Hudson     TRUE         FALSE          9      0.69230769
61    6         Emily Prager     TRUE         FALSE          1      0.07692308
62    6       Charles Rocket    FALSE          TRUE         13      1.00000000
63    6          Joe Piscopo    FALSE         FALSE         13      1.00000000
64    6           Ann Risley    FALSE         FALSE         13      1.00000000
65    6       Tim Kazurinsky    FALSE         FALSE          1      0.07692308
66    7          Tony Rosato    FALSE         FALSE         20      1.00000000
67    7         Eddie Murphy    FALSE         FALSE         20      1.00000000
68    7   Brian Doyle-Murray     TRUE          TRUE         20      1.00000000
69    7          Joe Piscopo    FALSE         FALSE         20      1.00000000
70    7   Christine Ebersole    FALSE          TRUE         20      1.00000000
71    7       Tim Kazurinsky    FALSE         FALSE         20      1.00000000
72    7           Robin Duke    FALSE         FALSE         20      1.00000000
73    7           Mary Gross    FALSE          TRUE         20      1.00000000
74    8         Gary Kroeger    FALSE         FALSE         20      1.00000000
75    8           Robin Duke    FALSE         FALSE         20      1.00000000
76    8           Mary Gross    FALSE         FALSE         20      1.00000000
77    8  Julia Louis-Dreyfus    FALSE         FALSE         20      1.00000000
78    8         Eddie Murphy    FALSE         FALSE         20      1.00000000
79    8       Tim Kazurinsky    FALSE         FALSE         20      1.00000000
80    8            Brad Hall    FALSE          TRUE         20      1.00000000
81    8          Joe Piscopo    FALSE         FALSE         20      1.00000000
82    9         Eddie Murphy    FALSE         FALSE         14      0.73684211
83    9           Mary Gross    FALSE         FALSE         19      1.00000000
84    9          Joe Piscopo    FALSE         FALSE         19      1.00000000
85    9            Brad Hall    FALSE          TRUE         19      1.00000000
86    9         Gary Kroeger    FALSE         FALSE         19      1.00000000
87    9  Julia Louis-Dreyfus    FALSE         FALSE         19      1.00000000
88    9           Robin Duke    FALSE         FALSE         19      1.00000000
89    9       Tim Kazurinsky    FALSE         FALSE         19      1.00000000
90    9          Jim Belushi    FALSE         FALSE         19      1.00000000
91   10         Gary Kroeger    FALSE         FALSE         17      1.00000000
92   10    Pamela Stephenson    FALSE         FALSE         17      1.00000000
93   10          Jim Belushi    FALSE         FALSE         17      1.00000000
94   10  Julia Louis-Dreyfus    FALSE         FALSE         17      1.00000000
95   10        Billy Crystal    FALSE         FALSE         17      1.00000000
96   10            Rich Hall    FALSE         FALSE         17      1.00000000
97   10    Christopher Guest    FALSE          TRUE         17      1.00000000
98   10         Martin Short    FALSE         FALSE         17      1.00000000
99   10        Harry Shearer    FALSE         FALSE         10      0.58823529
100  10           Mary Gross    FALSE         FALSE         17      1.00000000
101  11     A. Whitney Brown     TRUE         FALSE          8      0.44444444
102  11           Al Franken     TRUE         FALSE          6      0.33333333
103  11          Randy Quaid    FALSE         FALSE         18      1.00000000
104  11            Nora Dunn    FALSE         FALSE         18      1.00000000
105  11         Damon Wayans     TRUE         FALSE         12      0.66666667
106  11        Dennis Miller    FALSE          TRUE         18      1.00000000
107  11           Jon Lovitz    FALSE         FALSE         18      1.00000000
108  11 Anthony Michael Hall    FALSE         FALSE         18      1.00000000
109  11           Dan Vitale     TRUE         FALSE         18      1.00000000
110  11          Joan Cusack    FALSE         FALSE         18      1.00000000
111  11        Danitra Vance    FALSE         FALSE         18      1.00000000
112  11          Don Novello     TRUE         FALSE         18      1.00000000
113  11        Terry Sweeney    FALSE         FALSE         18      1.00000000
114  11    Robert Downey Jr.    FALSE         FALSE         18      1.00000000
115  12            Nora Dunn    FALSE         FALSE         20      1.00000000
116  12           Jon Lovitz    FALSE         FALSE         20      1.00000000
117  12     Victoria Jackson    FALSE         FALSE         20      1.00000000
118  12     A. Whitney Brown     TRUE         FALSE         20      1.00000000
119  12         Kevin Nealon     TRUE         FALSE         20      1.00000000
120  12        Dennis Miller    FALSE          TRUE         20      1.00000000
121  12         Phil Hartman    FALSE         FALSE         20      1.00000000
122  12          Dana Carvey    FALSE         FALSE         20      1.00000000
123  12            Jan Hooks    FALSE         FALSE         20      1.00000000
124  13           Jon Lovitz    FALSE         FALSE         13      1.00000000
125  13     A. Whitney Brown     TRUE         FALSE         13      1.00000000
126  13            Jan Hooks    FALSE         FALSE         13      1.00000000
127  13         Phil Hartman    FALSE         FALSE         13      1.00000000
128  13         Kevin Nealon    FALSE         FALSE         13      1.00000000
129  13        Dennis Miller    FALSE          TRUE         13      1.00000000
130  13          Dana Carvey    FALSE         FALSE         13      1.00000000
131  13     Victoria Jackson    FALSE         FALSE         13      1.00000000
132  13            Nora Dunn    FALSE         FALSE         13      1.00000000
133  14           Al Franken     TRUE         FALSE         20      1.00000000
134  14     A. Whitney Brown     TRUE         FALSE         20      1.00000000
135  14            Jan Hooks    FALSE         FALSE         20      1.00000000
136  14         Kevin Nealon    FALSE         FALSE         20      1.00000000
137  14          Dana Carvey    FALSE         FALSE         20      1.00000000
138  14           Mike Myers     TRUE         FALSE         11      0.55000000
139  14            Nora Dunn    FALSE         FALSE         20      1.00000000
140  14           Jon Lovitz    FALSE         FALSE         20      1.00000000
141  14        Dennis Miller    FALSE          TRUE         20      1.00000000
142  14         Phil Hartman    FALSE         FALSE         20      1.00000000
143  14     Victoria Jackson    FALSE         FALSE         20      1.00000000
144  14          Ben Stiller     TRUE         FALSE          6      0.30000000
145  15           Jon Lovitz    FALSE         FALSE         20      1.00000000
146  15            Nora Dunn    FALSE         FALSE         20      1.00000000
147  15     A. Whitney Brown     TRUE         FALSE         20      1.00000000
148  15          Dana Carvey    FALSE         FALSE         20      1.00000000
149  15            Jan Hooks    FALSE         FALSE         20      1.00000000
150  15     Victoria Jackson    FALSE         FALSE         20      1.00000000
151  15        Dennis Miller    FALSE          TRUE         20      1.00000000
152  15           Mike Myers    FALSE         FALSE         20      1.00000000
153  15           Al Franken     TRUE         FALSE         20      1.00000000
154  15         Kevin Nealon    FALSE         FALSE         20      1.00000000
155  15         Phil Hartman    FALSE         FALSE         20      1.00000000
156  16         Kevin Nealon    FALSE         FALSE         20      1.00000000
157  16         Adam Sandler     TRUE         FALSE          9      0.45000000
158  16          Dana Carvey    FALSE         FALSE         20      1.00000000
159  16     A. Whitney Brown     TRUE         FALSE         20      1.00000000
160  16           Al Franken     TRUE         FALSE         20      1.00000000
161  16         Phil Hartman    FALSE         FALSE         20      1.00000000
162  16           Mike Myers    FALSE         FALSE         20      1.00000000
163  16            Jan Hooks    FALSE         FALSE         20      1.00000000
164  16        Dennis Miller    FALSE          TRUE         20      1.00000000
165  16          David Spade     TRUE         FALSE         16      0.80000000
166  16        Rob Schneider     TRUE         FALSE         17      0.85000000
167  16     Victoria Jackson    FALSE         FALSE         20      1.00000000
168  16        Julia Sweeney     TRUE         FALSE         16      0.80000000
169  16           Chris Rock     TRUE         FALSE         20      1.00000000
170  16         Chris Farley     TRUE         FALSE         20      1.00000000
171  16          Tim Meadows     TRUE         FALSE          9      0.45000000
172  17         Kevin Nealon    FALSE          TRUE         20      1.00000000
173  17         Chris Farley    FALSE         FALSE         20      1.00000000
174  17          David Spade     TRUE         FALSE         20      1.00000000
175  17          Beth Cahill     TRUE         FALSE         15      0.75000000
176  17        Julia Sweeney    FALSE         FALSE         20      1.00000000
177  17      Melanie Hutsell     TRUE         FALSE         15      0.75000000
178  17         Adam Sandler     TRUE         FALSE         20      1.00000000
179  17           Mike Myers    FALSE         FALSE         20      1.00000000
180  17         Phil Hartman    FALSE         FALSE         20      1.00000000
181  17     Victoria Jackson    FALSE         FALSE         20      1.00000000
182  17          Dana Carvey    FALSE         FALSE         20      1.00000000
183  17          Tim Meadows     TRUE         FALSE         20      1.00000000
184  17        Rob Schneider     TRUE         FALSE         20      1.00000000
185  17        Robert Smigel     TRUE         FALSE         20      1.00000000
186  17       Siobhan Fallon     TRUE         FALSE         20      1.00000000
187  17      Ellen Cleghorne     TRUE         FALSE         20      1.00000000
188  17           Al Franken     TRUE         FALSE         20      1.00000000
189  17           Chris Rock    FALSE         FALSE         20      1.00000000
190  18        Julia Sweeney    FALSE         FALSE         20      1.00000000
191  18         Kevin Nealon    FALSE          TRUE         20      1.00000000
192  18          David Spade     TRUE         FALSE         20      1.00000000
193  18           Mike Myers    FALSE         FALSE         20      1.00000000
194  18         Phil Hartman    FALSE         FALSE         20      1.00000000
195  18         Chris Farley    FALSE         FALSE         20      1.00000000
196  18        Robert Smigel     TRUE         FALSE         20      1.00000000
197  18         Adam Sandler     TRUE         FALSE         20      1.00000000
198  18          Tim Meadows     TRUE         FALSE         20      1.00000000
199  18      Ellen Cleghorne     TRUE         FALSE         20      1.00000000
200  18          Dana Carvey    FALSE         FALSE         12      0.60000000
201  18           Chris Rock    FALSE         FALSE         20      1.00000000
202  18      Melanie Hutsell     TRUE         FALSE         20      1.00000000
203  18        Rob Schneider    FALSE         FALSE         20      1.00000000
204  18           Al Franken     TRUE         FALSE         20      1.00000000
205  19        Julia Sweeney    FALSE         FALSE         20      1.00000000
206  19      Sarah Silverman     TRUE         FALSE         18      0.90000000
207  19       Michael McKean    FALSE         FALSE          6      0.30000000
208  19         Kevin Nealon    FALSE          TRUE         20      1.00000000
209  19             Jay Mohr     TRUE         FALSE         18      0.90000000
210  19          David Spade    FALSE         FALSE         20      1.00000000
211  19       Norm MacDonald     TRUE         FALSE         19      0.95000000
212  19           Al Franken     TRUE         FALSE         20      1.00000000
213  19         Adam Sandler    FALSE         FALSE         20      1.00000000
214  19         Chris Farley    FALSE         FALSE         20      1.00000000
215  19         Phil Hartman    FALSE         FALSE         20      1.00000000
216  19           Mike Myers    FALSE         FALSE         20      1.00000000
217  19        Rob Schneider    FALSE         FALSE         20      1.00000000
218  19      Ellen Cleghorne    FALSE         FALSE         20      1.00000000
219  19          Tim Meadows    FALSE         FALSE         20      1.00000000
220  19      Melanie Hutsell    FALSE         FALSE         20      1.00000000
221  20         Kevin Nealon    FALSE         FALSE         20      1.00000000
222  20         Adam Sandler    FALSE         FALSE         20      1.00000000
223  20          David Spade    FALSE         FALSE         20      1.00000000
224  20        Chris Elliott    FALSE         FALSE         20      1.00000000
225  20     Janeane Garofalo    FALSE         FALSE         14      0.70000000
226  20       Michael McKean    FALSE         FALSE         20      1.00000000
227  20        Mark McKinney    FALSE         FALSE         11      0.55000000
228  20        Molly Shannon     TRUE         FALSE          7      0.35000000
229  20             Jay Mohr     TRUE         FALSE         20      1.00000000
230  20       Norm MacDonald    FALSE          TRUE         20      1.00000000
231  20         Chris Farley    FALSE         FALSE         20      1.00000000
232  20           Mike Myers    FALSE         FALSE         11      0.55000000
233  20      Ellen Cleghorne    FALSE         FALSE         20      1.00000000
234  20    Laura Kightlinger     TRUE         FALSE         20      1.00000000
235  20           Al Franken     TRUE         FALSE         20      1.00000000
236  20          Tim Meadows    FALSE         FALSE         20      1.00000000
237  20       Morwenna Banks    FALSE         FALSE          4      0.20000000
238  21         Chris Kattan     TRUE         FALSE          6      0.30000000
239  21            Fred Wolf     TRUE         FALSE         20      1.00000000
240  21       Norm MacDonald    FALSE          TRUE         20      1.00000000
241  21           Jim Breuer    FALSE         FALSE         20      1.00000000
242  21          Nancy Walls    FALSE         FALSE         20      1.00000000
243  21          Tim Meadows    FALSE         FALSE         20      1.00000000
244  21      Darrell Hammond    FALSE         FALSE         20      1.00000000
245  21       David Koechner    FALSE         FALSE         20      1.00000000
246  21         Will Ferrell    FALSE         FALSE         20      1.00000000
247  21        Molly Shannon    FALSE         FALSE         20      1.00000000
248  21          Colin Quinn     TRUE         FALSE         20      1.00000000
249  21          David Spade    FALSE         FALSE         20      1.00000000
250  21          Cheri Oteri    FALSE         FALSE         20      1.00000000
251  21        Mark McKinney    FALSE         FALSE         20      1.00000000
252  22      Darrell Hammond    FALSE         FALSE         20      1.00000000
253  22         Chris Kattan    FALSE         FALSE         20      1.00000000
254  22        Molly Shannon    FALSE         FALSE         20      1.00000000
255  22           Jim Breuer    FALSE         FALSE         20      1.00000000
256  22          Colin Quinn     TRUE         FALSE         20      1.00000000
257  22         Tracy Morgan    FALSE         FALSE         20      1.00000000
258  22          Cheri Oteri    FALSE         FALSE         20      1.00000000
259  22         Ana Gasteyer    FALSE         FALSE         20      1.00000000
260  22        Mark McKinney    FALSE         FALSE         20      1.00000000
261  22       Norm MacDonald    FALSE          TRUE         20      1.00000000
262  22          Tim Meadows    FALSE         FALSE         20      1.00000000
263  22            Fred Wolf     TRUE         FALSE          3      0.15000000
264  22         Will Ferrell    FALSE         FALSE         20      1.00000000
265  23         Tracy Morgan    FALSE         FALSE         20      1.00000000
266  23       Norm MacDonald    FALSE          TRUE         16      0.80000000
267  23          Cheri Oteri    FALSE         FALSE         20      1.00000000
268  23      Darrell Hammond    FALSE         FALSE         20      1.00000000
269  23          Tim Meadows    FALSE         FALSE         20      1.00000000
270  23           Jim Breuer    FALSE         FALSE         20      1.00000000
271  23        Molly Shannon    FALSE         FALSE         20      1.00000000
272  23         Chris Kattan    FALSE         FALSE         20      1.00000000
273  23         Ana Gasteyer    FALSE         FALSE         20      1.00000000
274  23         Will Ferrell    FALSE         FALSE         20      1.00000000
275  23          Colin Quinn    FALSE          TRUE         20      1.00000000
276  24      Darrell Hammond    FALSE         FALSE         19      1.00000000
277  24        Chris Parnell     TRUE         FALSE         19      1.00000000
278  24          Cheri Oteri    FALSE         FALSE         19      1.00000000
279  24         Chris Kattan    FALSE         FALSE         19      1.00000000
280  24          Colin Quinn    FALSE          TRUE         19      1.00000000
281  24        Molly Shannon    FALSE         FALSE         19      1.00000000
282  24         Will Ferrell    FALSE         FALSE         19      1.00000000
283  24          Tim Meadows    FALSE         FALSE         19      1.00000000
284  24         Jimmy Fallon     TRUE         FALSE         19      1.00000000
285  24         Ana Gasteyer    FALSE         FALSE         19      1.00000000
286  24         Horatio Sanz     TRUE         FALSE         19      1.00000000
287  24         Tracy Morgan    FALSE         FALSE         19      1.00000000
288  25          Cheri Oteri    FALSE         FALSE         20      1.00000000
289  25         Horatio Sanz    FALSE         FALSE         20      1.00000000
290  25         Ana Gasteyer    FALSE         FALSE         20      1.00000000
291  25          Colin Quinn    FALSE          TRUE         20      1.00000000
292  25          Tim Meadows    FALSE         FALSE         20      1.00000000
293  25      Darrell Hammond    FALSE         FALSE         20      1.00000000
294  25         Chris Kattan    FALSE         FALSE         20      1.00000000
295  25         Maya Rudolph     TRUE         FALSE          3      0.15000000
296  25         Will Ferrell    FALSE         FALSE         20      1.00000000
297  25         Jimmy Fallon    FALSE         FALSE         20      1.00000000
298  25        Rachel Dratch     TRUE         FALSE         18      0.90000000
299  25        Molly Shannon    FALSE         FALSE         20      1.00000000
300  25        Chris Parnell    FALSE         FALSE         20      1.00000000
301  25         Tracy Morgan    FALSE         FALSE         20      1.00000000
302  26         Ana Gasteyer    FALSE         FALSE         20      1.00000000
303  26          Jerry Minor     TRUE         FALSE         20      1.00000000
304  26         Maya Rudolph     TRUE         FALSE         20      1.00000000
305  26      Darrell Hammond    FALSE         FALSE         20      1.00000000
306  26         Horatio Sanz    FALSE         FALSE         20      1.00000000
307  26             Tina Fey     TRUE          TRUE         20      1.00000000
308  26        Rachel Dratch     TRUE         FALSE         20      1.00000000
309  26        Chris Parnell    FALSE         FALSE         20      1.00000000
310  26         Will Ferrell    FALSE         FALSE         20      1.00000000
311  26        Molly Shannon    FALSE         FALSE         12      0.60000000
312  26         Chris Kattan    FALSE         FALSE         20      1.00000000
313  26         Jimmy Fallon    FALSE          TRUE         20      1.00000000
314  26         Tracy Morgan    FALSE         FALSE         20      1.00000000
315  27             Tina Fey    FALSE          TRUE         20      1.00000000
316  27          Seth Meyers     TRUE         FALSE         20      1.00000000
317  27         Tracy Morgan    FALSE         FALSE         20      1.00000000
318  27        Jeff Richards     TRUE         FALSE         20      1.00000000
319  27          Amy Poehler     TRUE         FALSE         20      1.00000000
320  27         Maya Rudolph    FALSE         FALSE         20      1.00000000
321  27         Jimmy Fallon    FALSE          TRUE         20      1.00000000
322  27         Chris Kattan    FALSE         FALSE         20      1.00000000
323  27         Will Ferrell    FALSE         FALSE         20      1.00000000
324  27      Darrell Hammond    FALSE         FALSE         20      1.00000000
325  27         Horatio Sanz    FALSE         FALSE         20      1.00000000
326  27         Dean Edwards     TRUE         FALSE         20      1.00000000
327  27         Ana Gasteyer    FALSE         FALSE         20      1.00000000
328  27        Rachel Dratch    FALSE         FALSE         20      1.00000000
329  27        Chris Parnell    FALSE         FALSE          8      0.40000000
330  28         Dean Edwards     TRUE         FALSE         20      1.00000000
331  28         Fred Armisen     TRUE         FALSE         20      1.00000000
332  28         Chris Kattan    FALSE         FALSE         20      1.00000000
333  28      Darrell Hammond    FALSE         FALSE         20      1.00000000
334  28          Amy Poehler    FALSE         FALSE         20      1.00000000
335  28         Maya Rudolph    FALSE         FALSE         20      1.00000000
336  28        Chris Parnell    FALSE         FALSE         20      1.00000000
337  28        Rachel Dratch    FALSE         FALSE         20      1.00000000
338  28          Seth Meyers     TRUE         FALSE         20      1.00000000
339  28         Horatio Sanz    FALSE         FALSE         20      1.00000000
340  28         Tracy Morgan    FALSE         FALSE         20      1.00000000
341  28           Will Forte     TRUE         FALSE         20      1.00000000
342  28         Jimmy Fallon    FALSE          TRUE         20      1.00000000
343  28        Jeff Richards     TRUE         FALSE         20      1.00000000
344  28             Tina Fey    FALSE          TRUE         20      1.00000000
345  29         Maya Rudolph    FALSE         FALSE         20      1.00000000
346  29           Will Forte    FALSE         FALSE         20      1.00000000
347  29        Jeff Richards    FALSE         FALSE         10      0.50000000
348  29         Fred Armisen     TRUE         FALSE         20      1.00000000
349  29        Chris Parnell    FALSE         FALSE         20      1.00000000
350  29          Seth Meyers    FALSE         FALSE         20      1.00000000
351  29         Horatio Sanz    FALSE         FALSE         20      1.00000000
352  29         Jimmy Fallon    FALSE          TRUE         20      1.00000000
353  29        Rachel Dratch    FALSE         FALSE         20      1.00000000
354  29          Amy Poehler    FALSE         FALSE         20      1.00000000
355  29     Finesse Mitchell     TRUE         FALSE         20      1.00000000
356  29       Kenan Thompson     TRUE         FALSE         20      1.00000000
357  29      Darrell Hammond    FALSE         FALSE         20      1.00000000
358  29             Tina Fey    FALSE          TRUE         20      1.00000000
359  30        Chris Parnell    FALSE         FALSE         20      1.00000000
360  30        Rachel Dratch    FALSE         FALSE         20      1.00000000
361  30      Darrell Hammond    FALSE         FALSE         20      1.00000000
362  30           Rob Riggle     TRUE         FALSE         20      1.00000000
363  30         Maya Rudolph    FALSE         FALSE         20      1.00000000
364  30       Jason Sudeikis     TRUE         FALSE          3      0.15000000
365  30         Horatio Sanz    FALSE         FALSE         20      1.00000000
366  30          Seth Meyers    FALSE         FALSE         20      1.00000000
367  30             Tina Fey    FALSE          TRUE         20      1.00000000
368  30           Will Forte    FALSE         FALSE         20      1.00000000
369  30          Amy Poehler    FALSE          TRUE         20      1.00000000
370  30         Fred Armisen    FALSE         FALSE         20      1.00000000
371  30       Kenan Thompson     TRUE         FALSE         20      1.00000000
372  30     Finesse Mitchell     TRUE         FALSE         20      1.00000000
373  31        Chris Parnell    FALSE         FALSE         19      1.00000000
374  31          Seth Meyers    FALSE         FALSE         19      1.00000000
375  31         Kristen Wiig     TRUE         FALSE         15      0.78947368
376  31             Tina Fey    FALSE          TRUE         19      1.00000000
377  31         Andy Samberg     TRUE         FALSE         19      1.00000000
378  31          Amy Poehler    FALSE          TRUE         19      1.00000000
379  31      Darrell Hammond    FALSE         FALSE         19      1.00000000
380  31           Bill Hader     TRUE         FALSE         19      1.00000000
381  31       Kenan Thompson    FALSE         FALSE         19      1.00000000
382  31           Will Forte    FALSE         FALSE         19      1.00000000
383  31     Finesse Mitchell    FALSE         FALSE         19      1.00000000
384  31         Maya Rudolph    FALSE         FALSE         19      1.00000000
385  31        Rachel Dratch    FALSE         FALSE         19      1.00000000
386  31         Horatio Sanz    FALSE          TRUE         19      1.00000000
387  31         Fred Armisen    FALSE         FALSE         19      1.00000000
388  31       Jason Sudeikis     TRUE         FALSE         19      1.00000000
389  32         Fred Armisen    FALSE         FALSE         20      1.00000000
390  32          Seth Meyers    FALSE          TRUE         20      1.00000000
391  32           Bill Hader    FALSE         FALSE         20      1.00000000
392  32           Will Forte    FALSE         FALSE         20      1.00000000
393  32         Maya Rudolph    FALSE         FALSE         20      1.00000000
394  32          Amy Poehler    FALSE          TRUE         20      1.00000000
395  32         Andy Samberg    FALSE         FALSE         20      1.00000000
396  32       Kenan Thompson    FALSE         FALSE         20      1.00000000
397  32         Kristen Wiig    FALSE         FALSE         20      1.00000000
398  32      Darrell Hammond    FALSE         FALSE         20      1.00000000
399  32       Jason Sudeikis    FALSE         FALSE         20      1.00000000
400  33          Seth Meyers    FALSE          TRUE         12      1.00000000
401  33         Fred Armisen    FALSE         FALSE         12      1.00000000
402  33       Kenan Thompson    FALSE         FALSE         12      1.00000000
403  33         Casey Wilson     TRUE         FALSE          8      0.66666667
404  33           Bill Hader    FALSE         FALSE         12      1.00000000
405  33           Will Forte    FALSE         FALSE         12      1.00000000
406  33         Maya Rudolph    FALSE         FALSE          4      0.33333333
407  33         Andy Samberg    FALSE         FALSE         12      1.00000000
408  33      Darrell Hammond    FALSE         FALSE         12      1.00000000
409  33          Amy Poehler    FALSE          TRUE         12      1.00000000
410  33         Kristen Wiig    FALSE         FALSE         12      1.00000000
411  33       Jason Sudeikis    FALSE         FALSE         12      1.00000000
412  34     Michaela Watkins     TRUE         FALSE         15      0.68181818
413  34       Bobby Moynihan     TRUE         FALSE         22      1.00000000
414  34          Amy Poehler    FALSE          TRUE         11      0.50000000
415  34           Bill Hader    FALSE         FALSE         22      1.00000000
416  34          Seth Meyers    FALSE          TRUE         22      1.00000000
417  34         Kristen Wiig    FALSE         FALSE         22      1.00000000
418  34      Darrell Hammond    FALSE         FALSE         22      1.00000000
419  34         Fred Armisen    FALSE         FALSE         22      1.00000000
420  34         Casey Wilson     TRUE         FALSE         22      1.00000000
421  34         Abby Elliott     TRUE         FALSE         15      0.68181818
422  34       Jason Sudeikis    FALSE         FALSE         22      1.00000000
423  34         Andy Samberg    FALSE         FALSE         22      1.00000000
424  34       Kenan Thompson    FALSE         FALSE         22      1.00000000
425  34           Will Forte    FALSE         FALSE         22      1.00000000
426  35       Bobby Moynihan     TRUE         FALSE         22      1.00000000
427  35          Seth Meyers    FALSE          TRUE         22      1.00000000
428  35           Will Forte    FALSE         FALSE         22      1.00000000
429  35         Andy Samberg    FALSE         FALSE         22      1.00000000
430  35           Bill Hader    FALSE         FALSE         22      1.00000000
431  35         Fred Armisen    FALSE         FALSE         22      1.00000000
432  35         Abby Elliott     TRUE         FALSE         22      1.00000000
433  35       Kenan Thompson    FALSE         FALSE         22      1.00000000
434  35         Kristen Wiig    FALSE         FALSE         22      1.00000000
435  35          Jenny Slate     TRUE         FALSE         22      1.00000000
436  35       Jason Sudeikis    FALSE         FALSE         22      1.00000000
437  35         Nasim Pedrad     TRUE         FALSE         22      1.00000000
438  36         Abby Elliott    FALSE         FALSE         22      1.00000000
439  36        Paul Brittain     TRUE         FALSE         22      1.00000000
440  36       Jason Sudeikis    FALSE         FALSE         22      1.00000000
441  36       Bobby Moynihan    FALSE         FALSE         22      1.00000000
442  36          Jay Pharoah     TRUE         FALSE         22      1.00000000
443  36         Andy Samberg    FALSE         FALSE         22      1.00000000
444  36          Seth Meyers    FALSE          TRUE         22      1.00000000
445  36           Bill Hader    FALSE         FALSE         22      1.00000000
446  36       Kenan Thompson    FALSE         FALSE         22      1.00000000
447  36         Fred Armisen    FALSE         FALSE         22      1.00000000
448  36         Taran Killam     TRUE         FALSE         22      1.00000000
449  36         Kristen Wiig    FALSE         FALSE         22      1.00000000
450  36         Nasim Pedrad     TRUE         FALSE         22      1.00000000
451  36        Vanessa Bayer     TRUE         FALSE         22      1.00000000
452  37          Seth Meyers    FALSE          TRUE         22      1.00000000
453  37       Bobby Moynihan    FALSE         FALSE         22      1.00000000
454  37         Abby Elliott    FALSE         FALSE         22      1.00000000
455  37       Jason Sudeikis    FALSE         FALSE         22      1.00000000
456  37          Jay Pharoah     TRUE         FALSE         22      1.00000000
457  37           Bill Hader    FALSE         FALSE         22      1.00000000
458  37         Nasim Pedrad    FALSE         FALSE         22      1.00000000
459  37       Kenan Thompson    FALSE         FALSE         22      1.00000000
460  37         Taran Killam     TRUE         FALSE         22      1.00000000
461  37         Andy Samberg    FALSE         FALSE         22      1.00000000
462  37        Paul Brittain     TRUE         FALSE         12      0.54545455
463  37         Fred Armisen    FALSE         FALSE         22      1.00000000
464  37        Kate McKinnon     TRUE         FALSE          5      0.22727273
465  37         Kristen Wiig    FALSE         FALSE         22      1.00000000
466  37        Vanessa Bayer     TRUE         FALSE         22      1.00000000
467  38           Bill Hader    FALSE         FALSE         21      1.00000000
468  38          Seth Meyers    FALSE          TRUE         21      1.00000000
469  38          Aidy Bryant     TRUE         FALSE         21      1.00000000
470  38        Kate McKinnon     TRUE         FALSE         21      1.00000000
471  38         Tim Robinson     TRUE         FALSE         21      1.00000000
472  38       Jason Sudeikis    FALSE         FALSE         21      1.00000000
473  38       Kenan Thompson    FALSE         FALSE         21      1.00000000
474  38       Bobby Moynihan    FALSE         FALSE         21      1.00000000
475  38         Taran Killam    FALSE         FALSE         21      1.00000000
476  38          Jay Pharoah    FALSE         FALSE         21      1.00000000
477  38        Vanessa Bayer    FALSE         FALSE         21      1.00000000
478  38         Nasim Pedrad    FALSE         FALSE         21      1.00000000
479  38        Cecily Strong     TRUE         FALSE         21      1.00000000
480  38         Fred Armisen    FALSE         FALSE         21      1.00000000
481  39           Noel Wells     TRUE         FALSE         21      1.00000000
482  39         Nasim Pedrad    FALSE         FALSE         21      1.00000000
483  39          Seth Meyers    FALSE          TRUE         13      0.61904762
484  39       Bobby Moynihan    FALSE         FALSE         21      1.00000000
485  39       Sasheer Zamata     TRUE         FALSE         11      0.52380952
486  39          Jay Pharoah    FALSE         FALSE         21      1.00000000
487  39         Mike O'Brien     TRUE         FALSE         21      1.00000000
488  39         Beck Bennett     TRUE         FALSE         21      1.00000000
489  39        Vanessa Bayer    FALSE         FALSE         21      1.00000000
490  39       Kenan Thompson    FALSE         FALSE         21      1.00000000
491  39          Aidy Bryant    FALSE         FALSE         21      1.00000000
492  39        Cecily Strong    FALSE          TRUE         21      1.00000000
493  39           Colin Jost     TRUE          TRUE          8      0.38095238
494  39       Brooks Wheelan     TRUE         FALSE         21      1.00000000
495  39          Kyle Mooney     TRUE         FALSE         21      1.00000000
496  39         Taran Killam    FALSE         FALSE         21      1.00000000
497  39        John Milhiser     TRUE         FALSE         21      1.00000000
498  39        Kate McKinnon    FALSE         FALSE         21      1.00000000
499  40          Michael Che     TRUE          TRUE         21      1.00000000
500  40          Jay Pharoah    FALSE         FALSE         21      1.00000000
501  40          Aidy Bryant    FALSE         FALSE         21      1.00000000
502  40       Kenan Thompson    FALSE         FALSE         21      1.00000000
503  40        Pete Davidson     TRUE         FALSE         21      1.00000000
504  40        Vanessa Bayer    FALSE         FALSE         21      1.00000000
505  40         Beck Bennett     TRUE         FALSE         21      1.00000000
506  40       Sasheer Zamata     TRUE         FALSE         21      1.00000000
507  40        Cecily Strong    FALSE         FALSE         21      1.00000000
508  40       Bobby Moynihan    FALSE         FALSE         21      1.00000000
509  40          Kyle Mooney     TRUE         FALSE         21      1.00000000
510  40         Taran Killam    FALSE         FALSE         21      1.00000000
511  40        Kate McKinnon    FALSE         FALSE         21      1.00000000
512  40           Colin Jost     TRUE          TRUE         21      1.00000000
513  40         Leslie Jones     TRUE         FALSE         18      0.85714286
514  41         Taran Killam    FALSE         FALSE         21      1.00000000
515  41        Vanessa Bayer    FALSE         FALSE         21      1.00000000
516  41         Beck Bennett    FALSE         FALSE         21      1.00000000
517  41        Cecily Strong    FALSE         FALSE         21      1.00000000
518  41          Aidy Bryant    FALSE         FALSE         21      1.00000000
519  41        Kate McKinnon    FALSE         FALSE         21      1.00000000
520  41       Sasheer Zamata    FALSE         FALSE         21      1.00000000
521  41       Kenan Thompson    FALSE         FALSE         21      1.00000000
522  41       Bobby Moynihan    FALSE         FALSE         21      1.00000000
523  41        Pete Davidson     TRUE         FALSE         21      1.00000000
524  41          Jay Pharoah    FALSE         FALSE         21      1.00000000
525  41          Michael Che     TRUE          TRUE         21      1.00000000
526  41           Colin Jost    FALSE          TRUE         21      1.00000000
527  41          Kyle Mooney    FALSE         FALSE         21      1.00000000
528  41         Leslie Jones     TRUE         FALSE         21      1.00000000
529  41        Jon Rudnitsky     TRUE         FALSE         21      1.00000000
530  42        Vanessa Bayer    FALSE         FALSE         21      1.00000000
531  42         Leslie Jones    FALSE         FALSE         21      1.00000000
532  42         Beck Bennett    FALSE         FALSE         21      1.00000000
533  42        Pete Davidson    FALSE         FALSE         21      1.00000000
534  42       Sasheer Zamata    FALSE         FALSE         21      1.00000000
535  42       Bobby Moynihan    FALSE         FALSE         21      1.00000000
536  42           Colin Jost    FALSE          TRUE         21      1.00000000
537  42       Kenan Thompson    FALSE         FALSE         21      1.00000000
538  42          Aidy Bryant    FALSE         FALSE         21      1.00000000
539  42        Kate McKinnon    FALSE         FALSE         21      1.00000000
540  42        Cecily Strong    FALSE         FALSE         21      1.00000000
541  42            Mikey Day     TRUE         FALSE         21      1.00000000
542  42   Melissa Villasenor     TRUE         FALSE         21      1.00000000
543  42          Michael Che    FALSE          TRUE         21      1.00000000
544  42          Kyle Mooney    FALSE         FALSE         21      1.00000000
545  42          Alex Moffat     TRUE         FALSE         21      1.00000000
546  43          Alex Moffat     TRUE         FALSE         21      1.00000000
547  43         Beck Bennett    FALSE         FALSE         21      1.00000000
548  43         Leslie Jones    FALSE         FALSE         21      1.00000000
549  43        Pete Davidson    FALSE         FALSE         21      1.00000000
550  43           Colin Jost    FALSE          TRUE         21      1.00000000
551  43   Melissa Villasenor     TRUE         FALSE         21      1.00000000
552  43            Luke Null     TRUE         FALSE         21      1.00000000
553  43          Kyle Mooney    FALSE         FALSE         21      1.00000000
554  43        Cecily Strong    FALSE         FALSE         21      1.00000000
555  43           Chris Redd     TRUE         FALSE         21      1.00000000
556  43            Mikey Day     TRUE         FALSE         21      1.00000000
557  43        Heidi Gardner     TRUE         FALSE         21      1.00000000
558  43        Kate McKinnon    FALSE         FALSE         21      1.00000000
559  43          Michael Che    FALSE          TRUE         21      1.00000000
560  43       Kenan Thompson    FALSE         FALSE         21      1.00000000
561  43          Aidy Bryant    FALSE         FALSE         21      1.00000000
562  44         Beck Bennett    FALSE         FALSE         21      1.00000000
563  44           Ego Nwodim     TRUE         FALSE         21      1.00000000
564  44          Aidy Bryant    FALSE         FALSE         21      1.00000000
565  44           Chris Redd     TRUE         FALSE         21      1.00000000
566  44           Colin Jost    FALSE          TRUE         21      1.00000000
567  44            Mikey Day    FALSE         FALSE         21      1.00000000
568  44        Pete Davidson    FALSE         FALSE         21      1.00000000
569  44         Leslie Jones    FALSE         FALSE         21      1.00000000
570  44       Kenan Thompson    FALSE         FALSE         21      1.00000000
571  44   Melissa Villasenor    FALSE         FALSE         21      1.00000000
572  44        Kate McKinnon    FALSE         FALSE         21      1.00000000
573  44          Alex Moffat    FALSE         FALSE         21      1.00000000
574  44        Heidi Gardner     TRUE         FALSE         21      1.00000000
575  44          Kyle Mooney    FALSE         FALSE         21      1.00000000
576  44          Michael Che    FALSE          TRUE         21      1.00000000
577  44        Cecily Strong    FALSE         FALSE         21      1.00000000
578  45            Mikey Day    FALSE         FALSE         18      1.00000000
579  45           Bowen Yang     TRUE         FALSE         18      1.00000000
580  45          Alex Moffat    FALSE         FALSE         18      1.00000000
581  45   Melissa Villasenor    FALSE         FALSE         18      1.00000000
582  45        Pete Davidson    FALSE         FALSE         18      1.00000000
583  45           Colin Jost    FALSE          TRUE         18      1.00000000
584  45        Kate McKinnon    FALSE         FALSE         18      1.00000000
585  45          Kyle Mooney    FALSE         FALSE         18      1.00000000
586  45           Chris Redd    FALSE         FALSE         18      1.00000000
587  45       Kenan Thompson    FALSE         FALSE         18      1.00000000
588  45         Beck Bennett    FALSE         FALSE         18      1.00000000
589  45          Michael Che    FALSE          TRUE         18      1.00000000
590  45        Heidi Gardner    FALSE         FALSE         18      1.00000000
591  45        Cecily Strong    FALSE         FALSE         18      1.00000000
592  45        Chloe Fineman     TRUE         FALSE         18      1.00000000
593  45          Aidy Bryant    FALSE         FALSE         18      1.00000000
594  45           Ego Nwodim     TRUE         FALSE         18      1.00000000
595  46        Kate McKinnon    FALSE         FALSE         17      1.00000000
596  46        Chloe Fineman     TRUE         FALSE         17      1.00000000
597  46          Kyle Mooney    FALSE         FALSE         17      1.00000000
598  46           Colin Jost    FALSE          TRUE         17      1.00000000
599  46   Melissa Villasenor    FALSE         FALSE         17      1.00000000
600  46      Andrew Dismukes     TRUE         FALSE         17      1.00000000
601  46       Kenan Thompson    FALSE         FALSE         17      1.00000000
602  46           Ego Nwodim    FALSE         FALSE         17      1.00000000
603  46           Chris Redd    FALSE         FALSE         17      1.00000000
604  46          Michael Che    FALSE          TRUE         17      1.00000000
605  46          Lauren Holt     TRUE         FALSE         17      1.00000000
606  46        Pete Davidson    FALSE         FALSE         17      1.00000000
607  46        Heidi Gardner    FALSE         FALSE         17      1.00000000
608  46            Mikey Day    FALSE         FALSE         17      1.00000000
609  46       Punkie Johnson     TRUE         FALSE         17      1.00000000
610  46           Bowen Yang     TRUE         FALSE         17      1.00000000
611  46        Cecily Strong    FALSE         FALSE         17      1.00000000
612  46          Aidy Bryant    FALSE         FALSE         17      1.00000000
613  46          Alex Moffat    FALSE         FALSE         17      1.00000000
614  46         Beck Bennett    FALSE         FALSE         17      1.00000000
       type  gender year first_epid  last_epid seasons_n_episodes
1      cast    male 1975 1975-10-11 1976-07-31                 24
2      cast  female 1975 1975-10-11 1976-07-31                 24
3      cast    male 1975 1975-10-11 1976-07-31                 24
4      cast  female 1975 1975-10-11 1976-07-31                 24
5      cast    male 1975 1975-10-11 1976-07-31                 24
6      cast  female 1975 1975-10-11 1976-07-31                 24
7      cast    male 1975 1975-10-11 1976-07-31                 24
8      cast    male 1975 1975-10-11 1976-07-31                 24
9      cast    male 1975 1975-10-11 1976-07-31                 24
10     cast  female 1976 1976-09-18 1977-05-21                 22
11     cast    male 1976 1976-09-18 1977-05-21                 22
12     cast    male 1976 1976-09-18 1977-05-21                 22
13     cast    male 1976 1976-09-18 1977-05-21                 22
14     cast    male 1976 1976-09-18 1977-05-21                 22
15     cast  female 1976 1976-09-18 1977-05-21                 22
16     cast    male 1976 1976-09-18 1977-05-21                 22
17     cast  female 1976 1976-09-18 1977-05-21                 22
18     cast    male 1977 1977-09-24 1978-05-20                 20
19     cast  female 1977 1977-09-24 1978-05-20                 20
20     cast    male 1977 1977-09-24 1978-05-20                 20
21     cast    male 1977 1977-09-24 1978-05-20                 20
22     cast    male 1977 1977-09-24 1978-05-20                 20
23     cast  female 1977 1977-09-24 1978-05-20                 20
24     cast    male 1977 1977-09-24 1978-05-20                 20
25     cast    male 1977 1977-09-24 1978-05-20                 20
26     cast  female 1977 1977-09-24 1978-05-20                 20
27     cast    male 1978 1978-10-07 1979-05-26                 20
28     cast    male 1978 1978-10-07 1979-05-26                 20
29     cast    male 1978 1978-10-07 1979-05-26                 20
30     cast  female 1978 1978-10-07 1979-05-26                 20
31     cast    male 1978 1978-10-07 1979-05-26                 20
32     cast    male 1978 1978-10-07 1979-05-26                 20
33     cast  female 1978 1978-10-07 1979-05-26                 20
34     cast  female 1978 1978-10-07 1979-05-26                 20
35     cast    male 1978 1978-10-07 1979-05-26                 20
36     cast    male 1979 1979-10-13 1980-05-24                 20
37     cast    male 1979 1979-10-13 1980-05-24                 20
38     cast    male 1979 1979-10-13 1980-05-24                 20
39     cast    male 1979 1979-10-13 1980-05-24                 20
40     cast    male 1979 1979-10-13 1980-05-24                 20
41     cast    male 1979 1979-10-13 1980-05-24                 20
42     cast  female 1979 1979-10-13 1980-05-24                 20
43     cast  female 1979 1979-10-13 1980-05-24                 20
44     cast    male 1979 1979-10-13 1980-05-24                 20
45     cast    male 1979 1979-10-13 1980-05-24                 20
46     cast    male 1979 1979-10-13 1980-05-24                 20
47     cast  female 1979 1979-10-13 1980-05-24                 20
48     cast    male 1979 1979-10-13 1980-05-24                 20
49     cast    male 1979 1979-10-13 1980-05-24                 20
50     cast    male 1979 1979-10-13 1980-05-24                 20
51     cast    male 1980 1980-11-15 1981-04-11                 13
52     cast    male 1980 1980-11-15 1981-04-11                 13
53     cast    male 1980 1980-11-15 1981-04-11                 13
54     cast    male 1980 1980-11-15 1981-04-11                 13
55     cast    male 1980 1980-11-15 1981-04-11                 13
56  unknown    male 1980 1980-11-15 1981-04-11                 13
57     cast  female 1980 1980-11-15 1981-04-11                 13
58     cast  female 1980 1980-11-15 1981-04-11                 13
59     cast  female 1980 1980-11-15 1981-04-11                 13
60     cast  female 1980 1980-11-15 1981-04-11                 13
61     cast  female 1980 1980-11-15 1981-04-11                 13
62     cast    male 1980 1980-11-15 1981-04-11                 13
63     cast    male 1980 1980-11-15 1981-04-11                 13
64     cast  female 1980 1980-11-15 1981-04-11                 13
65     cast    male 1980 1980-11-15 1981-04-11                 13
66     cast    male 1981 1981-10-03 1982-05-22                 20
67     cast    male 1981 1981-10-03 1982-05-22                 20
68     cast    male 1981 1981-10-03 1982-05-22                 20
69     cast    male 1981 1981-10-03 1982-05-22                 20
70     cast  female 1981 1981-10-03 1982-05-22                 20
71     cast    male 1981 1981-10-03 1982-05-22                 20
72     cast  female 1981 1981-10-03 1982-05-22                 20
73     cast  female 1981 1981-10-03 1982-05-22                 20
74     cast    male 1982 1982-09-25 1983-05-14                 20
75     cast  female 1982 1982-09-25 1983-05-14                 20
76     cast  female 1982 1982-09-25 1983-05-14                 20
77     cast  female 1982 1982-09-25 1983-05-14                 20
78     cast    male 1982 1982-09-25 1983-05-14                 20
79     cast    male 1982 1982-09-25 1983-05-14                 20
80     cast    male 1982 1982-09-25 1983-05-14                 20
81     cast    male 1982 1982-09-25 1983-05-14                 20
82     cast    male 1983 1983-10-08 1984-05-12                 19
83     cast  female 1983 1983-10-08 1984-05-12                 19
84     cast    male 1983 1983-10-08 1984-05-12                 19
85     cast    male 1983 1983-10-08 1984-05-12                 19
86     cast    male 1983 1983-10-08 1984-05-12                 19
87     cast  female 1983 1983-10-08 1984-05-12                 19
88     cast  female 1983 1983-10-08 1984-05-12                 19
89     cast    male 1983 1983-10-08 1984-05-12                 19
90     cast    male 1983 1983-10-08 1984-05-12                 19
91     cast    male 1984 1984-10-06 1985-04-13                 17
92     cast  female 1984 1984-10-06 1985-04-13                 17
93     cast    male 1984 1984-10-06 1985-04-13                 17
94     cast  female 1984 1984-10-06 1985-04-13                 17
95     cast    male 1984 1984-10-06 1985-04-13                 17
96     cast    male 1984 1984-10-06 1985-04-13                 17
97     cast    male 1984 1984-10-06 1985-04-13                 17
98     cast    male 1984 1984-10-06 1985-04-13                 17
99     cast    male 1984 1984-10-06 1985-04-13                 17
100    cast  female 1984 1984-10-06 1985-04-13                 17
101    cast    male 1985 1985-11-09 1986-05-24                 18
102    cast    male 1985 1985-11-09 1986-05-24                 18
103    cast    male 1985 1985-11-09 1986-05-24                 18
104    cast  female 1985 1985-11-09 1986-05-24                 18
105    cast    male 1985 1985-11-09 1986-05-24                 18
106    cast    male 1985 1985-11-09 1986-05-24                 18
107    cast    male 1985 1985-11-09 1986-05-24                 18
108    cast    male 1985 1985-11-09 1986-05-24                 18
109    cast    male 1985 1985-11-09 1986-05-24                 18
110    cast  female 1985 1985-11-09 1986-05-24                 18
111    cast  female 1985 1985-11-09 1986-05-24                 18
112    cast    male 1985 1985-11-09 1986-05-24                 18
113    cast    male 1985 1985-11-09 1986-05-24                 18
114    cast    male 1985 1985-11-09 1986-05-24                 18
115    cast  female 1986 1986-10-11 1987-05-23                 20
116    cast    male 1986 1986-10-11 1987-05-23                 20
117    cast  female 1986 1986-10-11 1987-05-23                 20
118    cast    male 1986 1986-10-11 1987-05-23                 20
119    cast    male 1986 1986-10-11 1987-05-23                 20
120    cast    male 1986 1986-10-11 1987-05-23                 20
121    cast    male 1986 1986-10-11 1987-05-23                 20
122    cast    male 1986 1986-10-11 1987-05-23                 20
123    cast  female 1986 1986-10-11 1987-05-23                 20
124    cast    male 1987 1987-10-17 1988-02-27                 13
125    cast    male 1987 1987-10-17 1988-02-27                 13
126    cast  female 1987 1987-10-17 1988-02-27                 13
127    cast    male 1987 1987-10-17 1988-02-27                 13
128    cast    male 1987 1987-10-17 1988-02-27                 13
129    cast    male 1987 1987-10-17 1988-02-27                 13
130    cast    male 1987 1987-10-17 1988-02-27                 13
131    cast  female 1987 1987-10-17 1988-02-27                 13
132    cast  female 1987 1987-10-17 1988-02-27                 13
133    cast    male 1988 1988-10-08 1989-05-20                 20
134    cast    male 1988 1988-10-08 1989-05-20                 20
135    cast  female 1988 1988-10-08 1989-05-20                 20
136    cast    male 1988 1988-10-08 1989-05-20                 20
137    cast    male 1988 1988-10-08 1989-05-20                 20
138    cast    male 1988 1988-10-08 1989-05-20                 20
139    cast  female 1988 1988-10-08 1989-05-20                 20
140    cast    male 1988 1988-10-08 1989-05-20                 20
141    cast    male 1988 1988-10-08 1989-05-20                 20
142    cast    male 1988 1988-10-08 1989-05-20                 20
143    cast  female 1988 1988-10-08 1989-05-20                 20
144    cast    male 1988 1988-10-08 1989-05-20                 20
145    cast    male 1989 1989-09-30 1990-05-19                 20
146    cast  female 1989 1989-09-30 1990-05-19                 20
147    cast    male 1989 1989-09-30 1990-05-19                 20
148    cast    male 1989 1989-09-30 1990-05-19                 20
149    cast  female 1989 1989-09-30 1990-05-19                 20
150    cast  female 1989 1989-09-30 1990-05-19                 20
151    cast    male 1989 1989-09-30 1990-05-19                 20
152    cast    male 1989 1989-09-30 1990-05-19                 20
153    cast    male 1989 1989-09-30 1990-05-19                 20
154    cast    male 1989 1989-09-30 1990-05-19                 20
155    cast    male 1989 1989-09-30 1990-05-19                 20
156    cast    male 1990 1990-09-29 1991-05-18                 20
157    cast    male 1990 1990-09-29 1991-05-18                 20
158    cast    male 1990 1990-09-29 1991-05-18                 20
159    cast    male 1990 1990-09-29 1991-05-18                 20
160    cast    male 1990 1990-09-29 1991-05-18                 20
161    cast    male 1990 1990-09-29 1991-05-18                 20
162    cast    male 1990 1990-09-29 1991-05-18                 20
163    cast  female 1990 1990-09-29 1991-05-18                 20
164    cast    male 1990 1990-09-29 1991-05-18                 20
165 unknown    male 1990 1990-09-29 1991-05-18                 20
166    cast    male 1990 1990-09-29 1991-05-18                 20
167    cast  female 1990 1990-09-29 1991-05-18                 20
168    cast  female 1990 1990-09-29 1991-05-18                 20
169    cast    male 1990 1990-09-29 1991-05-18                 20
170    cast    male 1990 1990-09-29 1991-05-18                 20
171    cast    male 1990 1990-09-29 1991-05-18                 20
172    cast    male 1991 1991-09-28 1992-05-16                 20
173    cast    male 1991 1991-09-28 1992-05-16                 20
174 unknown    male 1991 1991-09-28 1992-05-16                 20
175    cast  female 1991 1991-09-28 1992-05-16                 20
176    cast  female 1991 1991-09-28 1992-05-16                 20
177    cast  female 1991 1991-09-28 1992-05-16                 20
178    cast    male 1991 1991-09-28 1992-05-16                 20
179    cast    male 1991 1991-09-28 1992-05-16                 20
180    cast    male 1991 1991-09-28 1992-05-16                 20
181    cast  female 1991 1991-09-28 1992-05-16                 20
182    cast    male 1991 1991-09-28 1992-05-16                 20
183    cast    male 1991 1991-09-28 1992-05-16                 20
184    cast    male 1991 1991-09-28 1992-05-16                 20
185    cast    male 1991 1991-09-28 1992-05-16                 20
186    cast  female 1991 1991-09-28 1992-05-16                 20
187    cast  female 1991 1991-09-28 1992-05-16                 20
188    cast    male 1991 1991-09-28 1992-05-16                 20
189    cast    male 1991 1991-09-28 1992-05-16                 20
190    cast  female 1992 1992-09-26 1993-05-15                 20
191    cast    male 1992 1992-09-26 1993-05-15                 20
192 unknown    male 1992 1992-09-26 1993-05-15                 20
193    cast    male 1992 1992-09-26 1993-05-15                 20
194    cast    male 1992 1992-09-26 1993-05-15                 20
195    cast    male 1992 1992-09-26 1993-05-15                 20
196    cast    male 1992 1992-09-26 1993-05-15                 20
197    cast    male 1992 1992-09-26 1993-05-15                 20
198    cast    male 1992 1992-09-26 1993-05-15                 20
199    cast  female 1992 1992-09-26 1993-05-15                 20
200    cast    male 1992 1992-09-26 1993-05-15                 20
201    cast    male 1992 1992-09-26 1993-05-15                 20
202    cast  female 1992 1992-09-26 1993-05-15                 20
203    cast    male 1992 1992-09-26 1993-05-15                 20
204    cast    male 1992 1992-09-26 1993-05-15                 20
205    cast  female 1993 1993-09-25 1994-05-14                 20
206    cast  female 1993 1993-09-25 1994-05-14                 20
207    cast    male 1993 1993-09-25 1994-05-14                 20
208    cast    male 1993 1993-09-25 1994-05-14                 20
209    cast    male 1993 1993-09-25 1994-05-14                 20
210 unknown    male 1993 1993-09-25 1994-05-14                 20
211    cast    male 1993 1993-09-25 1994-05-14                 20
212    cast    male 1993 1993-09-25 1994-05-14                 20
213    cast    male 1993 1993-09-25 1994-05-14                 20
214    cast    male 1993 1993-09-25 1994-05-14                 20
215    cast    male 1993 1993-09-25 1994-05-14                 20
216    cast    male 1993 1993-09-25 1994-05-14                 20
217    cast    male 1993 1993-09-25 1994-05-14                 20
218    cast  female 1993 1993-09-25 1994-05-14                 20
219    cast    male 1993 1993-09-25 1994-05-14                 20
220    cast  female 1993 1993-09-25 1994-05-14                 20
221    cast    male 1994 1994-09-24 1995-05-13                 20
222    cast    male 1994 1994-09-24 1995-05-13                 20
223 unknown    male 1994 1994-09-24 1995-05-13                 20
224    cast    male 1994 1994-09-24 1995-05-13                 20
225    cast  female 1994 1994-09-24 1995-05-13                 20
226    cast    male 1994 1994-09-24 1995-05-13                 20
227    cast    male 1994 1994-09-24 1995-05-13                 20
228    cast  female 1994 1994-09-24 1995-05-13                 20
229    cast    male 1994 1994-09-24 1995-05-13                 20
230    cast    male 1994 1994-09-24 1995-05-13                 20
231    cast    male 1994 1994-09-24 1995-05-13                 20
232    cast    male 1994 1994-09-24 1995-05-13                 20
233    cast  female 1994 1994-09-24 1995-05-13                 20
234    cast  female 1994 1994-09-24 1995-05-13                 20
235    cast    male 1994 1994-09-24 1995-05-13                 20
236    cast    male 1994 1994-09-24 1995-05-13                 20
237    cast  female 1994 1994-09-24 1995-05-13                 20
238    cast    male 1995 1995-09-30 1996-05-18                 20
239    cast    male 1995 1995-09-30 1996-05-18                 20
240    cast    male 1995 1995-09-30 1996-05-18                 20
241    cast    male 1995 1995-09-30 1996-05-18                 20
242    cast  female 1995 1995-09-30 1996-05-18                 20
243    cast    male 1995 1995-09-30 1996-05-18                 20
244    cast    male 1995 1995-09-30 1996-05-18                 20
245    cast    male 1995 1995-09-30 1996-05-18                 20
246    cast    male 1995 1995-09-30 1996-05-18                 20
247    cast  female 1995 1995-09-30 1996-05-18                 20
248    cast    male 1995 1995-09-30 1996-05-18                 20
249 unknown    male 1995 1995-09-30 1996-05-18                 20
250    cast  female 1995 1995-09-30 1996-05-18                 20
251    cast    male 1995 1995-09-30 1996-05-18                 20
252    cast    male 1996 1996-09-28 1997-05-17                 20
253    cast    male 1996 1996-09-28 1997-05-17                 20
254    cast  female 1996 1996-09-28 1997-05-17                 20
255    cast    male 1996 1996-09-28 1997-05-17                 20
256    cast    male 1996 1996-09-28 1997-05-17                 20
257    cast    male 1996 1996-09-28 1997-05-17                 20
258    cast  female 1996 1996-09-28 1997-05-17                 20
259    cast  female 1996 1996-09-28 1997-05-17                 20
260    cast    male 1996 1996-09-28 1997-05-17                 20
261    cast    male 1996 1996-09-28 1997-05-17                 20
262    cast    male 1996 1996-09-28 1997-05-17                 20
263    cast    male 1996 1996-09-28 1997-05-17                 20
264    cast    male 1996 1996-09-28 1997-05-17                 20
265    cast    male 1997 1997-09-27 1998-05-09                 20
266    cast    male 1997 1997-09-27 1998-05-09                 20
267    cast  female 1997 1997-09-27 1998-05-09                 20
268    cast    male 1997 1997-09-27 1998-05-09                 20
269    cast    male 1997 1997-09-27 1998-05-09                 20
270    cast    male 1997 1997-09-27 1998-05-09                 20
271    cast  female 1997 1997-09-27 1998-05-09                 20
272    cast    male 1997 1997-09-27 1998-05-09                 20
273    cast  female 1997 1997-09-27 1998-05-09                 20
274    cast    male 1997 1997-09-27 1998-05-09                 20
275    cast    male 1997 1997-09-27 1998-05-09                 20
276    cast    male 1998 1998-09-26 1999-05-15                 19
277    cast    male 1998 1998-09-26 1999-05-15                 19
278    cast  female 1998 1998-09-26 1999-05-15                 19
279    cast    male 1998 1998-09-26 1999-05-15                 19
280    cast    male 1998 1998-09-26 1999-05-15                 19
281    cast  female 1998 1998-09-26 1999-05-15                 19
282    cast    male 1998 1998-09-26 1999-05-15                 19
283    cast    male 1998 1998-09-26 1999-05-15                 19
284    cast    male 1998 1998-09-26 1999-05-15                 19
285    cast  female 1998 1998-09-26 1999-05-15                 19
286    cast    male 1998 1998-09-26 1999-05-15                 19
287    cast    male 1998 1998-09-26 1999-05-15                 19
288    cast  female 1999 1999-10-02 2000-05-20                 20
289    cast    male 1999 1999-10-02 2000-05-20                 20
290    cast  female 1999 1999-10-02 2000-05-20                 20
291    cast    male 1999 1999-10-02 2000-05-20                 20
292    cast    male 1999 1999-10-02 2000-05-20                 20
293    cast    male 1999 1999-10-02 2000-05-20                 20
294    cast    male 1999 1999-10-02 2000-05-20                 20
295    cast  female 1999 1999-10-02 2000-05-20                 20
296    cast    male 1999 1999-10-02 2000-05-20                 20
297    cast    male 1999 1999-10-02 2000-05-20                 20
298    cast  female 1999 1999-10-02 2000-05-20                 20
299    cast  female 1999 1999-10-02 2000-05-20                 20
300    cast    male 1999 1999-10-02 2000-05-20                 20
301    cast    male 1999 1999-10-02 2000-05-20                 20
302    cast  female 2000 2000-10-07 2001-05-19                 20
303    cast    male 2000 2000-10-07 2001-05-19                 20
304    cast  female 2000 2000-10-07 2001-05-19                 20
305    cast    male 2000 2000-10-07 2001-05-19                 20
306    cast    male 2000 2000-10-07 2001-05-19                 20
307    cast  female 2000 2000-10-07 2001-05-19                 20
308    cast  female 2000 2000-10-07 2001-05-19                 20
309    cast    male 2000 2000-10-07 2001-05-19                 20
310    cast    male 2000 2000-10-07 2001-05-19                 20
311    cast  female 2000 2000-10-07 2001-05-19                 20
312    cast    male 2000 2000-10-07 2001-05-19                 20
313    cast    male 2000 2000-10-07 2001-05-19                 20
314    cast    male 2000 2000-10-07 2001-05-19                 20
315    cast  female 2001 2001-09-29 2002-05-18                 20
316    cast    male 2001 2001-09-29 2002-05-18                 20
317    cast    male 2001 2001-09-29 2002-05-18                 20
318    cast    male 2001 2001-09-29 2002-05-18                 20
319    cast  female 2001 2001-09-29 2002-05-18                 20
320    cast  female 2001 2001-09-29 2002-05-18                 20
321    cast    male 2001 2001-09-29 2002-05-18                 20
322    cast    male 2001 2001-09-29 2002-05-18                 20
323    cast    male 2001 2001-09-29 2002-05-18                 20
324    cast    male 2001 2001-09-29 2002-05-18                 20
325    cast    male 2001 2001-09-29 2002-05-18                 20
326    cast    male 2001 2001-09-29 2002-05-18                 20
327    cast  female 2001 2001-09-29 2002-05-18                 20
328    cast  female 2001 2001-09-29 2002-05-18                 20
329    cast    male 2001 2001-09-29 2002-05-18                 20
330    cast    male 2002 2002-10-05 2003-05-17                 20
331    cast    male 2002 2002-10-05 2003-05-17                 20
332    cast    male 2002 2002-10-05 2003-05-17                 20
333    cast    male 2002 2002-10-05 2003-05-17                 20
334    cast  female 2002 2002-10-05 2003-05-17                 20
335    cast  female 2002 2002-10-05 2003-05-17                 20
336    cast    male 2002 2002-10-05 2003-05-17                 20
337    cast  female 2002 2002-10-05 2003-05-17                 20
338    cast    male 2002 2002-10-05 2003-05-17                 20
339    cast    male 2002 2002-10-05 2003-05-17                 20
340    cast    male 2002 2002-10-05 2003-05-17                 20
341    cast    male 2002 2002-10-05 2003-05-17                 20
342    cast    male 2002 2002-10-05 2003-05-17                 20
343    cast    male 2002 2002-10-05 2003-05-17                 20
344    cast  female 2002 2002-10-05 2003-05-17                 20
345    cast  female 2003 2003-10-04 2004-05-15                 20
346    cast    male 2003 2003-10-04 2004-05-15                 20
347    cast    male 2003 2003-10-04 2004-05-15                 20
348    cast    male 2003 2003-10-04 2004-05-15                 20
349    cast    male 2003 2003-10-04 2004-05-15                 20
350    cast    male 2003 2003-10-04 2004-05-15                 20
351    cast    male 2003 2003-10-04 2004-05-15                 20
352    cast    male 2003 2003-10-04 2004-05-15                 20
353    cast  female 2003 2003-10-04 2004-05-15                 20
354    cast  female 2003 2003-10-04 2004-05-15                 20
355    cast    male 2003 2003-10-04 2004-05-15                 20
356    cast    male 2003 2003-10-04 2004-05-15                 20
357    cast    male 2003 2003-10-04 2004-05-15                 20
358    cast  female 2003 2003-10-04 2004-05-15                 20
359    cast    male 2004 2004-10-02 2005-05-21                 20
360    cast  female 2004 2004-10-02 2005-05-21                 20
361    cast    male 2004 2004-10-02 2005-05-21                 20
362    cast    male 2004 2004-10-02 2005-05-21                 20
363    cast  female 2004 2004-10-02 2005-05-21                 20
364    cast    male 2004 2004-10-02 2005-05-21                 20
365    cast    male 2004 2004-10-02 2005-05-21                 20
366    cast    male 2004 2004-10-02 2005-05-21                 20
367    cast  female 2004 2004-10-02 2005-05-21                 20
368    cast    male 2004 2004-10-02 2005-05-21                 20
369    cast  female 2004 2004-10-02 2005-05-21                 20
370    cast    male 2004 2004-10-02 2005-05-21                 20
371    cast    male 2004 2004-10-02 2005-05-21                 20
372    cast    male 2004 2004-10-02 2005-05-21                 20
373    cast    male 2005 2005-10-01 2006-05-20                 19
374    cast    male 2005 2005-10-01 2006-05-20                 19
375    cast  female 2005 2005-10-01 2006-05-20                 19
376    cast  female 2005 2005-10-01 2006-05-20                 19
377    cast    male 2005 2005-10-01 2006-05-20                 19
378    cast  female 2005 2005-10-01 2006-05-20                 19
379    cast    male 2005 2005-10-01 2006-05-20                 19
380    cast    male 2005 2005-10-01 2006-05-20                 19
381    cast    male 2005 2005-10-01 2006-05-20                 19
382    cast    male 2005 2005-10-01 2006-05-20                 19
383    cast    male 2005 2005-10-01 2006-05-20                 19
384    cast  female 2005 2005-10-01 2006-05-20                 19
385    cast  female 2005 2005-10-01 2006-05-20                 19
386    cast    male 2005 2005-10-01 2006-05-20                 19
387    cast    male 2005 2005-10-01 2006-05-20                 19
388    cast    male 2005 2005-10-01 2006-05-20                 19
389    cast    male 2006 2006-09-30 2007-05-19                 20
390    cast    male 2006 2006-09-30 2007-05-19                 20
391    cast    male 2006 2006-09-30 2007-05-19                 20
392    cast    male 2006 2006-09-30 2007-05-19                 20
393    cast  female 2006 2006-09-30 2007-05-19                 20
394    cast  female 2006 2006-09-30 2007-05-19                 20
395    cast    male 2006 2006-09-30 2007-05-19                 20
396    cast    male 2006 2006-09-30 2007-05-19                 20
397    cast  female 2006 2006-09-30 2007-05-19                 20
398    cast    male 2006 2006-09-30 2007-05-19                 20
399    cast    male 2006 2006-09-30 2007-05-19                 20
400    cast    male 2007 2007-09-29 2008-05-17                 12
401    cast    male 2007 2007-09-29 2008-05-17                 12
402    cast    male 2007 2007-09-29 2008-05-17                 12
403    cast  female 2007 2007-09-29 2008-05-17                 12
404    cast    male 2007 2007-09-29 2008-05-17                 12
405    cast    male 2007 2007-09-29 2008-05-17                 12
406    cast  female 2007 2007-09-29 2008-05-17                 12
407    cast    male 2007 2007-09-29 2008-05-17                 12
408    cast    male 2007 2007-09-29 2008-05-17                 12
409    cast  female 2007 2007-09-29 2008-05-17                 12
410    cast  female 2007 2007-09-29 2008-05-17                 12
411    cast    male 2007 2007-09-29 2008-05-17                 12
412    cast  female 2008 2008-09-13 2009-05-16                 22
413    cast    male 2008 2008-09-13 2009-05-16                 22
414    cast  female 2008 2008-09-13 2009-05-16                 22
415    cast    male 2008 2008-09-13 2009-05-16                 22
416    cast    male 2008 2008-09-13 2009-05-16                 22
417    cast  female 2008 2008-09-13 2009-05-16                 22
418    cast    male 2008 2008-09-13 2009-05-16                 22
419    cast    male 2008 2008-09-13 2009-05-16                 22
420    cast  female 2008 2008-09-13 2009-05-16                 22
421    cast  female 2008 2008-09-13 2009-05-16                 22
422    cast    male 2008 2008-09-13 2009-05-16                 22
423    cast    male 2008 2008-09-13 2009-05-16                 22
424    cast    male 2008 2008-09-13 2009-05-16                 22
425    cast    male 2008 2008-09-13 2009-05-16                 22
426    cast    male 2009 2009-09-26 2010-05-15                 22
427    cast    male 2009 2009-09-26 2010-05-15                 22
428    cast    male 2009 2009-09-26 2010-05-15                 22
429    cast    male 2009 2009-09-26 2010-05-15                 22
430    cast    male 2009 2009-09-26 2010-05-15                 22
431    cast    male 2009 2009-09-26 2010-05-15                 22
432    cast  female 2009 2009-09-26 2010-05-15                 22
433    cast    male 2009 2009-09-26 2010-05-15                 22
434    cast  female 2009 2009-09-26 2010-05-15                 22
435    cast  female 2009 2009-09-26 2010-05-15                 22
436    cast    male 2009 2009-09-26 2010-05-15                 22
437    cast  female 2009 2009-09-26 2010-05-15                 22
438    cast  female 2010 2010-09-25 2011-05-21                 22
439    cast    male 2010 2010-09-25 2011-05-21                 22
440    cast    male 2010 2010-09-25 2011-05-21                 22
441    cast    male 2010 2010-09-25 2011-05-21                 22
442    cast    male 2010 2010-09-25 2011-05-21                 22
443    cast    male 2010 2010-09-25 2011-05-21                 22
444    cast    male 2010 2010-09-25 2011-05-21                 22
445    cast    male 2010 2010-09-25 2011-05-21                 22
446    cast    male 2010 2010-09-25 2011-05-21                 22
447    cast    male 2010 2010-09-25 2011-05-21                 22
448    cast    male 2010 2010-09-25 2011-05-21                 22
449    cast  female 2010 2010-09-25 2011-05-21                 22
450    cast  female 2010 2010-09-25 2011-05-21                 22
451    cast  female 2010 2010-09-25 2011-05-21                 22
452    cast    male 2011 2011-09-24 2012-05-19                 22
453    cast    male 2011 2011-09-24 2012-05-19                 22
454    cast  female 2011 2011-09-24 2012-05-19                 22
455    cast    male 2011 2011-09-24 2012-05-19                 22
456    cast    male 2011 2011-09-24 2012-05-19                 22
457    cast    male 2011 2011-09-24 2012-05-19                 22
458    cast  female 2011 2011-09-24 2012-05-19                 22
459    cast    male 2011 2011-09-24 2012-05-19                 22
460    cast    male 2011 2011-09-24 2012-05-19                 22
461    cast    male 2011 2011-09-24 2012-05-19                 22
462    cast    male 2011 2011-09-24 2012-05-19                 22
463    cast    male 2011 2011-09-24 2012-05-19                 22
464    cast  female 2011 2011-09-24 2012-05-19                 22
465    cast  female 2011 2011-09-24 2012-05-19                 22
466    cast  female 2011 2011-09-24 2012-05-19                 22
467    cast    male 2012 2012-09-15 2013-05-18                 21
468    cast    male 2012 2012-09-15 2013-05-18                 21
469    cast  female 2012 2012-09-15 2013-05-18                 21
470    cast  female 2012 2012-09-15 2013-05-18                 21
471    cast    male 2012 2012-09-15 2013-05-18                 21
472    cast    male 2012 2012-09-15 2013-05-18                 21
473    cast    male 2012 2012-09-15 2013-05-18                 21
474    cast    male 2012 2012-09-15 2013-05-18                 21
475    cast    male 2012 2012-09-15 2013-05-18                 21
476    cast    male 2012 2012-09-15 2013-05-18                 21
477    cast  female 2012 2012-09-15 2013-05-18                 21
478    cast  female 2012 2012-09-15 2013-05-18                 21
479    cast  female 2012 2012-09-15 2013-05-18                 21
480    cast    male 2012 2012-09-15 2013-05-18                 21
481    cast  female 2013 2013-09-28 2014-05-17                 21
482    cast  female 2013 2013-09-28 2014-05-17                 21
483    cast    male 2013 2013-09-28 2014-05-17                 21
484    cast    male 2013 2013-09-28 2014-05-17                 21
485    cast  female 2013 2013-09-28 2014-05-17                 21
486    cast    male 2013 2013-09-28 2014-05-17                 21
487    cast    male 2013 2013-09-28 2014-05-17                 21
488    cast    male 2013 2013-09-28 2014-05-17                 21
489    cast  female 2013 2013-09-28 2014-05-17                 21
490    cast    male 2013 2013-09-28 2014-05-17                 21
491    cast  female 2013 2013-09-28 2014-05-17                 21
492    cast  female 2013 2013-09-28 2014-05-17                 21
493    cast    male 2013 2013-09-28 2014-05-17                 21
494    cast    male 2013 2013-09-28 2014-05-17                 21
495    cast    male 2013 2013-09-28 2014-05-17                 21
496    cast    male 2013 2013-09-28 2014-05-17                 21
497    cast    male 2013 2013-09-28 2014-05-17                 21
498    cast  female 2013 2013-09-28 2014-05-17                 21
499    cast    male 2014 2014-09-27 2015-05-16                 21
500    cast    male 2014 2014-09-27 2015-05-16                 21
501    cast  female 2014 2014-09-27 2015-05-16                 21
502    cast    male 2014 2014-09-27 2015-05-16                 21
503    cast    male 2014 2014-09-27 2015-05-16                 21
504    cast  female 2014 2014-09-27 2015-05-16                 21
505    cast    male 2014 2014-09-27 2015-05-16                 21
506    cast  female 2014 2014-09-27 2015-05-16                 21
507    cast  female 2014 2014-09-27 2015-05-16                 21
508    cast    male 2014 2014-09-27 2015-05-16                 21
509    cast    male 2014 2014-09-27 2015-05-16                 21
510    cast    male 2014 2014-09-27 2015-05-16                 21
511    cast  female 2014 2014-09-27 2015-05-16                 21
512    cast    male 2014 2014-09-27 2015-05-16                 21
513    cast  female 2014 2014-09-27 2015-05-16                 21
514    cast    male 2015 2015-10-03 2016-05-21                 21
515    cast  female 2015 2015-10-03 2016-05-21                 21
516    cast    male 2015 2015-10-03 2016-05-21                 21
517    cast  female 2015 2015-10-03 2016-05-21                 21
518    cast  female 2015 2015-10-03 2016-05-21                 21
519    cast  female 2015 2015-10-03 2016-05-21                 21
520    cast  female 2015 2015-10-03 2016-05-21                 21
521    cast    male 2015 2015-10-03 2016-05-21                 21
522    cast    male 2015 2015-10-03 2016-05-21                 21
523    cast    male 2015 2015-10-03 2016-05-21                 21
524    cast    male 2015 2015-10-03 2016-05-21                 21
525    cast    male 2015 2015-10-03 2016-05-21                 21
526    cast    male 2015 2015-10-03 2016-05-21                 21
527    cast    male 2015 2015-10-03 2016-05-21                 21
528    cast  female 2015 2015-10-03 2016-05-21                 21
529    cast    male 2015 2015-10-03 2016-05-21                 21
530    cast  female 2016 2016-10-01 2017-05-20                 21
531    cast  female 2016 2016-10-01 2017-05-20                 21
532    cast    male 2016 2016-10-01 2017-05-20                 21
533    cast    male 2016 2016-10-01 2017-05-20                 21
534    cast  female 2016 2016-10-01 2017-05-20                 21
535    cast    male 2016 2016-10-01 2017-05-20                 21
536    cast    male 2016 2016-10-01 2017-05-20                 21
537    cast    male 2016 2016-10-01 2017-05-20                 21
538    cast  female 2016 2016-10-01 2017-05-20                 21
539    cast  female 2016 2016-10-01 2017-05-20                 21
540    cast  female 2016 2016-10-01 2017-05-20                 21
541    cast    male 2016 2016-10-01 2017-05-20                 21
542    cast  female 2016 2016-10-01 2017-05-20                 21
543    cast    male 2016 2016-10-01 2017-05-20                 21
544    cast    male 2016 2016-10-01 2017-05-20                 21
545    cast    male 2016 2016-10-01 2017-05-20                 21
546    cast    male 2017 2017-09-30 2018-05-19                 21
547    cast    male 2017 2017-09-30 2018-05-19                 21
548    cast  female 2017 2017-09-30 2018-05-19                 21
549    cast    male 2017 2017-09-30 2018-05-19                 21
550    cast    male 2017 2017-09-30 2018-05-19                 21
551    cast  female 2017 2017-09-30 2018-05-19                 21
552    cast    male 2017 2017-09-30 2018-05-19                 21
553    cast    male 2017 2017-09-30 2018-05-19                 21
554    cast  female 2017 2017-09-30 2018-05-19                 21
555    cast    male 2017 2017-09-30 2018-05-19                 21
556    cast    male 2017 2017-09-30 2018-05-19                 21
557    cast  female 2017 2017-09-30 2018-05-19                 21
558    cast  female 2017 2017-09-30 2018-05-19                 21
559    cast    male 2017 2017-09-30 2018-05-19                 21
560    cast    male 2017 2017-09-30 2018-05-19                 21
561    cast  female 2017 2017-09-30 2018-05-19                 21
562    cast    male 2018 2018-09-29 2019-05-18                 21
563    cast unknown 2018 2018-09-29 2019-05-18                 21
564    cast  female 2018 2018-09-29 2019-05-18                 21
565    cast    male 2018 2018-09-29 2019-05-18                 21
566    cast    male 2018 2018-09-29 2019-05-18                 21
567    cast    male 2018 2018-09-29 2019-05-18                 21
568    cast    male 2018 2018-09-29 2019-05-18                 21
569    cast  female 2018 2018-09-29 2019-05-18                 21
570    cast    male 2018 2018-09-29 2019-05-18                 21
571    cast  female 2018 2018-09-29 2019-05-18                 21
572    cast  female 2018 2018-09-29 2019-05-18                 21
573    cast    male 2018 2018-09-29 2019-05-18                 21
574    cast  female 2018 2018-09-29 2019-05-18                 21
575    cast    male 2018 2018-09-29 2019-05-18                 21
576    cast    male 2018 2018-09-29 2019-05-18                 21
577    cast  female 2018 2018-09-29 2019-05-18                 21
578    cast    male 2019 2019-09-28 2020-05-09                 18
579    cast    male 2019 2019-09-28 2020-05-09                 18
580    cast    male 2019 2019-09-28 2020-05-09                 18
581    cast  female 2019 2019-09-28 2020-05-09                 18
582    cast    male 2019 2019-09-28 2020-05-09                 18
583    cast    male 2019 2019-09-28 2020-05-09                 18
584    cast  female 2019 2019-09-28 2020-05-09                 18
585    cast    male 2019 2019-09-28 2020-05-09                 18
586    cast    male 2019 2019-09-28 2020-05-09                 18
587    cast    male 2019 2019-09-28 2020-05-09                 18
588    cast    male 2019 2019-09-28 2020-05-09                 18
589    cast    male 2019 2019-09-28 2020-05-09                 18
590    cast  female 2019 2019-09-28 2020-05-09                 18
591    cast  female 2019 2019-09-28 2020-05-09                 18
592    cast  female 2019 2019-09-28 2020-05-09                 18
593    cast  female 2019 2019-09-28 2020-05-09                 18
594    cast unknown 2019 2019-09-28 2020-05-09                 18
595    cast  female 2020 2020-10-03 2021-04-10                 17
596    cast  female 2020 2020-10-03 2021-04-10                 17
597    cast    male 2020 2020-10-03 2021-04-10                 17
598    cast    male 2020 2020-10-03 2021-04-10                 17
599    cast  female 2020 2020-10-03 2021-04-10                 17
600    cast    male 2020 2020-10-03 2021-04-10                 17
601    cast    male 2020 2020-10-03 2021-04-10                 17
602    cast unknown 2020 2020-10-03 2021-04-10                 17
603    cast    male 2020 2020-10-03 2021-04-10                 17
604    cast    male 2020 2020-10-03 2021-04-10                 17
605    cast  female 2020 2020-10-03 2021-04-10                 17
606    cast    male 2020 2020-10-03 2021-04-10                 17
607    cast  female 2020 2020-10-03 2021-04-10                 17
608    cast    male 2020 2020-10-03 2021-04-10                 17
609    cast unknown 2020 2020-10-03 2021-04-10                 17
610    cast    male 2020 2020-10-03 2021-04-10                 17
611    cast  female 2020 2020-10-03 2021-04-10                 17
612    cast  female 2020 2020-10-03 2021-04-10                 17
613    cast    male 2020 2020-10-03 2021-04-10                 17
614    cast    male 2020 2020-10-03 2021-04-10                 17

We have successfully merged all three datasets and the snl_actors_casts_seasons final dataset contains information about the actors, casts and seasons in a single dataset. We can now use this dataset for creating visualizations and analyzing the data.

For the first visualization, I created a bar graph representing the distribution of casts for each season of the SNL show. We can observe that the number of casts involved in each season of the SNL show has been more than 10 consistently from the 13th season. It would be interesting to visualize whether the number of episodes in a season has any impact on the number of casts featured in a season.

# Bar graph representing the distribution of casts over the seasons.

library(ggplot2)

ggplot(snl_actors_casts_seasons, aes(x = sid)) + 
  geom_bar(fill="#F8766D", width = 0.8) +
  labs(title = "Distribution of casts over the seasons", 
       y = "Count", x = "Season Number") +
  theme(axis.text.x=element_text(angle=90, hjust=1))

For the next visualization, I created a bar graph representing the gender distribution of casts over the years. This would help us understand more about the representation of male and female casts in the show which cannot be interpreted from the previous visualization. Since one season is premiered each year, representing the gender distribution over the years or over the seasons would result in the same visualization. It is quite evident from the visualization below that more than 50% of the casts involved in the SNL show from the beginning of the show are male. It would be nice to see more female casts in the SNL show in future.

# Bar graph representing the gender distribution of casts over the years.

ggplot(snl_actors_casts_seasons, aes(x = year, fill = gender)) + 
  geom_bar(width = 0.8) +
  labs(title = "Gender distribution of casts over the years", 
       y = "Count", x = "Year") +
  theme(axis.text.x=element_text(angle=90, hjust=1))

Source Code
---
title: "Challenge 8 Solutions"
author: "Vinitha Maheswaran"
description: "Joining Data"
date: "12/06/2022"
format:
  html:
    toc: true
    code-copy: true
    code-tools: true
categories:
  - challenge_8
  - railroads
  - snl
  - faostat
  - debt
---

```{r}
#| label: setup
#| warning: false
#| message: false

library(tidyverse)
library(ggplot2)

knitr::opts_chunk$set(echo = TRUE, warning=FALSE, message=FALSE)
```

## Challenge Overview

Today's challenge is to:

1)  read in multiple data sets, and describe the data set using both words and any supporting information (e.g., tables, etc)
2)  tidy data (as needed, including sanity checks)
3)  mutate variables as needed (including sanity checks)
4)  join two or more data sets and analyze some aspect of the joined data

(be sure to only include the category tags for the data you use!)

## Read in data

Read in one (or more) of the following datasets, using the correct R package and command.

  - military marriages ⭐⭐
  - faostat ⭐⭐
  - railroads  ⭐⭐⭐
  - fed_rate ⭐⭐⭐
  - debt ⭐⭐⭐
  - us_hh ⭐⭐⭐⭐
  - snl ⭐⭐⭐⭐⭐


For this challenge I will be working with the SNL data set.

```{r}
# Reading the SNL csv files

snl_actors <- read_csv("_data/snl_actors.csv")
snl_casts <- read_csv("_data/snl_casts.csv")
snl_seasons <- read_csv("_data/snl_seasons.csv")
```

```{r}
# Displaying snl_actors dataset
snl_actors
```

```{r}
# Displaying snl_casts dataset
snl_casts
```

```{r}
# Displaying snl_seasons dataset
snl_seasons
```


```{r}
# Finding dimension of all 3 snl datasets
dim(snl_actors)
dim(snl_casts)
dim(snl_seasons)
```

```{r}
# Structure of snl_actors dataset
str(snl_actors)
```

```{r}
# Structure of snl_casts dataset
str(snl_casts)
```

```{r}
# Structure of snl_seasons dataset
str(snl_seasons)
```

```{r}
#Summary of snl_actors
library(summarytools)
print(summarytools::dfSummary(snl_actors,
                        varnumbers = FALSE,
                        plain.ascii  = FALSE, 
                        style        = "grid", 
                        graph.magnif = 0.60, 
                        valid.col    = FALSE),
      method = 'render',
      table.classes = 'table-condensed')
```

```{r}
#Summary of snl_casts
library(summarytools)
print(summarytools::dfSummary(snl_casts,
                        varnumbers = FALSE,
                        plain.ascii  = FALSE, 
                        style        = "grid", 
                        graph.magnif = 0.60, 
                        valid.col    = FALSE),
      method = 'render',
      table.classes = 'table-condensed')
```

```{r}
#Summary of snl_seasons
library(summarytools)
print(summarytools::dfSummary(snl_seasons,
                        varnumbers = FALSE,
                        plain.ascii  = FALSE, 
                        style        = "grid", 
                        graph.magnif = 0.60, 
                        valid.col    = FALSE),
      method = 'render',
      table.classes = 'table-condensed')
```


### Briefly describe the data

Saturday Night Live is an American late-night live television sketch comedy and variety show that premiered on NBC in 1975. The snl has 3 datasets “snl_actors.csv”, “snl_casts.csv”, “snl_seasons.csv”.  There are no duplicates in all 3 datasets. The “snl_actors.csv” dataset has 2306 observations and 4 variables/attributes and contains information (such as actor name, url, type and gender) about the list of actors who have featured in the SNL show. The “aid” variable has 2306 unique values and acts as the primary key / unique identifier for the dataset. All 4 attributes in this dataset are of datatype character. The “snl_casts.csv” dataset has 614 observations and 8 attributes. This dataset contains information about the cast name “aid”, the seasons in which they have been featured, the number of times they have featured in the show along with each cast’s first and last episode. The “snl_seasons.csv” dataset has 46 observations and 5 attributes. The “sid” variable has 46 unique values and acts as a unique identifier for the dataset. This also indicates that SNL has 46 seasons. All the variables in this dataset are of numerical datatype and contains information about the season number, year it was telecasted, date of the first episode of that season, date of the last episode of that season and the number of episodes in that season. The first premiered season had 24 episodes which is the highest and the season 33 had the lowest number of episodes i.e 12.



## Tidy Data and Mutate Variables (as needed)

Is your data already tidy, or is there work to be done? Be sure to anticipate your end result to provide a sanity check, and document your work here.

Are there any variables that require mutation to be usable in your analysis stream? For example, do you need to calculate new values in order to graph them? Can string values be represented numerically? Do you need to turn any variables into factors and reorder for ease of graphics and visualization?

We observe that the "url" attribute in snl_actors dataset has 57 missing values.

```{r}
#Check for missing/null data in the snl_actors
sum(is.na(snl_actors))
sum(is.null(snl_actors))
```

```{r}
# Checking which columns have NA values in snl_actors
col <- colnames(snl_actors)
for (c in col){
  print(paste0("NA values in ", c, ": ", sum(is.na(snl_actors[,c]))))
}
```

We observe that out of the 57 observations which have missing "url" value, 56 of them have "unknown" value for 'type' attribute. This may be the reason for missing "url" value.

```{r}
# Displaying the 57 actors with missing "url" value.
filter(snl_actors,is.na(snl_actors$url))
```

The "url" contains information in the form of type of actor enclosed in '/' and '/?' followed by a identifier for each actor. Since, we have a unique identifier "aid" and there are no duplicates in the dataset, the attribute "url" seems unnecessary and I am dropping it. We are now left with 2306 observations and 3 attributes for snl_actors.

```{r}
# Dropping the attribute "url" from the snl_actors
snl_actors <- snl_actors%>%
  subset(select = -c(2))
snl_actors
```

The "type" attribute has 56 "unknown" values. We are retaining these observations for now as we have less data.

```{r}
table(snl_actors$type)
```

```{r}
# Displaying the 56 actors with type as "unknown".
filter(snl_actors,snl_actors$type=="unknown")
```

The "gender" attribute has 388 "unknown" values. 21 actors have been assigned the gender as "andy" which seems to be a mistake. I changed the value from "andy" to "unknown" for these 21 actors.

```{r}
table(snl_actors$gender)
```

```{r}
# Changing the gender from "andy" to "unknown" for the 21 observations
snl_actors <- snl_actors%>%
  mutate(gender = replace(gender, gender == "andy", "unknown"))
snl_actors
```

```{r}
# Sanity check: Check that the "gender" attribute does not have "andy" values. There should be 388+21 = 409 "unknown" values.
table(snl_actors$gender)
```

The "snl_actors" dataset is now tidy. Next, we move on to the "snl_casts" dataset.

We observe that the "first_epid" and "last_epid" attributes have 564 and 597 missing values respectively.

```{r}
#Check for missing/null data in the snl_casts.
sum(is.na(snl_casts))
sum(is.null(snl_casts))
```

```{r}
# Checking which columns have NA values in snl_casts
col <- colnames(snl_casts)
for (c in col){
  print(paste0("NA values in ", c, ": ", sum(is.na(snl_casts[,c]))))
}
```

Since the attributes "first_epid" and "last_epid" have more than 90% of the values missing and it is difficult to impute the  missing values, I decided to drop them from the dataset.

```{r}
# Dropping the attributes "first_epid" and "last_epid" from the snl_casts
snl_casts <- snl_casts%>%
  subset(select = -c(4,5))
snl_casts
```

The "snl_casts" dataset is tidy and left with 614 observations and 6 variables. Finally, we move on to the last dataset "snl_seasons".

The snl_seasons dataset has no missing/null data.

```{r}
#Check for missing/null data in the snl_seasons.
sum(is.na(snl_seasons))
sum(is.null(snl_seasons))
```

I converted the "first_epid" and "last_epid" attributes to ymd date format which will be useful while creating visualizations.

```{r}
# Converting "first_epid" and "last_epid" attributes to ymd date format
library(lubridate)
snl_seasons$first_epid <- ymd(snl_seasons$first_epid)
snl_seasons$last_epid <- ymd(snl_seasons$last_epid)
snl_seasons
```

Since, the attribute "n_episodes" is present in both snl_casts and snl_seasons datasets, I renamed the attribute "n_episodes" to "seasons_n_episodes" in the snl_seasons dataset.

```{r}
# Renaming the "n_episodes" column
snl_seasons <- snl_seasons%>%
  rename(seasons_n_episodes = n_episodes)
# Displaying the renamed column names
colnames(snl_seasons)
```


## Join Data

Be sure to include a sanity check, and double-check that case count is correct!

I performed left join on snl_casts and snl_actors datasets by using the "aid" attribute as the key. The joined dataset snl_actors_casts has 614 observations and 8 attributes which makes sense as the snl_casts dataset had 614 observations and snl_casts and snl_actors datasets had 6 and 3 attributes respectively. Since, the "aid" attribute is common in both datasets we count it only once.

```{r}
# performed left join for snl_casts and snl_actors datasets.
snl_actors_casts = merge(x=snl_casts, y=snl_actors, by="aid", all.x=TRUE)
snl_actors_casts
```
Next, I performed left join on snl_actors_casts and snl_seasons datasets by using the "sid" attribute as the key. The joined dataset snl_actors_casts_seasons has 614 observations and 12 attributes which makes sense as the snl_actors_casts dataset has 614 observations and snl_actors_casts and snl_seasons datasets had 8 and 5 attributes respectively. Since, the "sid" attribute is common in both datasets we count it only once.

```{r}
# performed left join for snl_actors_casts and snl_seasons datasets.
snl_actors_casts_seasons = merge(x=snl_actors_casts, y=snl_seasons, by="sid", all.x=TRUE)
snl_actors_casts_seasons
```

We have successfully merged all three datasets and the snl_actors_casts_seasons final dataset contains information about the actors, casts and seasons in a single dataset. We can now use this dataset for creating visualizations and analyzing the data.


For the first visualization, I created a bar graph representing the distribution of casts for each season of the SNL show. We can observe that the number of casts involved in each season of the SNL show has been more than 10 consistently from the 13th season. It would be interesting to visualize whether the number of episodes in a season has any impact on the number of casts featured in a season.

```{r fig.height = 5, fig.width = 10}
# Bar graph representing the distribution of casts over the seasons.

library(ggplot2)

ggplot(snl_actors_casts_seasons, aes(x = sid)) + 
  geom_bar(fill="#F8766D", width = 0.8) +
  labs(title = "Distribution of casts over the seasons", 
       y = "Count", x = "Season Number") +
  theme(axis.text.x=element_text(angle=90, hjust=1))
```


For the next visualization, I created a bar graph representing the gender distribution of casts over the years. This would help us understand more about the representation of male and female casts in the show which cannot be interpreted from the previous visualization. Since one season is premiered each year, representing the gender distribution over the years or over the seasons would result in the same visualization. It is quite evident from the visualization below that more than 50% of the casts involved in the SNL show from the beginning of the show are male. It would be nice to see more female casts in the SNL show in future.


```{r fig.height = 5, fig.width = 10}
# Bar graph representing the gender distribution of casts over the years.

ggplot(snl_actors_casts_seasons, aes(x = year, fill = gender)) + 
  geom_bar(width = 0.8) +
  labs(title = "Gender distribution of casts over the years", 
       y = "Count", x = "Year") +
  theme(axis.text.x=element_text(angle=90, hjust=1))
```