Code
library(tidyverse)
::opts_chunk$set(echo = TRUE) knitr
Neha Jhurani
April 12, 2023
Rows: 30977 Columns: 14
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (8): Domain Code, Domain, Area, Element, Item, Unit, Flag, Flag Description
dbl (6): Area Code, Element Code, Item Code, Year Code, Year, Value
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
[1] "Domain Code" "Domain" "Area Code" "Area"
[5] "Element Code" "Element" "Item Code" "Item"
[9] "Year Code" "Year" "Unit" "Value"
[13] "Flag" "Flag Description"
# A tibble: 30,977 × 4
Area Item Year Value
<chr> <chr> <dbl> <dbl>
1 Afghanistan Chickens 1961 4700
2 Afghanistan Chickens 1962 4900
3 Afghanistan Chickens 1963 5000
4 Afghanistan Chickens 1964 5300
5 Afghanistan Chickens 1965 5500
6 Afghanistan Chickens 1966 5800
7 Afghanistan Chickens 1967 6600
8 Afghanistan Chickens 1968 6290
9 Afghanistan Chickens 1969 6300
10 Afghanistan Chickens 1970 6000
# … with 30,967 more rows
#filtering all the extracted birds data for the year 2003
filtered_data <- filter(extracted_birds_data, Year == "2003")
#Comprehending the size of stock for each poultry type and the amt of poultry present in each area. On average, we see that countries have more chickens (=58.4million head) than other livestock birds.
birds_data %>% group_by(Area) %>% summarize(avg_stocks = mean(Value, na.rm = TRUE))
# A tibble: 248 × 2
Area avg_stocks
<chr> <dbl>
1 Afghanistan 8099.
2 Africa 196561.
3 Albania 2278.
4 Algeria 17621.
5 American Samoa 41.4
6 Americas 856356.
7 Angola 9453.
8 Antigua and Barbuda 93.6
9 Argentina 18844.
10 Armenia 2062.
# … with 238 more rows
#Analyzing the median and average values of the poultry type exported. You will notice that the average values are exponentially larger than the median values. This indicates that there is an extremely large value difference in the data.
extracted_birds_data%>%
group_by(Year)%>%
select(Value)%>%
summarise (
avg_year = mean (Value, na.rm = TRUE),
med_year = median(Value, na.rm = TRUE)
)
Adding missing grouping variables: `Year`
# A tibble: 58 × 3
Year avg_year med_year
<dbl> <dbl> <dbl>
1 1961 36752. 1033
2 1962 37787. 1014
3 1963 38736. 1106
4 1964 39325. 1103
5 1965 40334. 1104
6 1966 41229. 1088.
7 1967 43240. 1193
8 1968 44420. 1252.
9 1969 45607. 1267
10 1970 47706. 1259
# … with 48 more rows
---
title: "Descriptive and Summary Statistics of a dataset"
author: "Neha Jhurani"
desription: "Using data wrangling commands to describe: birds.csv"
date: "04/12/2023"
format:
html:
toc: true
code-fold: true
code-copy: true
code-tools: true
categories:
- challenge2
- Neha Jhurani
- birds.csv
---
```{r}
#| label: setup
#| warning: false
library(tidyverse)
knitr::opts_chunk$set(echo = TRUE)
```
## Analysing birds data
```{r}
library(readr)
#reading birds csv data
birds_data <- read_csv("_data/birds.csv")
#extracting all the column names
colnames(birds_data)
#Extracting and formatting the important attributes of birds data which tells us the kind of poultry, the area, the year and the value for each.
extracted_birds_data <- select(birds_data, "Area", "Item", "Year", "Value")
extracted_birds_data %>% arrange(desc('value'))
#filtering all the extracted birds data for the year 2003
filtered_data <- filter(extracted_birds_data, Year == "2003")
#Comprehending the size of stock for each poultry type and the amt of poultry present in each area. On average, we see that countries have more chickens (=58.4million head) than other livestock birds.
birds_data %>% group_by(Area) %>% summarize(avg_stocks = mean(Value, na.rm = TRUE))
#Analyzing the median and average values of the poultry type exported. You will notice that the average values are exponentially larger than the median values. This indicates that there is an extremely large value difference in the data.
extracted_birds_data%>%
group_by(Year)%>%
select(Value)%>%
summarise (
avg_year = mean (Value, na.rm = TRUE),
med_year = median(Value, na.rm = TRUE)
)
```