challenge_4
FNU Avinesh Krishnan
HOTEL
More data wrangling: pivoting
Author

FNU Avinesh Krishnan

Published

May 15, 2022

Code
library(tidyverse)
library(lubridate)

knitr::opts_chunk$set(echo = TRUE, warning=FALSE, message=FALSE)

Challenge Overview

Today’s challenge is to:

  1. read in a data set, and describe the data set using both words and any supporting information (e.g., tables, etc)
  2. tidy data (as needed, including sanity checks)
  3. identify variables that need to be mutated
  4. mutate variables and sanity check all mutations

Read in data

Read in one (or more) of the following datasets, using the correct R package and command.

  • abc_poll.csv ⭐
  • poultry_tidy.xlsx or organiceggpoultry.xls⭐⭐
  • FedFundsRate.csv⭐⭐⭐
  • hotel_bookings.csv⭐⭐⭐⭐
  • debt_in_trillions.xlsx ⭐⭐⭐⭐⭐
Code
hotelbookdata <- read_csv("~/Desktop/601_Spring_2023/posts/_data/hotel_bookings.csv")

Briefly describe the data

Code
head(hotelbookdata)
# A tibble: 6 × 32
  hotel   is_ca…¹ lead_…² arriv…³ arriv…⁴ arriv…⁵ arriv…⁶ stays…⁷ stays…⁸ adults
  <chr>     <dbl>   <dbl>   <dbl> <chr>     <dbl>   <dbl>   <dbl>   <dbl>  <dbl>
1 Resort…       0     342    2015 July         27       1       0       0      2
2 Resort…       0     737    2015 July         27       1       0       0      2
3 Resort…       0       7    2015 July         27       1       0       1      1
4 Resort…       0      13    2015 July         27       1       0       1      1
5 Resort…       0      14    2015 July         27       1       0       2      2
6 Resort…       0      14    2015 July         27       1       0       2      2
# … with 22 more variables: children <dbl>, babies <dbl>, meal <chr>,
#   country <chr>, market_segment <chr>, distribution_channel <chr>,
#   is_repeated_guest <dbl>, previous_cancellations <dbl>,
#   previous_bookings_not_canceled <dbl>, reserved_room_type <chr>,
#   assigned_room_type <chr>, booking_changes <dbl>, deposit_type <chr>,
#   agent <chr>, company <chr>, days_in_waiting_list <dbl>,
#   customer_type <chr>, adr <dbl>, required_car_parking_spaces <dbl>, …
Code
str(hotelbookdata)
spc_tbl_ [119,390 × 32] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
 $ hotel                         : chr [1:119390] "Resort Hotel" "Resort Hotel" "Resort Hotel" "Resort Hotel" ...
 $ is_canceled                   : num [1:119390] 0 0 0 0 0 0 0 0 1 1 ...
 $ lead_time                     : num [1:119390] 342 737 7 13 14 14 0 9 85 75 ...
 $ arrival_date_year             : num [1:119390] 2015 2015 2015 2015 2015 ...
 $ arrival_date_month            : chr [1:119390] "July" "July" "July" "July" ...
 $ arrival_date_week_number      : num [1:119390] 27 27 27 27 27 27 27 27 27 27 ...
 $ arrival_date_day_of_month     : num [1:119390] 1 1 1 1 1 1 1 1 1 1 ...
 $ stays_in_weekend_nights       : num [1:119390] 0 0 0 0 0 0 0 0 0 0 ...
 $ stays_in_week_nights          : num [1:119390] 0 0 1 1 2 2 2 2 3 3 ...
 $ adults                        : num [1:119390] 2 2 1 1 2 2 2 2 2 2 ...
 $ children                      : num [1:119390] 0 0 0 0 0 0 0 0 0 0 ...
 $ babies                        : num [1:119390] 0 0 0 0 0 0 0 0 0 0 ...
 $ meal                          : chr [1:119390] "BB" "BB" "BB" "BB" ...
 $ country                       : chr [1:119390] "PRT" "PRT" "GBR" "GBR" ...
 $ market_segment                : chr [1:119390] "Direct" "Direct" "Direct" "Corporate" ...
 $ distribution_channel          : chr [1:119390] "Direct" "Direct" "Direct" "Corporate" ...
 $ is_repeated_guest             : num [1:119390] 0 0 0 0 0 0 0 0 0 0 ...
 $ previous_cancellations        : num [1:119390] 0 0 0 0 0 0 0 0 0 0 ...
 $ previous_bookings_not_canceled: num [1:119390] 0 0 0 0 0 0 0 0 0 0 ...
 $ reserved_room_type            : chr [1:119390] "C" "C" "A" "A" ...
 $ assigned_room_type            : chr [1:119390] "C" "C" "C" "A" ...
 $ booking_changes               : num [1:119390] 3 4 0 0 0 0 0 0 0 0 ...
 $ deposit_type                  : chr [1:119390] "No Deposit" "No Deposit" "No Deposit" "No Deposit" ...
 $ agent                         : chr [1:119390] "NULL" "NULL" "NULL" "304" ...
 $ company                       : chr [1:119390] "NULL" "NULL" "NULL" "NULL" ...
 $ days_in_waiting_list          : num [1:119390] 0 0 0 0 0 0 0 0 0 0 ...
 $ customer_type                 : chr [1:119390] "Transient" "Transient" "Transient" "Transient" ...
 $ adr                           : num [1:119390] 0 0 75 75 98 ...
 $ required_car_parking_spaces   : num [1:119390] 0 0 0 0 0 0 0 0 0 0 ...
 $ total_of_special_requests     : num [1:119390] 0 0 0 0 1 1 0 1 1 0 ...
 $ reservation_status            : chr [1:119390] "Check-Out" "Check-Out" "Check-Out" "Check-Out" ...
 $ reservation_status_date       : Date[1:119390], format: "2015-07-01" "2015-07-01" ...
 - attr(*, "spec")=
  .. cols(
  ..   hotel = col_character(),
  ..   is_canceled = col_double(),
  ..   lead_time = col_double(),
  ..   arrival_date_year = col_double(),
  ..   arrival_date_month = col_character(),
  ..   arrival_date_week_number = col_double(),
  ..   arrival_date_day_of_month = col_double(),
  ..   stays_in_weekend_nights = col_double(),
  ..   stays_in_week_nights = col_double(),
  ..   adults = col_double(),
  ..   children = col_double(),
  ..   babies = col_double(),
  ..   meal = col_character(),
  ..   country = col_character(),
  ..   market_segment = col_character(),
  ..   distribution_channel = col_character(),
  ..   is_repeated_guest = col_double(),
  ..   previous_cancellations = col_double(),
  ..   previous_bookings_not_canceled = col_double(),
  ..   reserved_room_type = col_character(),
  ..   assigned_room_type = col_character(),
  ..   booking_changes = col_double(),
  ..   deposit_type = col_character(),
  ..   agent = col_character(),
  ..   company = col_character(),
  ..   days_in_waiting_list = col_double(),
  ..   customer_type = col_character(),
  ..   adr = col_double(),
  ..   required_car_parking_spaces = col_double(),
  ..   total_of_special_requests = col_double(),
  ..   reservation_status = col_character(),
  ..   reservation_status_date = col_date(format = "")
  .. )
 - attr(*, "problems")=<externalptr> 
Code
dim(hotelbookdata)
[1] 119390     32
Code
colnames(hotelbookdata)
 [1] "hotel"                          "is_canceled"                   
 [3] "lead_time"                      "arrival_date_year"             
 [5] "arrival_date_month"             "arrival_date_week_number"      
 [7] "arrival_date_day_of_month"      "stays_in_weekend_nights"       
 [9] "stays_in_week_nights"           "adults"                        
[11] "children"                       "babies"                        
[13] "meal"                           "country"                       
[15] "market_segment"                 "distribution_channel"          
[17] "is_repeated_guest"              "previous_cancellations"        
[19] "previous_bookings_not_canceled" "reserved_room_type"            
[21] "assigned_room_type"             "booking_changes"               
[23] "deposit_type"                   "agent"                         
[25] "company"                        "days_in_waiting_list"          
[27] "customer_type"                  "adr"                           
[29] "required_car_parking_spaces"    "total_of_special_requests"     
[31] "reservation_status"             "reservation_status_date"       
Code
unique(hotelbookdata$hotel)
[1] "Resort Hotel" "City Hotel"  

Tidy Data (as needed)

Is your data already tidy, or is there work to be done? Be sure to anticipate your end result to provide a sanity check, and document your work here.

Any additional comments?

Identify variables that need to be mutated

Are there any variables that require mutation to be usable in your analysis stream? For example, are all time variables correctly coded as dates? Are all string variables reduced and cleaned to sensible categories? Do you need to turn any variables into factors and reorder for ease of graphics and visualization?

Document your work here.

Code
mutated_data <- hotelbookdata %>%
    mutate(month = case_when(arrival_date_month == "January" ~ 1,arrival_date_month == "February" ~ 2,arrival_date_month == "March" ~ 3,arrival_date_month == "April" ~ 4,arrival_date_month == "May" ~ 5,arrival_date_month == "June" ~ 6,arrival_date_month == "July" ~ 7,arrival_date_month == "August" ~ 8,arrival_date_month == "September" ~ 9,arrival_date_month == "October" ~ 10,arrival_date_month == "November" ~ 11,arrival_date_month == "December" ~ 12,)) %>%
    mutate(date_of_arrrival = make_date(arrival_date_year, month, arrival_date_day_of_month)) %>%
    select(-c(arrival_date_year, arrival_date_month, arrival_date_day_of_month, month, arrival_date_week_number))

mutated_data
# A tibble: 119,390 × 29
   hotel     is_ca…¹ lead_…² stays…³ stays…⁴ adults child…⁵ babies meal  country
   <chr>       <dbl>   <dbl>   <dbl>   <dbl>  <dbl>   <dbl>  <dbl> <chr> <chr>  
 1 Resort H…       0     342       0       0      2       0      0 BB    PRT    
 2 Resort H…       0     737       0       0      2       0      0 BB    PRT    
 3 Resort H…       0       7       0       1      1       0      0 BB    GBR    
 4 Resort H…       0      13       0       1      1       0      0 BB    GBR    
 5 Resort H…       0      14       0       2      2       0      0 BB    GBR    
 6 Resort H…       0      14       0       2      2       0      0 BB    GBR    
 7 Resort H…       0       0       0       2      2       0      0 BB    PRT    
 8 Resort H…       0       9       0       2      2       0      0 FB    PRT    
 9 Resort H…       1      85       0       3      2       0      0 BB    PRT    
10 Resort H…       1      75       0       3      2       0      0 HB    PRT    
# … with 119,380 more rows, 19 more variables: market_segment <chr>,
#   distribution_channel <chr>, is_repeated_guest <dbl>,
#   previous_cancellations <dbl>, previous_bookings_not_canceled <dbl>,
#   reserved_room_type <chr>, assigned_room_type <chr>, booking_changes <dbl>,
#   deposit_type <chr>, agent <chr>, company <chr>, days_in_waiting_list <dbl>,
#   customer_type <chr>, adr <dbl>, required_car_parking_spaces <dbl>,
#   total_of_special_requests <dbl>, reservation_status <chr>, …

After eliminating four of the initial date columns (year, month, day, and week) and introducing a new column to represent the complete expected arrival date, the total number of columns (variables) in our dataset is 29.

Code
ncol(mutated_data)
[1] 29
Code
dim(mutated_data)
[1] 119390     29

Any additional comments?