DACSS 601: Data Science Fundamentals - FALL 2022
  • Fall 2022 Posts
  • Contributors
  • DACSS

Challenge 3 Instructions

  • Course information
    • Overview
    • Instructional Team
    • Course Schedule
  • Weekly materials
    • Fall 2022 posts
    • final posts

On this page

  • Challenge Overview
  • Read in data
    • Briefly describe the data
  • Anticipate the End Result
    • Example: find current and future data dimensions
    • Challenge: Describe the final dimensions
  • Pivot the Data
    • Example
    • Challenge: Pivot the Chosen Data

Challenge 3 Instructions

  • Show All Code
  • Hide All Code

  • View Source
challenge_3
Tidy Data: Pivoting
Author

Meredith Rolfe

Published

August 17, 2022

Code
library(tidyverse)

knitr::opts_chunk$set(echo = TRUE, warning=FALSE, message=FALSE)

Challenge Overview

Today’s challenge is to:

  1. read in a data set, and describe the data set using both words and any supporting information (e.g., tables, etc)
  2. identify what needs to be done to tidy the current data
  3. anticipate the shape of pivoted data
  4. pivot the data into tidy format using pivot_longer

Read in data

Read in one (or more) of the following datasets, using the correct R package and command.

  • animal_weights.csv ⭐
  • eggs_tidy.csv ⭐⭐ or organicpoultry.xls ⭐⭐⭐
  • australian_marriage*.xlsx ⭐⭐⭐
  • USA Households*.xlsx ⭐⭐⭐⭐
  • sce_labor_chart_data_public.csv 🌟🌟🌟🌟🌟

Briefly describe the data

Describe the data, and be sure to comment on why you are planning to pivot it to make it “tidy”

Anticipate the End Result

The first step in pivoting the data is to try to come up with a concrete vision of what the end product should look like - that way you will know whether or not your pivoting was successful.

One easy way to do this is to think about the dimensions of your current data (tibble, dataframe, or matrix), and then calculate what the dimensions of the pivoted data should be.

Suppose you have a dataset with \(n\) rows and \(k\) variables. In our example, 3 of the variables are used to identify a case, so you will be pivoting \(k-3\) variables into a longer format where the \(k-3\) variable names will move into the names_to variable and the current values in each of those columns will move into the values_to variable. Therefore, we would expect \(n * (k-3)\) rows in the pivoted dataframe!

Example: find current and future data dimensions

Lets see if this works with a simple example.

Code
df<-tibble(country = rep(c("Mexico", "USA", "France"),2),
           year = rep(c(1980,1990), 3), 
           trade = rep(c("NAFTA", "NAFTA", "EU"),2),
           outgoing = rnorm(6, mean=1000, sd=500),
           incoming = rlogis(6, location=1000, 
                             scale = 400))
df
# A tibble: 6 × 5
  country  year trade outgoing incoming
  <chr>   <dbl> <chr>    <dbl>    <dbl>
1 Mexico   1980 NAFTA     974.    1287.
2 USA      1990 NAFTA    1355.     861.
3 France   1980 EU       1521.     242.
4 Mexico   1990 NAFTA    1737.    1437.
5 USA      1980 NAFTA     625.     697.
6 France   1990 EU       1272.     885.
Code
#existing rows/cases
nrow(df)
[1] 6
Code
#existing columns/cases
ncol(df)
[1] 5
Code
#expected rows/cases
nrow(df) * (ncol(df)-3)
[1] 12
Code
# expected columns 
3 + 2
[1] 5

Or simple example has \(n = 6\) rows and \(k - 3 = 2\) variables being pivoted, so we expect a new dataframe to have \(n * 2 = 12\) rows x \(3 + 2 = 5\) columns.

Challenge: Describe the final dimensions

Document your work here.

Any additional comments?

Pivot the Data

Now we will pivot the data, and compare our pivoted data dimensions to the dimensions calculated above as a “sanity” check.

Example

Code
df<-pivot_longer(df, col = c(outgoing, incoming),
                 names_to="trade_direction",
                 values_to = "trade_value")
df
# A tibble: 12 × 5
   country  year trade trade_direction trade_value
   <chr>   <dbl> <chr> <chr>                 <dbl>
 1 Mexico   1980 NAFTA outgoing               974.
 2 Mexico   1980 NAFTA incoming              1287.
 3 USA      1990 NAFTA outgoing              1355.
 4 USA      1990 NAFTA incoming               861.
 5 France   1980 EU    outgoing              1521.
 6 France   1980 EU    incoming               242.
 7 Mexico   1990 NAFTA outgoing              1737.
 8 Mexico   1990 NAFTA incoming              1437.
 9 USA      1980 NAFTA outgoing               625.
10 USA      1980 NAFTA incoming               697.
11 France   1990 EU    outgoing              1272.
12 France   1990 EU    incoming               885.

Yes, once it is pivoted long, our resulting data are \(12x5\) - exactly what we expected!

Challenge: Pivot the Chosen Data

Document your work here. What will a new “case” be once you have pivoted the data? How does it meet requirements for tidy data?

Any additional comments?

Source Code
---
title: "Challenge 3 Instructions"
author: "Meredith Rolfe"
description: "Tidy Data: Pivoting"
date: "08/17/2022"
format:
  html:
    toc: true
    code-fold: true
    code-copy: true
    code-tools: true
categories:
  - challenge_3
---

```{r}
#| label: setup
#| warning: false
#| message: false

library(tidyverse)

knitr::opts_chunk$set(echo = TRUE, warning=FALSE, message=FALSE)
```

## Challenge Overview

Today's challenge is to:

1.  read in a data set, and describe the data set using both words and any supporting information (e.g., tables, etc)
2.  identify what needs to be done to tidy the current data
3.  anticipate the shape of pivoted data
4.  pivot the data into tidy format using `pivot_longer`

## Read in data

Read in one (or more) of the following datasets, using the correct R package and command.

-   animal_weights.csv ⭐
-   eggs_tidy.csv ⭐⭐ or organicpoultry.xls ⭐⭐⭐
-   australian_marriage\*.xlsx ⭐⭐⭐
-   USA Households\*.xlsx ⭐⭐⭐⭐
-   sce_labor_chart_data_public.csv 🌟🌟🌟🌟🌟

```{r}
```

### Briefly describe the data

Describe the data, and be sure to comment on why you are planning to pivot it to make it "tidy"

## Anticipate the End Result

The first step in pivoting the data is to try to come up with a concrete vision of what the end product *should* look like - that way you will know whether or not your pivoting was successful.

One easy way to do this is to think about the dimensions of your current data (tibble, dataframe, or matrix), and then calculate what the dimensions of the pivoted data should be.

Suppose you have a dataset with $n$ rows and $k$ variables. In our example, 3 of the variables are used to identify a case, so you will be pivoting $k-3$ variables into a longer format where the $k-3$ variable names will move into the `names_to` variable and the current values in each of those columns will move into the `values_to` variable. Therefore, we would expect $n * (k-3)$ rows in the pivoted dataframe!

### Example: find current and future data dimensions

Lets see if this works with a simple example.

```{r}
#| tbl-cap: Example

df<-tibble(country = rep(c("Mexico", "USA", "France"),2),
           year = rep(c(1980,1990), 3), 
           trade = rep(c("NAFTA", "NAFTA", "EU"),2),
           outgoing = rnorm(6, mean=1000, sd=500),
           incoming = rlogis(6, location=1000, 
                             scale = 400))
df

#existing rows/cases
nrow(df)

#existing columns/cases
ncol(df)

#expected rows/cases
nrow(df) * (ncol(df)-3)

# expected columns 
3 + 2
```

Or simple example has $n = 6$ rows and $k - 3 = 2$ variables being pivoted, so we expect a new dataframe to have $n * 2 = 12$ rows x $3 + 2 = 5$ columns.

### Challenge: Describe the final dimensions

Document your work here.

```{r}
```

Any additional comments?

## Pivot the Data

Now we will pivot the data, and compare our pivoted data dimensions to the dimensions calculated above as a "sanity" check.

### Example

```{r}
#| tbl-cap: Pivoted Example

df<-pivot_longer(df, col = c(outgoing, incoming),
                 names_to="trade_direction",
                 values_to = "trade_value")
df
```

Yes, once it is pivoted long, our resulting data are $12x5$ - exactly what we expected!

### Challenge: Pivot the Chosen Data

Document your work here. What will a new "case" be once you have pivoted the data? How does it meet requirements for tidy data?

```{r}
```

Any additional comments?