Code
library(tidyverse)
library(readxl)
library(lubridate)
library(psych)
library(DT)
::opts_chunk$set(echo = TRUE, warning=FALSE, message=FALSE) knitr
Linda Humphrey
March 1, 2023
Today’s challenge is to
Read in one (or more) of the following data sets, available in the posts/_data
folder, using the correct R package and command.
spc_tbl_ [119,390 × 32] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
$ hotel : chr [1:119390] "Resort Hotel" "Resort Hotel" "Resort Hotel" "Resort Hotel" ...
$ is_canceled : num [1:119390] 0 0 0 0 0 0 0 0 1 1 ...
$ lead_time : num [1:119390] 342 737 7 13 14 14 0 9 85 75 ...
$ arrival_date_year : num [1:119390] 2015 2015 2015 2015 2015 ...
$ arrival_date_month : chr [1:119390] "July" "July" "July" "July" ...
$ arrival_date_week_number : num [1:119390] 27 27 27 27 27 27 27 27 27 27 ...
$ arrival_date_day_of_month : num [1:119390] 1 1 1 1 1 1 1 1 1 1 ...
$ stays_in_weekend_nights : num [1:119390] 0 0 0 0 0 0 0 0 0 0 ...
$ stays_in_week_nights : num [1:119390] 0 0 1 1 2 2 2 2 3 3 ...
$ adults : num [1:119390] 2 2 1 1 2 2 2 2 2 2 ...
$ children : num [1:119390] 0 0 0 0 0 0 0 0 0 0 ...
$ babies : num [1:119390] 0 0 0 0 0 0 0 0 0 0 ...
$ meal : chr [1:119390] "BB" "BB" "BB" "BB" ...
$ country : chr [1:119390] "PRT" "PRT" "GBR" "GBR" ...
$ market_segment : chr [1:119390] "Direct" "Direct" "Direct" "Corporate" ...
$ distribution_channel : chr [1:119390] "Direct" "Direct" "Direct" "Corporate" ...
$ is_repeated_guest : num [1:119390] 0 0 0 0 0 0 0 0 0 0 ...
$ previous_cancellations : num [1:119390] 0 0 0 0 0 0 0 0 0 0 ...
$ previous_bookings_not_canceled: num [1:119390] 0 0 0 0 0 0 0 0 0 0 ...
$ reserved_room_type : chr [1:119390] "C" "C" "A" "A" ...
$ assigned_room_type : chr [1:119390] "C" "C" "C" "A" ...
$ booking_changes : num [1:119390] 3 4 0 0 0 0 0 0 0 0 ...
$ deposit_type : chr [1:119390] "No Deposit" "No Deposit" "No Deposit" "No Deposit" ...
$ agent : chr [1:119390] "NULL" "NULL" "NULL" "304" ...
$ company : chr [1:119390] "NULL" "NULL" "NULL" "NULL" ...
$ days_in_waiting_list : num [1:119390] 0 0 0 0 0 0 0 0 0 0 ...
$ customer_type : chr [1:119390] "Transient" "Transient" "Transient" "Transient" ...
$ adr : num [1:119390] 0 0 75 75 98 ...
$ required_car_parking_spaces : num [1:119390] 0 0 0 0 0 0 0 0 0 0 ...
$ total_of_special_requests : num [1:119390] 0 0 0 0 1 1 0 1 1 0 ...
$ reservation_status : chr [1:119390] "Check-Out" "Check-Out" "Check-Out" "Check-Out" ...
$ reservation_status_date : Date[1:119390], format: "2015-07-01" "2015-07-01" ...
- attr(*, "spec")=
.. cols(
.. hotel = col_character(),
.. is_canceled = col_double(),
.. lead_time = col_double(),
.. arrival_date_year = col_double(),
.. arrival_date_month = col_character(),
.. arrival_date_week_number = col_double(),
.. arrival_date_day_of_month = col_double(),
.. stays_in_weekend_nights = col_double(),
.. stays_in_week_nights = col_double(),
.. adults = col_double(),
.. children = col_double(),
.. babies = col_double(),
.. meal = col_character(),
.. country = col_character(),
.. market_segment = col_character(),
.. distribution_channel = col_character(),
.. is_repeated_guest = col_double(),
.. previous_cancellations = col_double(),
.. previous_bookings_not_canceled = col_double(),
.. reserved_room_type = col_character(),
.. assigned_room_type = col_character(),
.. booking_changes = col_double(),
.. deposit_type = col_character(),
.. agent = col_character(),
.. company = col_character(),
.. days_in_waiting_list = col_double(),
.. customer_type = col_character(),
.. adr = col_double(),
.. required_car_parking_spaces = col_double(),
.. total_of_special_requests = col_double(),
.. reservation_status = col_character(),
.. reservation_status_date = col_date(format = "")
.. )
- attr(*, "problems")=<externalptr>
Add any comments or documentation as needed. More challenging data may require additional code chunks and documentation.
Using a combination of words and results of R commands, can you provide a high level description of the data? Describe as efficiently as possible where/how the data was (likely) gathered, indicate the cases and variables (both the interpretation and any details you deem useful to the reader to fully understand your chosen data). * Data gathered was an analysis of hotel bookings from 2015 to 2017
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000 2.000 2.000 1.856 2.000 55.000
This data describes demand data for two different types of hotels, with 31 variables describing 40,060 observations and 79,330 observations.
hotel is_canceled lead_time arrival_date_year
Length:119390 Min. :0.0000 Min. : 0 Min. :2015
Class :character 1st Qu.:0.0000 1st Qu.: 18 1st Qu.:2016
Mode :character Median :0.0000 Median : 69 Median :2016
Mean :0.3704 Mean :104 Mean :2016
3rd Qu.:1.0000 3rd Qu.:160 3rd Qu.:2017
Max. :1.0000 Max. :737 Max. :2017
arrival_date_month arrival_date_week_number arrival_date_day_of_month
Length:119390 Min. : 1.00 Min. : 1.0
Class :character 1st Qu.:16.00 1st Qu.: 8.0
Mode :character Median :28.00 Median :16.0
Mean :27.17 Mean :15.8
3rd Qu.:38.00 3rd Qu.:23.0
Max. :53.00 Max. :31.0
stays_in_weekend_nights stays_in_week_nights adults
Min. : 0.0000 Min. : 0.0 Min. : 0.000
1st Qu.: 0.0000 1st Qu.: 1.0 1st Qu.: 2.000
Median : 1.0000 Median : 2.0 Median : 2.000
Mean : 0.9276 Mean : 2.5 Mean : 1.856
3rd Qu.: 2.0000 3rd Qu.: 3.0 3rd Qu.: 2.000
Max. :19.0000 Max. :50.0 Max. :55.000
children babies meal country
Min. : 0.0000 Min. : 0.000000 Length:119390 Length:119390
1st Qu.: 0.0000 1st Qu.: 0.000000 Class :character Class :character
Median : 0.0000 Median : 0.000000 Mode :character Mode :character
Mean : 0.1039 Mean : 0.007949
3rd Qu.: 0.0000 3rd Qu.: 0.000000
Max. :10.0000 Max. :10.000000
NA's :4
market_segment distribution_channel is_repeated_guest
Length:119390 Length:119390 Min. :0.00000
Class :character Class :character 1st Qu.:0.00000
Mode :character Mode :character Median :0.00000
Mean :0.03191
3rd Qu.:0.00000
Max. :1.00000
previous_cancellations previous_bookings_not_canceled reserved_room_type
Min. : 0.00000 Min. : 0.0000 Length:119390
1st Qu.: 0.00000 1st Qu.: 0.0000 Class :character
Median : 0.00000 Median : 0.0000 Mode :character
Mean : 0.08712 Mean : 0.1371
3rd Qu.: 0.00000 3rd Qu.: 0.0000
Max. :26.00000 Max. :72.0000
assigned_room_type booking_changes deposit_type agent
Length:119390 Min. : 0.0000 Length:119390 Length:119390
Class :character 1st Qu.: 0.0000 Class :character Class :character
Mode :character Median : 0.0000 Mode :character Mode :character
Mean : 0.2211
3rd Qu.: 0.0000
Max. :21.0000
company days_in_waiting_list customer_type adr
Length:119390 Min. : 0.000 Length:119390 Min. : -6.38
Class :character 1st Qu.: 0.000 Class :character 1st Qu.: 69.29
Mode :character Median : 0.000 Mode :character Median : 94.58
Mean : 2.321 Mean : 101.83
3rd Qu.: 0.000 3rd Qu.: 126.00
Max. :391.000 Max. :5400.00
required_car_parking_spaces total_of_special_requests reservation_status
Min. :0.00000 Min. :0.0000 Length:119390
1st Qu.:0.00000 1st Qu.:0.0000 Class :character
Median :0.00000 Median :0.0000 Mode :character
Mean :0.06252 Mean :0.5714
3rd Qu.:0.00000 3rd Qu.:1.0000
Max. :8.00000 Max. :5.0000
reservation_status_date
Min. :2014-10-17
1st Qu.:2016-02-01
Median :2016-08-07
Mean :2016-07-30
3rd Qu.:2017-02-08
Max. :2017-09-14
The above data is calculating summary of the Hotel_bookings dataset.
hotel is_canceled
0 0
lead_time arrival_date_year
0 0
arrival_date_month arrival_date_week_number
0 0
arrival_date_day_of_month stays_in_weekend_nights
0 0
stays_in_week_nights adults
0 0
children babies
4 0
meal country
0 0
market_segment distribution_channel
0 0
is_repeated_guest previous_cancellations
0 0
previous_bookings_not_canceled reserved_room_type
0 0
assigned_room_type booking_changes
0 0
deposit_type agent
0 0
company days_in_waiting_list
0 0
customer_type adr
0 0
required_car_parking_spaces total_of_special_requests
0 0
reservation_status reservation_status_date
0 0
The above data is calculating null value count for all columns.
hotel | is_canceled | lead_time | arrival_date_year | arrival_date_month | arrival_date_week_number | arrival_date_day_of_month | stays_in_weekend_nights | stays_in_week_nights | adults | children | babies | meal | country | market_segment | distribution_channel | is_repeated_guest | previous_cancellations | previous_bookings_not_canceled | reserved_room_type | assigned_room_type | booking_changes | deposit_type | agent | company | days_in_waiting_list | customer_type | adr | required_car_parking_spaces | total_of_special_requests | reservation_status | reservation_status_date |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Resort Hotel | 0 | 342 | 2015 | July | 27 | 1 | 0 | 0 | 2 | 0 | 0 | BB | PRT | Direct | Direct | 0 | 0 | 0 | C | C | 3 | No Deposit | NULL | NULL | 0 | Transient | 0.00 | 0 | 0 | Check-Out | 2015-07-01 |
Resort Hotel | 0 | 737 | 2015 | July | 27 | 1 | 0 | 0 | 2 | 0 | 0 | BB | PRT | Direct | Direct | 0 | 0 | 0 | C | C | 4 | No Deposit | NULL | NULL | 0 | Transient | 0.00 | 0 | 0 | Check-Out | 2015-07-01 |
Resort Hotel | 0 | 7 | 2015 | July | 27 | 1 | 0 | 1 | 1 | 0 | 0 | BB | GBR | Direct | Direct | 0 | 0 | 0 | A | C | 0 | No Deposit | NULL | NULL | 0 | Transient | 75.00 | 0 | 0 | Check-Out | 2015-07-02 |
Resort Hotel | 0 | 13 | 2015 | July | 27 | 1 | 0 | 1 | 1 | 0 | 0 | BB | GBR | Corporate | Corporate | 0 | 0 | 0 | A | A | 0 | No Deposit | 304 | NULL | 0 | Transient | 75.00 | 0 | 0 | Check-Out | 2015-07-02 |
Resort Hotel | 0 | 14 | 2015 | July | 27 | 1 | 0 | 2 | 2 | 0 | 0 | BB | GBR | Online TA | TA/TO | 0 | 0 | 0 | A | A | 0 | No Deposit | 240 | NULL | 0 | Transient | 98.00 | 0 | 1 | Check-Out | 2015-07-03 |
Resort Hotel | 0 | 14 | 2015 | July | 27 | 1 | 0 | 2 | 2 | 0 | 0 | BB | GBR | Online TA | TA/TO | 0 | 0 | 0 | A | A | 0 | No Deposit | 240 | NULL | 0 | Transient | 98.00 | 0 | 1 | Check-Out | 2015-07-03 |
Resort Hotel | 0 | 0 | 2015 | July | 27 | 1 | 0 | 2 | 2 | 0 | 0 | BB | PRT | Direct | Direct | 0 | 0 | 0 | C | C | 0 | No Deposit | NULL | NULL | 0 | Transient | 107.00 | 0 | 0 | Check-Out | 2015-07-03 |
Resort Hotel | 0 | 9 | 2015 | July | 27 | 1 | 0 | 2 | 2 | 0 | 0 | FB | PRT | Direct | Direct | 0 | 0 | 0 | C | C | 0 | No Deposit | 303 | NULL | 0 | Transient | 103.00 | 0 | 1 | Check-Out | 2015-07-03 |
Resort Hotel | 1 | 85 | 2015 | July | 27 | 1 | 0 | 3 | 2 | 0 | 0 | BB | PRT | Online TA | TA/TO | 0 | 0 | 0 | A | A | 0 | No Deposit | 240 | NULL | 0 | Transient | 82.00 | 0 | 1 | Canceled | 2015-05-06 |
Resort Hotel | 1 | 75 | 2015 | July | 27 | 1 | 0 | 3 | 2 | 0 | 0 | HB | PRT | Offline TA/TO | TA/TO | 0 | 0 | 0 | D | D | 0 | No Deposit | 15 | NULL | 0 | Transient | 105.50 | 0 | 0 | Canceled | 2015-04-22 |
Resort Hotel | 1 | 23 | 2015 | July | 27 | 1 | 0 | 4 | 2 | 0 | 0 | BB | PRT | Online TA | TA/TO | 0 | 0 | 0 | E | E | 0 | No Deposit | 240 | NULL | 0 | Transient | 123.00 | 0 | 0 | Canceled | 2015-06-23 |
Resort Hotel | 0 | 35 | 2015 | July | 27 | 1 | 0 | 4 | 2 | 0 | 0 | HB | PRT | Online TA | TA/TO | 0 | 0 | 0 | D | D | 0 | No Deposit | 240 | NULL | 0 | Transient | 145.00 | 0 | 0 | Check-Out | 2015-07-05 |
Resort Hotel | 0 | 68 | 2015 | July | 27 | 1 | 0 | 4 | 2 | 0 | 0 | BB | USA | Online TA | TA/TO | 0 | 0 | 0 | D | E | 0 | No Deposit | 240 | NULL | 0 | Transient | 97.00 | 0 | 3 | Check-Out | 2015-07-05 |
Resort Hotel | 0 | 18 | 2015 | July | 27 | 1 | 0 | 4 | 2 | 1 | 0 | HB | ESP | Online TA | TA/TO | 0 | 0 | 0 | G | G | 1 | No Deposit | 241 | NULL | 0 | Transient | 154.77 | 0 | 1 | Check-Out | 2015-07-05 |
Resort Hotel | 0 | 37 | 2015 | July | 27 | 1 | 0 | 4 | 2 | 0 | 0 | BB | PRT | Online TA | TA/TO | 0 | 0 | 0 | E | E | 0 | No Deposit | 241 | NULL | 0 | Transient | 94.71 | 0 | 0 | Check-Out | 2015-07-05 |
Resort Hotel | 0 | 68 | 2015 | July | 27 | 1 | 0 | 4 | 2 | 0 | 0 | BB | IRL | Online TA | TA/TO | 0 | 0 | 0 | D | E | 0 | No Deposit | 240 | NULL | 0 | Transient | 97.00 | 0 | 3 | Check-Out | 2015-07-05 |
Resort Hotel | 0 | 37 | 2015 | July | 27 | 1 | 0 | 4 | 2 | 0 | 0 | BB | PRT | Offline TA/TO | TA/TO | 0 | 0 | 0 | E | E | 0 | No Deposit | 8 | NULL | 0 | Contract | 97.50 | 0 | 0 | Check-Out | 2015-07-05 |
Resort Hotel | 0 | 12 | 2015 | July | 27 | 1 | 0 | 1 | 2 | 0 | 0 | BB | IRL | Online TA | TA/TO | 0 | 0 | 0 | A | E | 0 | No Deposit | 240 | NULL | 0 | Transient | 88.20 | 0 | 0 | Check-Out | 2015-07-02 |
Resort Hotel | 0 | 0 | 2015 | July | 27 | 1 | 0 | 1 | 2 | 0 | 0 | BB | FRA | Corporate | Corporate | 0 | 0 | 0 | A | G | 0 | No Deposit | NULL | 110 | 0 | Transient | 107.42 | 0 | 0 | Check-Out | 2015-07-02 |
Resort Hotel | 0 | 7 | 2015 | July | 27 | 1 | 0 | 4 | 2 | 0 | 0 | BB | GBR | Direct | Direct | 0 | 0 | 0 | G | G | 0 | No Deposit | 250 | NULL | 0 | Transient | 153.00 | 0 | 1 | Check-Out | 2015-07-05 |
Resort Hotel | 0 | 37 | 2015 | July | 27 | 1 | 1 | 4 | 1 | 0 | 0 | BB | GBR | Online TA | TA/TO | 0 | 0 | 0 | F | F | 0 | No Deposit | 241 | NULL | 0 | Transient | 97.29 | 0 | 1 | Check-Out | 2015-07-06 |
Resort Hotel | 0 | 72 | 2015 | July | 27 | 1 | 2 | 4 | 2 | 0 | 0 | BB | PRT | Direct | Direct | 0 | 0 | 0 | A | A | 1 | No Deposit | 250 | NULL | 0 | Transient | 84.67 | 0 | 1 | Check-Out | 2015-07-07 |
Resort Hotel | 0 | 72 | 2015 | July | 27 | 1 | 2 | 4 | 2 | 0 | 0 | BB | PRT | Direct | Direct | 0 | 0 | 0 | A | A | 1 | No Deposit | 250 | NULL | 0 | Transient | 84.67 | 0 | 1 | Check-Out | 2015-07-07 |
Resort Hotel | 0 | 72 | 2015 | July | 27 | 1 | 2 | 4 | 2 | 0 | 0 | BB | PRT | Direct | Direct | 0 | 0 | 0 | D | D | 1 | No Deposit | 250 | NULL | 0 | Transient | 99.67 | 0 | 1 | Check-Out | 2015-07-07 |
Resort Hotel | 0 | 127 | 2015 | July | 27 | 1 | 2 | 5 | 2 | 0 | 0 | HB | GBR | Offline TA/TO | TA/TO | 0 | 0 | 0 | D | I | 0 | No Deposit | 115 | NULL | 0 | Contract | 94.95 | 0 | 1 | Check-Out | 2015-07-01 |
Resort Hotel | 0 | 78 | 2015 | July | 27 | 1 | 2 | 5 | 2 | 0 | 0 | BB | PRT | Offline TA/TO | TA/TO | 0 | 0 | 0 | D | D | 0 | No Deposit | 5 | NULL | 0 | Transient | 63.60 | 1 | 0 | Check-Out | 2015-07-08 |
Resort Hotel | 0 | 48 | 2015 | July | 27 | 1 | 2 | 5 | 2 | 0 | 0 | BB | IRL | Offline TA/TO | TA/TO | 0 | 0 | 0 | D | D | 0 | No Deposit | 8 | NULL | 0 | Contract | 79.50 | 0 | 0 | Check-Out | 2015-07-08 |
Resort Hotel | 1 | 60 | 2015 | July | 27 | 1 | 2 | 5 | 2 | 0 | 0 | BB | PRT | Online TA | TA/TO | 0 | 0 | 0 | E | E | 0 | No Deposit | 240 | NULL | 0 | Transient | 107.00 | 0 | 2 | Canceled | 2015-05-11 |
Resort Hotel | 0 | 77 | 2015 | July | 27 | 1 | 2 | 5 | 2 | 0 | 0 | BB | PRT | Online TA | TA/TO | 0 | 0 | 0 | A | A | 0 | No Deposit | 240 | NULL | 0 | Transient | 94.00 | 0 | 0 | Check-Out | 2015-07-08 |
Resort Hotel | 0 | 99 | 2015 | July | 27 | 1 | 2 | 5 | 2 | 0 | 0 | BB | PRT | Online TA | TA/TO | 0 | 0 | 0 | D | D | 0 | No Deposit | 240 | NULL | 0 | Transient | 87.30 | 1 | 1 | Check-Out | 2015-07-08 |
Resort Hotel | 0 | 118 | 2015 | July | 27 | 1 | 4 | 10 | 1 | 0 | 0 | BB | NULL | Direct | Direct | 0 | 0 | 0 | A | A | 2 | No Deposit | NULL | NULL | 0 | Transient | 62.00 | 0 | 2 | Check-Out | 2015-07-15 |
Resort Hotel | 0 | 95 | 2015 | July | 27 | 1 | 4 | 11 | 2 | 0 | 0 | BB | GBR | Offline TA/TO | TA/TO | 0 | 0 | 0 | D | D | 0 | No Deposit | 241 | NULL | 0 | Transient | 63.86 | 0 | 0 | Check-Out | 2015-07-16 |
Resort Hotel | 1 | 96 | 2015 | July | 27 | 1 | 2 | 8 | 2 | 0 | 0 | BB | PRT | Direct | Direct | 0 | 0 | 0 | E | E | 0 | No Deposit | NULL | NULL | 0 | Transient | 108.30 | 0 | 2 | Canceled | 2015-05-29 |
Resort Hotel | 0 | 69 | 2015 | July | 27 | 2 | 2 | 4 | 2 | 0 | 0 | BB | IRL | Offline TA/TO | TA/TO | 0 | 0 | 0 | A | C | 0 | No Deposit | 175 | NULL | 0 | Transient | 65.50 | 0 | 0 | Check-Out | 2015-07-08 |
Resort Hotel | 1 | 45 | 2015 | July | 27 | 2 | 1 | 3 | 3 | 0 | 0 | BB | PRT | Online TA | TA/TO | 0 | 0 | 0 | D | D | 0 | No Deposit | 241 | NULL | 0 | Transient | 108.80 | 0 | 1 | Canceled | 2015-05-19 |
Resort Hotel | 1 | 40 | 2015 | July | 27 | 2 | 1 | 3 | 3 | 0 | 0 | BB | PRT | Online TA | TA/TO | 0 | 0 | 0 | D | D | 0 | No Deposit | 241 | NULL | 0 | Transient | 108.80 | 0 | 1 | Canceled | 2015-06-19 |
Resort Hotel | 0 | 15 | 2015 | July | 27 | 2 | 1 | 3 | 2 | 0 | 0 | BB | ESP | Online TA | TA/TO | 0 | 0 | 0 | A | C | 0 | No Deposit | 240 | NULL | 0 | Transient | 98.00 | 0 | 0 | Check-Out | 2015-07-06 |
Resort Hotel | 0 | 36 | 2015 | July | 27 | 2 | 1 | 3 | 3 | 0 | 0 | BB | PRT | Online TA | TA/TO | 0 | 0 | 0 | D | D | 0 | No Deposit | 241 | NULL | 0 | Transient | 108.80 | 0 | 1 | Check-Out | 2015-07-06 |
Resort Hotel | 1 | 43 | 2015 | July | 27 | 2 | 1 | 3 | 3 | 0 | 0 | BB | PRT | Online TA | TA/TO | 0 | 0 | 0 | D | D | 0 | No Deposit | 241 | NULL | 0 | Transient | 108.80 | 0 | 0 | Canceled | 2015-05-23 |
Resort Hotel | 0 | 70 | 2015 | July | 27 | 2 | 2 | 3 | 2 | 0 | 0 | HB | ROU | Direct | Direct | 0 | 0 | 0 | E | E | 0 | No Deposit | 250 | NULL | 0 | Transient | 137.00 | 0 | 1 | Check-Out | 2015-07-07 |
Resort Hotel | 1 | 45 | 2015 | July | 27 | 2 | 2 | 3 | 2 | 0 | 0 | BB | PRT | Online TA | TA/TO | 0 | 0 | 0 | G | G | 0 | No Deposit | 241 | NULL | 0 | Transient | 117.81 | 0 | 0 | Canceled | 2015-05-18 |
Resort Hotel | 0 | 45 | 2015 | July | 27 | 2 | 2 | 3 | 2 | 0 | 0 | BB | IRL | Offline TA/TO | TA/TO | 0 | 0 | 0 | D | D | 0 | No Deposit | 8 | NULL | 0 | Contract | 79.50 | 0 | 0 | Check-Out | 2015-07-07 |
Resort Hotel | 0 | 16 | 2015 | July | 27 | 2 | 2 | 3 | 2 | 0 | 0 | BB | ESP | Direct | Direct | 0 | 0 | 0 | F | F | 0 | No Deposit | NULL | NULL | 0 | Transient | 123.00 | 0 | 0 | Check-Out | 2015-07-07 |
Resort Hotel | 0 | 70 | 2015 | July | 27 | 2 | 2 | 3 | 2 | 0 | 0 | HB | ROU | Direct | Direct | 0 | 0 | 0 | E | E | 0 | No Deposit | 250 | NULL | 0 | Transient | 137.00 | 0 | 1 | Check-Out | 2015-07-07 |
Resort Hotel | 0 | 107 | 2015 | July | 27 | 2 | 2 | 5 | 2 | 0 | 0 | BB | PRT | Online TA | TA/TO | 0 | 0 | 0 | A | A | 0 | No Deposit | 240 | NULL | 0 | Transient | 110.70 | 0 | 2 | Check-Out | 2015-07-09 |
Resort Hotel | 1 | 47 | 2015 | July | 27 | 2 | 2 | 5 | 2 | 2 | 0 | BB | PRT | Online TA | TA/TO | 0 | 0 | 0 | G | G | 0 | No Deposit | 240 | NULL | 0 | Transient | 153.00 | 0 | 0 | Canceled | 2015-06-02 |
Resort Hotel | 0 | 96 | 2015 | July | 27 | 2 | 2 | 5 | 2 | 0 | 0 | BB | ESP | Offline TA/TO | TA/TO | 0 | 0 | 0 | A | A | 0 | No Deposit | 134 | NULL | 0 | Transient | 58.95 | 0 | 1 | Check-Out | 2015-07-09 |
Resort Hotel | 0 | 113 | 2015 | July | 27 | 2 | 2 | 5 | 2 | 0 | 0 | BB | NOR | Offline TA/TO | TA/TO | 0 | 0 | 0 | E | E | 0 | No Deposit | 156 | NULL | 0 | Transient-Party | 82.88 | 0 | 2 | Check-Out | 2015-07-09 |
Resort Hotel | 0 | 90 | 2015 | July | 27 | 2 | 2 | 5 | 2 | 0 | 0 | HB | GBR | Offline TA/TO | TA/TO | 0 | 0 | 0 | A | B | 1 | No Deposit | 243 | NULL | 0 | Contract | 82.35 | 0 | 0 | Check-Out | 2015-07-09 |
Resort Hotel | 0 | 50 | 2015 | July | 27 | 2 | 2 | 5 | 2 | 0 | 0 | HB | IRL | Online TA | TA/TO | 0 | 0 | 0 | E | F | 1 | No Deposit | 241 | NULL | 0 | Transient | 119.35 | 0 | 1 | Check-Out | 2015-07-09 |
Resort Hotel | 0 | 113 | 2015 | July | 27 | 2 | 2 | 5 | 2 | 0 | 0 | BB | NOR | Offline TA/TO | TA/TO | 0 | 0 | 0 | D | D | 0 | No Deposit | 156 | NULL | 0 | Transient-Party | 67.58 | 0 | 2 | Check-Out | 2015-07-09 |
Resort Hotel | 0 | 93 | 2015 | July | 27 | 2 | 3 | 8 | 2 | 0 | 0 | BB | IRL | Offline TA/TO | TA/TO | 0 | 0 | 0 | A | A | 0 | No Deposit | 156 | NULL | 0 | Contract | 56.01 | 0 | 0 | Check-Out | 2015-07-13 |
Resort Hotel | 0 | 76 | 2015 | July | 27 | 2 | 4 | 10 | 2 | 0 | 0 | BB | OMN | Offline TA/TO | TA/TO | 0 | 0 | 0 | D | D | 0 | No Deposit | 243 | NULL | 0 | Contract | 110.70 | 0 | 0 | Check-Out | 2015-07-16 |
Resort Hotel | 0 | 3 | 2015 | July | 27 | 2 | 0 | 1 | 2 | 0 | 0 | BB | ESP | Online TA | TA/TO | 0 | 0 | 0 | A | C | 0 | No Deposit | 240 | NULL | 0 | Transient | 88.20 | 1 | 0 | Check-Out | 2015-07-03 |
Resort Hotel | 0 | 1 | 2015 | July | 27 | 2 | 0 | 1 | 2 | 0 | 0 | BB | ARG | Online TA | TA/TO | 0 | 0 | 0 | H | H | 0 | No Deposit | 240 | NULL | 0 | Transient | 147.00 | 1 | 0 | Check-Out | 2015-07-03 |
Resort Hotel | 0 | 1 | 2015 | July | 27 | 2 | 0 | 1 | 2 | 2 | 0 | BB | ESP | Direct | Direct | 0 | 0 | 0 | C | C | 0 | No Deposit | NULL | NULL | 0 | Transient | 107.00 | 1 | 2 | Check-Out | 2015-07-03 |
Resort Hotel | 0 | 0 | 2015 | July | 27 | 2 | 0 | 1 | 2 | 0 | 0 | BB | PRT | Direct | Direct | 0 | 0 | 0 | H | H | 0 | No Deposit | NULL | NULL | 0 | Transient | 147.00 | 0 | 0 | Check-Out | 2015-07-03 |
Resort Hotel | 0 | 0 | 2015 | July | 27 | 2 | 0 | 1 | 2 | 0 | 0 | BB | PRT | Online TA | TA/TO | 0 | 0 | 0 | A | D | 0 | No Deposit | 240 | NULL | 0 | Transient | 117.90 | 0 | 2 | Check-Out | 2015-07-03 |
Resort Hotel | 0 | 0 | 2015 | July | 27 | 2 | 0 | 1 | 2 | 0 | 0 | BB | PRT | Direct | Direct | 0 | 0 | 0 | G | G | 0 | No Deposit | NULL | NULL | 0 | Transient | 123.00 | 0 | 0 | Check-Out | 2015-07-03 |
Resort Hotel | 0 | 14 | 2015 | July | 27 | 2 | 0 | 2 | 2 | 0 | 0 | BB | USA | Online TA | TA/TO | 0 | 0 | 0 | A | C | 0 | No Deposit | 242 | NULL | 0 | Transient | 98.00 | 0 | 1 | Check-Out | 2015-07-04 |
Resort Hotel | 0 | 10 | 2015 | July | 27 | 2 | 0 | 2 | 2 | 0 | 0 | BB | PRT | Online TA | TA/TO | 0 | 0 | 0 | G | G | 0 | No Deposit | 241 | NULL | 0 | Transient | 117.81 | 0 | 0 | Check-Out | 2015-07-04 |
Resort Hotel | 0 | 5 | 2015 | July | 27 | 2 | 0 | 2 | 2 | 0 | 0 | BB | IRL | Online TA | TA/TO | 0 | 0 | 0 | E | E | 0 | No Deposit | 240 | NULL | 0 | Transient | 135.00 | 1 | 2 | Check-Out | 2015-07-04 |
Resort Hotel | 0 | 17 | 2015 | July | 27 | 2 | 0 | 3 | 2 | 0 | 0 | BB | ESP | Direct | Direct | 0 | 0 | 0 | F | F | 0 | No Deposit | 250 | NULL | 0 | Transient | 133.00 | 0 | 1 | Check-Out | 2015-07-05 |
Resort Hotel | 0 | 93 | 2015 | July | 27 | 2 | 0 | 3 | 2 | 0 | 0 | BB | IRL | Offline TA/TO | TA/TO | 0 | 0 | 0 | A | C | 0 | No Deposit | 115 | NULL | 0 | Contract | 58.95 | 0 | 0 | Check-Out | 2015-07-05 |
Resort Hotel | 1 | 3 | 2015 | July | 27 | 2 | 0 | 3 | 2 | 0 | 0 | HB | PRT | Online TA | TA/TO | 0 | 0 | 0 | A | A | 0 | No Deposit | 240 | NULL | 0 | Transient | 136.33 | 0 | 2 | Canceled | 2015-06-29 |
Resort Hotel | 0 | 10 | 2015 | July | 27 | 3 | 0 | 2 | 2 | 2 | 0 | BB | USA | Online TA | TA/TO | 0 | 0 | 0 | G | H | 0 | No Deposit | 240 | NULL | 0 | Transient | 153.00 | 1 | 0 | Check-Out | 2015-07-05 |
Resort Hotel | 0 | 3 | 2015 | July | 27 | 3 | 0 | 2 | 2 | 0 | 0 | BB | ESP | Online TA | TA/TO | 0 | 0 | 0 | A | C | 0 | No Deposit | 240 | NULL | 0 | Transient | 110.50 | 0 | 0 | Check-Out | 2015-07-05 |
Resort Hotel | 0 | 51 | 2015 | July | 27 | 3 | 0 | 2 | 2 | 0 | 0 | BB | POL | Online TA | TA/TO | 0 | 0 | 0 | D | D | 0 | No Deposit | 242 | NULL | 0 | Transient | 97.00 | 0 | 0 | Check-Out | 2015-07-05 |
Resort Hotel | 1 | 71 | 2015 | July | 27 | 3 | 0 | 2 | 3 | 0 | 0 | BB | PRT | Offline TA/TO | TA/TO | 0 | 0 | 0 | A | A | 0 | No Deposit | 242 | NULL | 0 | Transient | 110.30 | 0 | 2 | Canceled | 2015-06-16 |
Resort Hotel | 1 | 63 | 2015 | July | 27 | 3 | 0 | 2 | 2 | 0 | 0 | BB | PRT | Online TA | TA/TO | 0 | 0 | 0 | A | A | 0 | No Deposit | 240 | NULL | 0 | Transient | 82.00 | 0 | 2 | Canceled | 2015-06-18 |
Resort Hotel | 1 | 62 | 2015 | July | 27 | 3 | 0 | 2 | 2 | 0 | 0 | BB | PRT | Online TA | TA/TO | 0 | 0 | 0 | D | D | 0 | No Deposit | 240 | NULL | 0 | Transient | 97.00 | 0 | 1 | Canceled | 2015-07-03 |
Resort Hotel | 1 | 101 | 2015 | July | 27 | 3 | 0 | 2 | 2 | 0 | 0 | BB | PRT | Online TA | TA/TO | 0 | 0 | 0 | A | A | 0 | No Deposit | 240 | NULL | 0 | Transient | 73.80 | 0 | 1 | Canceled | 2015-06-12 |
Resort Hotel | 0 | 2 | 2015 | July | 27 | 3 | 0 | 2 | 2 | 0 | 0 | HB | PRT | Offline TA/TO | TA/TO | 0 | 0 | 0 | A | A | 0 | No Deposit | 3 | NULL | 0 | Transient | 91.50 | 0 | 0 | Check-Out | 2015-07-05 |
Resort Hotel | 0 | 15 | 2015 | July | 27 | 3 | 0 | 2 | 2 | 0 | 0 | BB | ESP | Online TA | TA/TO | 0 | 0 | 0 | A | A | 0 | No Deposit | 240 | NULL | 0 | Transient | 114.50 | 0 | 0 | Check-Out | 2015-07-05 |
Resort Hotel | 1 | 51 | 2015 | July | 27 | 3 | 0 | 2 | 3 | 0 | 0 | BB | PRT | Online TA | TA/TO | 0 | 0 | 0 | A | A | 0 | No Deposit | 242 | NULL | 0 | Transient | 110.30 | 0 | 0 | Canceled | 2015-06-09 |
Resort Hotel | 0 | 3 | 2015 | July | 27 | 3 | 1 | 2 | 2 | 0 | 0 | BB | ESP | Online TA | TA/TO | 0 | 0 | 0 | A | A | 0 | No Deposit | 240 | NULL | 0 | Transient | 90.90 | 1 | 0 | Check-Out | 2015-07-06 |
Resort Hotel | 1 | 48 | 2015 | July | 27 | 3 | 1 | 2 | 2 | 0 | 0 | BB | PRT | Online TA | TA/TO | 0 | 0 | 0 | E | E | 0 | No Deposit | 240 | NULL | 0 | Transient | 123.00 | 0 | 0 | Canceled | 2015-05-26 |
Resort Hotel | 0 | 2 | 2015 | July | 27 | 3 | 2 | 2 | 1 | 0 | 0 | BB | PRT | Online TA | TA/TO | 0 | 0 | 0 | A | A | 0 | No Deposit | 240 | NULL | 0 | Transient | 122.00 | 0 | 0 | Check-Out | 2015-07-07 |
Resort Hotel | 0 | 72 | 2015 | July | 27 | 3 | 2 | 2 | 2 | 0 | 0 | BB | DEU | Offline TA/TO | TA/TO | 0 | 0 | 0 | A | A | 0 | No Deposit | 105 | NULL | 0 | Transient | 110.70 | 1 | 0 | Check-Out | 2015-07-07 |
Resort Hotel | 0 | 81 | 2015 | July | 27 | 3 | 2 | 6 | 3 | 0 | 0 | BB | PRT | Offline TA/TO | TA/TO | 0 | 0 | 0 | D | D | 0 | No Deposit | 5 | NULL | 0 | Transient | 85.86 | 0 | 0 | Check-Out | 2015-07-11 |
Resort Hotel | 0 | 99 | 2015 | July | 27 | 3 | 2 | 7 | 2 | 0 | 0 | BB | FRA | Offline TA/TO | TA/TO | 0 | 0 | 0 | A | A | 0 | No Deposit | 40 | NULL | 0 | Contract | 58.95 | 0 | 0 | Check-Out | 2015-07-12 |
Resort Hotel | 1 | 368 | 2015 | July | 27 | 3 | 3 | 7 | 2 | 0 | 0 | BB | PRT | Offline TA/TO | TA/TO | 0 | 0 | 0 | A | A | 0 | No Deposit | 40 | NULL | 0 | Contract | 55.68 | 0 | 0 | Canceled | 2015-05-19 |
Resort Hotel | 0 | 364 | 2015 | July | 27 | 3 | 3 | 7 | 2 | 0 | 0 | BB | GBR | Offline TA/TO | TA/TO | 0 | 0 | 0 | A | A | 0 | No Deposit | 40 | NULL | 0 | Contract | 55.68 | 0 | 0 | Check-Out | 2015-07-13 |
Resort Hotel | 1 | 81 | 2015 | July | 27 | 3 | 3 | 7 | 2 | 0 | 0 | HB | PRT | Direct | Direct | 0 | 0 | 0 | A | A | 2 | No Deposit | 250 | NULL | 0 | Transient | 124.00 | 0 | 1 | Canceled | 2015-06-09 |
Resort Hotel | 0 | 99 | 2015 | July | 27 | 3 | 3 | 7 | 2 | 0 | 0 | HB | GBR | Offline TA/TO | TA/TO | 0 | 0 | 0 | E | E | 0 | No Deposit | 115 | NULL | 0 | Contract | 111.15 | 0 | 0 | Check-Out | 2015-07-13 |
Resort Hotel | 0 | 324 | 2015 | July | 27 | 3 | 4 | 10 | 2 | 0 | 0 | HB | GBR | Offline TA/TO | TA/TO | 0 | 0 | 0 | E | E | 0 | No Deposit | 40 | NULL | 0 | Contract | 134.73 | 0 | 0 | Check-Out | 2015-07-17 |
Resort Hotel | 0 | 69 | 2015 | July | 27 | 3 | 4 | 10 | 2 | 0 | 0 | BB | GBR | Online TA | TA/TO | 0 | 0 | 0 | F | F | 1 | No Deposit | 241 | NULL | 0 | Transient | 92.45 | 0 | 1 | Check-Out | 2015-07-17 |
Resort Hotel | 1 | 79 | 2015 | July | 27 | 3 | 6 | 15 | 2 | 1 | 0 | BB | PRT | Offline TA/TO | TA/TO | 0 | 0 | 0 | A | A | 0 | No Deposit | 242 | NULL | 0 | Transient | 108.73 | 0 | 2 | Canceled | 2015-04-15 |
Resort Hotel | 0 | 12 | 2015 | July | 27 | 3 | 0 | 1 | 2 | 0 | 0 | BB | GBR | Online TA | TA/TO | 0 | 0 | 0 | A | C | 0 | No Deposit | 240 | NULL | 0 | Transient | 73.80 | 0 | 0 | Check-Out | 2015-07-04 |
Resort Hotel | 0 | 9 | 2015 | July | 27 | 3 | 0 | 1 | 2 | 0 | 0 | BB | PRT | Online TA | TA/TO | 0 | 0 | 0 | A | C | 0 | No Deposit | 240 | NULL | 0 | Transient | 98.00 | 1 | 2 | Check-Out | 2015-07-04 |
Resort Hotel | 0 | 1 | 2015 | July | 27 | 3 | 0 | 1 | 2 | 0 | 0 | BB | ESP | Online TA | TA/TO | 0 | 0 | 0 | A | C | 0 | No Deposit | 240 | NULL | 0 | Transient | 131.00 | 0 | 1 | Check-Out | 2015-07-04 |
Resort Hotel | 0 | 21 | 2015 | July | 27 | 3 | 0 | 1 | 2 | 0 | 0 | BB | PRT | Online TA | TA/TO | 0 | 0 | 0 | E | E | 0 | No Deposit | 240 | NULL | 0 | Transient | 123.00 | 0 | 0 | Check-Out | 2015-07-04 |
Resort Hotel | 0 | 9 | 2015 | July | 27 | 3 | 0 | 1 | 2 | 0 | 0 | BB | USA | Online TA | TA/TO | 0 | 0 | 0 | C | C | 0 | No Deposit | 241 | NULL | 0 | Transient | 94.71 | 0 | 0 | Check-Out | 2015-07-04 |
Resort Hotel | 0 | 109 | 2015 | July | 27 | 3 | 0 | 1 | 2 | 0 | 0 | BB | BEL | Online TA | TA/TO | 0 | 0 | 0 | A | A | 0 | No Deposit | 240 | NULL | 0 | Transient | 123.00 | 0 | 2 | Check-Out | 2015-07-04 |
Resort Hotel | 1 | 109 | 2015 | July | 27 | 3 | 0 | 2 | 2 | 0 | 0 | BB | PRT | Online TA | TA/TO | 0 | 0 | 0 | A | A | 0 | No Deposit | 240 | NULL | 0 | Transient | 123.00 | 0 | 1 | Canceled | 2015-05-26 |
Resort Hotel | 1 | 72 | 2015 | July | 27 | 3 | 0 | 2 | 2 | 0 | 0 | BB | PRT | Online TA | TA/TO | 0 | 0 | 0 | A | A | 0 | No Deposit | 240 | NULL | 0 | Transient | 73.80 | 0 | 1 | Canceled | 2015-06-29 |
Resort Hotel | 1 | 63 | 2015 | July | 27 | 3 | 2 | 5 | 2 | 0 | 0 | BB | PRT | Online TA | TA/TO | 0 | 0 | 0 | F | F | 0 | No Deposit | 242 | NULL | 0 | Transient | 117.00 | 0 | 1 | Canceled | 2015-05-13 |
Resort Hotel | 0 | 63 | 2015 | July | 27 | 3 | 2 | 5 | 3 | 0 | 0 | HB | ESP | Offline TA/TO | TA/TO | 0 | 0 | 0 | E | E | 0 | No Deposit | 105 | NULL | 0 | Transient | 196.54 | 0 | 1 | Check-Out | 2015-07-10 |
Resort Hotel | 0 | 101 | 2015 | July | 27 | 3 | 2 | 5 | 2 | 1 | 0 | BB | PRT | Online TA | TA/TO | 0 | 0 | 0 | D | D | 0 | No Deposit | 240 | NULL | 0 | Transient | 99.30 | 1 | 2 | Check-Out | 2015-07-10 |
Resort Hotel | 0 | 102 | 2015 | July | 27 | 3 | 2 | 5 | 2 | 0 | 0 | BB | DEU | Direct | Direct | 0 | 0 | 0 | E | E | 0 | No Deposit | 250 | NULL | 0 | Transient | 90.95 | 0 | 0 | Check-Out | 2015-07-10 |
The above table shows the first 100 rows in the dataset.
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
0.0000 0.0000 0.0000 0.1039 0.0000 10.0000 4
The above shows the summary statistics of children column.
Conduct some exploratory data analysis, using dplyr commands such as group_by()
, select()
, filter()
, and summarise()
. Find the central tendency (mean, median, mode) and dispersion (standard deviation, mix/max/quantile) for different subgroups within the data set.
From the above histograms, August is the busiest month, with the most bookings in 2016 and the second half of the year.
reserved_room_type | room_count |
---|---|
A | 52364 |
D | 13099 |
E | 4621 |
F | 2017 |
G | 1331 |
B | 750 |
C | 624 |
H | 356 |
L | 4 |
A is the most popular type of room, so the corporation should increase its number of type A rooms.
*As the City Hotel generates the majority of bookings (66% of all reservations each year), which is far more than the resort hotel, the corporation may design strategies accordingly.
library(readr)
dataset<- read_csv("~/Desktop/Dacss601_spring2023/posts/_data/hotel_bookings.csv")
# country with the most Guests
data_country <- dataset %>% group_by(country) %>% summarise(booking_count = n()) %>% arrange(desc(booking_count))
top_n(data_country,10,booking_count) %>%
ggplot(.,aes(country, booking_count)) +
geom_bar(stat = "identity", width = 0.25, fill ="blue")
Summary of country with the most guest, we can see PRT has the highest rate of guests.
Be sure to explain why you choose a specific group. Comment on the interpretation of any interesting differences between groups that you uncover. This section can be integrated with the exploratory data analysis, just be sure it is included. The hotels’ ultimate goal is to boost their earnings, therefore they want to comprehend and concentrate on everything that can do so.The most important details are that the City Hotel receives the majority of reservations and generates the majority of money, and that PRT.A is the most popular type of room. This helps the customer plan for more guests, make the necessary preparations, and conduct effective marketing..
---
title: "Challenge 2"
author: "Linda Humphrey"
description: "Reading in data and creating a post"
date: "03/01/2023"
format:
html:
toc: true
code-fold: true
code-copy: true
code-tools: true
categories:
- challenge_1: hotel_bookings.csv
- my name: Linda Humphrey
- dataset: hotel_bookings.csv
---
```{r}
#| label: setup
#| warning: false
#| message: false
library(tidyverse)
library(readxl)
library(lubridate)
library(psych)
library(DT)
knitr::opts_chunk$set(echo = TRUE, warning=FALSE, message=FALSE)
```
## Challenge Overview
Today's challenge is to
1) read in a data set, and describe the data using both words and any supporting information (e.g., tables, etc)
2) provide summary statistics for different interesting groups within the data, and interpret those statistics
## Read in the Data
Read in one (or more) of the following data sets, available in the `posts/_data` folder, using the correct R package and command.
- railroad\*.csv or StateCounty2012.xls ⭐
- FAOstat\*.csv or birds.csv ⭐⭐⭐
- hotel_bookings.csv ⭐⭐⭐⭐
```{r}
# Exploring hotel_bookings data
library(readr)
dataset<- read_csv("~/Desktop/Dacss601_spring2023/posts/_data/hotel_bookings.csv")
#View data structure
str(dataset)
```
Add any comments or documentation as needed. More challenging data may require additional code chunks and documentation.
## Describe the data
Using a combination of words and results of R commands, can you provide a high level description of the data? Describe as efficiently as possible where/how the data was (likely) gathered, indicate the cases and variables (both the interpretation and any details you deem useful to the reader to fully understand your chosen data).
* Data gathered was an analysis of hotel bookings from 2015 to 2017
```{r}
library(readr)
dataset<- read_csv("~/Desktop/Dacss601_spring2023/posts/_data/hotel_bookings.csv")
# Finding summary statistics for 'adults'
summary(dataset$adults)
```
*This data describes demand data for two different types of hotels, with 31 variables describing 40,060 observations and 79,330 observations.*
```{r}
library(readr)
dataset<- read_csv("~/Desktop/Dacss601_spring2023/posts/_data/hotel_bookings.csv")
# Calculating the summary of the dataset
summary(dataset)
```
*The above data is calculating summary of the Hotel_bookings dataset.*
```{r}
library(readr)
dataset<- read_csv("~/Desktop/Dacss601_spring2023/posts/_data/hotel_bookings.csv")
# Calculating null value count for all columns
colSums(is.na(dataset))
```
*The above data is calculating null value count for all columns.*
```{r}
library(readr)
dataset<- read_csv("~/Desktop/Dacss601_spring2023/posts/_data/hotel_bookings.csv")
# Generating a table for the first 100 rows in the dataset.
knitr::kable(head(dataset,n = 100), "pandoc")
```
*The above table shows the first 100 rows in the dataset.*
```{r}
library(readr)
dataset<- read_csv("~/Desktop/Dacss601_spring2023/posts/_data/hotel_bookings.csv")
# Finding summary statistics for 'children'
summary(dataset$children)
```
*The above shows the summary statistics of children column.*
## Provide Grouped Summary Statistics
Conduct some exploratory data analysis, using dplyr commands such as `group_by()`, `select()`, `filter()`, and `summarise()`. Find the central tendency (mean, median, mode) and dispersion (standard deviation, mix/max/quantile) for different subgroups within the data set.
```{r}
library(readr)
dataset<- read_csv("~/Desktop/Dacss601_spring2023/posts/_data/hotel_bookings.csv")
# To show the distribution of the data
multi.hist(dataset[,sapply(dataset, is.numeric)])
```
*From the above histograms, August is the busiest month, with the most bookings in 2016 and the second half of the year.*
```{r}
library(readr)
dataset<- read_csv("~/Desktop/Dacss601_spring2023/posts/_data/hotel_bookings.csv")
# Room Summary
room_summary <- dataset %>%
filter(is_canceled == 0) %>%
group_by(reserved_room_type) %>%
summarize(room_count = n()) %>%
arrange(-room_count)
knitr::kable(room_summary)
```
*A is the most popular type of room, so the corporation should increase its number of type A rooms.*
```{r}
library(readr)
dataset<- read_csv("~/Desktop/Dacss601_spring2023/posts/_data/hotel_bookings.csv")
ggplot(dataset,aes(reserved_room_type,fill = (hotel))) +
geom_bar(position = 'dodge') +
ylab("Number Of Bookings") +
xlab("Room Type") +
ggtitle("Room Type Preferred") +
labs(fill = 'Hotel Type')
```
*As the City Hotel generates the majority of bookings (66% of all reservations each year), which is far more than the resort hotel, the corporation may design strategies accordingly.
```{r}
library(readr)
dataset<- read_csv("~/Desktop/Dacss601_spring2023/posts/_data/hotel_bookings.csv")
# country with the most Guests
data_country <- dataset %>% group_by(country) %>% summarise(booking_count = n()) %>% arrange(desc(booking_count))
top_n(data_country,10,booking_count) %>%
ggplot(.,aes(country, booking_count)) +
geom_bar(stat = "identity", width = 0.25, fill ="blue")
```
*Summary of country with the most guest, we can see PRT has the highest rate of guests.*
### Explain and Interpret
Be sure to explain why you choose a specific group. Comment on the interpretation of any interesting differences between groups that you uncover. This section can be integrated with the exploratory data analysis, just be sure it is included.
*The hotels' ultimate goal is to boost their earnings, therefore they want to comprehend and concentrate on everything that can do so.The most important details are that the City Hotel receives the majority of reservations and generates the majority of money, and that PRT.A is the most popular type of room. This helps the customer plan for more guests, make the necessary preparations, and conduct effective marketing..*