Challenge 7 : Visualizing multiple dimensions in Hotel Bookings

challenge_7
hotel_bookings
Saksham Kumar
Visualizing Multiple Dimensions
Author

Saksham Kumar

Published

May 15, 2023

library(tidyverse)
library(ggplot2)
library(ggrepel)


knitr::opts_chunk$set(echo = TRUE, warning=FALSE, message=FALSE)

Challenge Overview

Today’s challenge is to:

  1. read in a data set, and describe the data set using both words and any supporting information (e.g., tables, etc)
  2. tidy data (as needed, including sanity checks)
  3. mutate variables as needed (including sanity checks)
  4. Recreate at least two graphs from previous exercises, but introduce at least one additional dimension that you omitted before using ggplot functionality (color, shape, line, facet, etc) The goal is not to create unneeded chart ink (Tufte), but to concisely capture variation in additional dimensions that were collapsed in your earlier 2 or 3 dimensional graphs.
  • Explain why you choose the specific graph type
  1. If you haven’t tried in previous weeks, work this week to make your graphs “publication” ready with titles, captions, and pretty axis labels and other viewer-friendly features

R Graph Gallery is a good starting point for thinking about what information is conveyed in standard graph types, and includes example R code. And anyone not familiar with Edward Tufte should check out his fantastic books and courses on data visualizaton.

(be sure to only include the category tags for the data you use!)

Read in data

Read in one (or more) of the following datasets, using the correct R package and command.

  • hotel_bookings ⭐⭐⭐
hotel_data <- read.csv("_data/hotel_bookings.csv")
hotel_data

Briefly describe the data

As seen in challenge 6. (Code directly used from Challenge 6)

hotel_data %>% colnames()
 [1] "hotel"                          "is_canceled"                   
 [3] "lead_time"                      "arrival_date_year"             
 [5] "arrival_date_month"             "arrival_date_week_number"      
 [7] "arrival_date_day_of_month"      "stays_in_weekend_nights"       
 [9] "stays_in_week_nights"           "adults"                        
[11] "children"                       "babies"                        
[13] "meal"                           "country"                       
[15] "market_segment"                 "distribution_channel"          
[17] "is_repeated_guest"              "previous_cancellations"        
[19] "previous_bookings_not_canceled" "reserved_room_type"            
[21] "assigned_room_type"             "booking_changes"               
[23] "deposit_type"                   "agent"                         
[25] "company"                        "days_in_waiting_list"          
[27] "customer_type"                  "adr"                           
[29] "required_car_parking_spaces"    "total_of_special_requests"     
[31] "reservation_status"             "reservation_status_date"       

We see that there are 32 variables in the dataset. Lets have a look at the summary for each variable of the dataset below.

hotel_data %>% summary()
    hotel            is_canceled       lead_time   arrival_date_year
 Length:119390      Min.   :0.0000   Min.   :  0   Min.   :2015     
 Class :character   1st Qu.:0.0000   1st Qu.: 18   1st Qu.:2016     
 Mode  :character   Median :0.0000   Median : 69   Median :2016     
                    Mean   :0.3704   Mean   :104   Mean   :2016     
                    3rd Qu.:1.0000   3rd Qu.:160   3rd Qu.:2017     
                    Max.   :1.0000   Max.   :737   Max.   :2017     
                                                                    
 arrival_date_month arrival_date_week_number arrival_date_day_of_month
 Length:119390      Min.   : 1.00            Min.   : 1.0             
 Class :character   1st Qu.:16.00            1st Qu.: 8.0             
 Mode  :character   Median :28.00            Median :16.0             
                    Mean   :27.17            Mean   :15.8             
                    3rd Qu.:38.00            3rd Qu.:23.0             
                    Max.   :53.00            Max.   :31.0             
                                                                      
 stays_in_weekend_nights stays_in_week_nights     adults      
 Min.   : 0.0000         Min.   : 0.0         Min.   : 0.000  
 1st Qu.: 0.0000         1st Qu.: 1.0         1st Qu.: 2.000  
 Median : 1.0000         Median : 2.0         Median : 2.000  
 Mean   : 0.9276         Mean   : 2.5         Mean   : 1.856  
 3rd Qu.: 2.0000         3rd Qu.: 3.0         3rd Qu.: 2.000  
 Max.   :19.0000         Max.   :50.0         Max.   :55.000  
                                                              
    children           babies              meal             country         
 Min.   : 0.0000   Min.   : 0.000000   Length:119390      Length:119390     
 1st Qu.: 0.0000   1st Qu.: 0.000000   Class :character   Class :character  
 Median : 0.0000   Median : 0.000000   Mode  :character   Mode  :character  
 Mean   : 0.1039   Mean   : 0.007949                                        
 3rd Qu.: 0.0000   3rd Qu.: 0.000000                                        
 Max.   :10.0000   Max.   :10.000000                                        
 NA's   :4                                                                  
 market_segment     distribution_channel is_repeated_guest
 Length:119390      Length:119390        Min.   :0.00000  
 Class :character   Class :character     1st Qu.:0.00000  
 Mode  :character   Mode  :character     Median :0.00000  
                                         Mean   :0.03191  
                                         3rd Qu.:0.00000  
                                         Max.   :1.00000  
                                                          
 previous_cancellations previous_bookings_not_canceled reserved_room_type
 Min.   : 0.00000       Min.   : 0.0000                Length:119390     
 1st Qu.: 0.00000       1st Qu.: 0.0000                Class :character  
 Median : 0.00000       Median : 0.0000                Mode  :character  
 Mean   : 0.08712       Mean   : 0.1371                                  
 3rd Qu.: 0.00000       3rd Qu.: 0.0000                                  
 Max.   :26.00000       Max.   :72.0000                                  
                                                                         
 assigned_room_type booking_changes   deposit_type          agent          
 Length:119390      Min.   : 0.0000   Length:119390      Length:119390     
 Class :character   1st Qu.: 0.0000   Class :character   Class :character  
 Mode  :character   Median : 0.0000   Mode  :character   Mode  :character  
                    Mean   : 0.2211                                        
                    3rd Qu.: 0.0000                                        
                    Max.   :21.0000                                        
                                                                           
   company          days_in_waiting_list customer_type           adr         
 Length:119390      Min.   :  0.000      Length:119390      Min.   :  -6.38  
 Class :character   1st Qu.:  0.000      Class :character   1st Qu.:  69.29  
 Mode  :character   Median :  0.000      Mode  :character   Median :  94.58  
                    Mean   :  2.321                         Mean   : 101.83  
                    3rd Qu.:  0.000                         3rd Qu.: 126.00  
                    Max.   :391.000                         Max.   :5400.00  
                                                                             
 required_car_parking_spaces total_of_special_requests reservation_status
 Min.   :0.00000             Min.   :0.0000            Length:119390     
 1st Qu.:0.00000             1st Qu.:0.0000            Class :character  
 Median :0.00000             Median :0.0000            Mode  :character  
 Mean   :0.06252             Mean   :0.5714                              
 3rd Qu.:0.00000             3rd Qu.:1.0000                              
 Max.   :8.00000             Max.   :5.0000                              
                                                                         
 reservation_status_date
 Length:119390          
 Class :character       
 Mode  :character       
                        
                        
                        
                        

Lets see the number of unique hotels and countries

hotel_data$hotel %>% unique()
[1] "Resort Hotel" "City Hotel"  

There are two unique types of hotels

hotel_data$country %>% unique()
  [1] "PRT"  "GBR"  "USA"  "ESP"  "IRL"  "FRA"  "NULL" "ROU"  "NOR"  "OMN" 
 [11] "ARG"  "POL"  "DEU"  "BEL"  "CHE"  "CN"   "GRC"  "ITA"  "NLD"  "DNK" 
 [21] "RUS"  "SWE"  "AUS"  "EST"  "CZE"  "BRA"  "FIN"  "MOZ"  "BWA"  "LUX" 
 [31] "SVN"  "ALB"  "IND"  "CHN"  "MEX"  "MAR"  "UKR"  "SMR"  "LVA"  "PRI" 
 [41] "SRB"  "CHL"  "AUT"  "BLR"  "LTU"  "TUR"  "ZAF"  "AGO"  "ISR"  "CYM" 
 [51] "ZMB"  "CPV"  "ZWE"  "DZA"  "KOR"  "CRI"  "HUN"  "ARE"  "TUN"  "JAM" 
 [61] "HRV"  "HKG"  "IRN"  "GEO"  "AND"  "GIB"  "URY"  "JEY"  "CAF"  "CYP" 
 [71] "COL"  "GGY"  "KWT"  "NGA"  "MDV"  "VEN"  "SVK"  "FJI"  "KAZ"  "PAK" 
 [81] "IDN"  "LBN"  "PHL"  "SEN"  "SYC"  "AZE"  "BHR"  "NZL"  "THA"  "DOM" 
 [91] "MKD"  "MYS"  "ARM"  "JPN"  "LKA"  "CUB"  "CMR"  "BIH"  "MUS"  "COM" 
[101] "SUR"  "UGA"  "BGR"  "CIV"  "JOR"  "SYR"  "SGP"  "BDI"  "SAU"  "VNM" 
[111] "PLW"  "QAT"  "EGY"  "PER"  "MLT"  "MWI"  "ECU"  "MDG"  "ISL"  "UZB" 
[121] "NPL"  "BHS"  "MAC"  "TGO"  "TWN"  "DJI"  "STP"  "KNA"  "ETH"  "IRQ" 
[131] "HND"  "RWA"  "KHM"  "MCO"  "BGD"  "IMN"  "TJK"  "NIC"  "BEN"  "VGB" 
[141] "TZA"  "GAB"  "GHA"  "TMP"  "GLP"  "KEN"  "LIE"  "GNB"  "MNE"  "UMI" 
[151] "MYT"  "FRO"  "MMR"  "PAN"  "BFA"  "LBY"  "MLI"  "NAM"  "BOL"  "PRY" 
[161] "BRB"  "ABW"  "AIA"  "SLV"  "DMA"  "PYF"  "GUY"  "LCA"  "ATA"  "GTM" 
[171] "ASM"  "MRT"  "NCL"  "KIR"  "SDN"  "ATF"  "SLE"  "LAO" 

And the data describes values from 178 countries

Tidy Data (as needed)

Like challenge 6, we start by combine all start date related fields to create a singular date field. (Code directly used from Challenge 6)

hotel_mutated<-hotel_data%>%
  mutate(date_arrival = str_c(arrival_date_day_of_month,
                              arrival_date_month,
                              arrival_date_year, sep="/"),
         date_arrival = dmy(date_arrival))%>%
  select(-c("arrival_date_day_of_month", "arrival_date_year", "arrival_date_week_number"))

hotel_mutated

Visualization with Multiple Dimensions

In challenge 6, we visulaized the number of bookings made in each month. Here we try to find the count of babies that arrive each month, while introducing variables like

hotels_babybookings_bymonth_pre <- hotel_data %>% 
                                  group_by(arrival_date_month, arrival_date_year, hotel) %>%
                                  summarise(sum_babies = sum(babies))

hotels_babybookings_bymonth <- hotels_babybookings_bymonth_pre %>% mutate(
                                                  arrival_date_month = factor(arrival_date_month, levels = month.name)
                                                  ) %>%
                                                  arrange(arrival_date_month)

hotels_babybookings_bymonth

We first visualize the nu,ber of babies arriving in a given month. We use a histogram as it is an excellent way of depicting count. We fill the histogram based on the hotel type hence introducing another dimension in our visualization:

ggplot(hotels_babybookings_bymonth) + geom_bar(aes(x=arrival_date_month, y=sum_babies, fill=(hotel)), stat="identity") + scale_x_discrete(breaks = c('January', 'April', 'July', 'October')) + labs(y= "Total Babies", x = "Month")

Next, we try to introduce one more dimension, which is arrival_date_year. We use a line plot here. As we can see, we have two plots, for the two hotels. For each month, we see multiple datat points that correspond to the different years

ggplot(hotels_babybookings_bymonth, aes(arrival_date_month, sum_babies, col=hotel)) + facet_wrap(vars(hotel)) + scale_x_discrete(breaks = c('January', 'April', 'July', 'October')) + geom_line() + geom_point() + geom_text_repel(size=1.5, aes(label = arrival_date_year)) + labs(y= "Total Babies", x = "Month")

Next we try to visualize a different set of dimensions: total number of bookings, total number of adults and total number of children for a given month. This type of visualization is useful when a user wants to compare the three “totals” we mentioned earlier. We use a line to represent each of the three “totals” and also divide the data by hotel type.

hotels_babyadultratio_bymonth_pre <- hotel_data %>% 
                                  group_by(arrival_date_month, hotel) %>%
                                  summarise(total_babies = sum(babies), total_adults = sum(adults), bookings = n(), .groups = 'drop')

hotels_babyadultratio_bymonth <- hotels_babyadultratio_bymonth_pre %>% mutate(
                                                  arrival_date_month = factor(arrival_date_month, levels = month.name)
                                                  ) %>%
                                                  arrange(arrival_date_month)

hotels_babyadultratio_bymonth <- hotels_babyadultratio_bymonth %>% pivot_longer(cols=c(total_babies, total_adults, bookings), names_to = 'sum', values_to = 'value')

hotels_babyadultratio_bymonth
ggplot(hotels_babyadultratio_bymonth, aes(arrival_date_month, value, color = sum, group=sum)) +
  facet_wrap(vars(hotel)) +
  geom_point() +
  geom_line() + 
  scale_x_discrete(breaks = c('January', 'April', 'July', 'October')) + 
  labs(y= "Value", x = "Month", color ="Totals")