Challenge 5

challenge_5
railroads
cereal
air_bnb
pathogen_cost
australian_marriage
public_schools
usa_hh
Introduction to Visualization
Author

Yoshita Varma Annam

Published

January 2, 2022

library(tidyverse)
library(ggplot2)

knitr::opts_chunk$set(echo = TRUE, warning=FALSE, message=FALSE)

Challenge Overview

Today’s challenge is to:

  1. read in a data set, and describe the data set using both words and any supporting information (e.g., tables, etc)
  2. tidy data (as needed, including sanity checks)
  3. mutate variables as needed (including sanity checks)
  4. create at least two univariate visualizations
  • try to make them “publication” ready
  • Explain why you choose the specific graph type
  1. Create at least one bivariate visualization
  • try to make them “publication” ready
  • Explain why you choose the specific graph type

R Graph Gallery is a good starting point for thinking about what information is conveyed in standard graph types, and includes example R code.

(be sure to only include the category tags for the data you use!)

Read in data

Read in one (or more) of the following datasets, using the correct R package and command.

  • cereal ⭐
  • pathogen cost ⭐
  • Australian Marriage ⭐⭐
  • AB_NYC_2019.csv ⭐⭐⭐
  • railroads ⭐⭐⭐
  • Public School Characteristics ⭐⭐⭐⭐
  • USA Households ⭐⭐⭐⭐⭐
AB_NYC_2019 <- read_csv("../posts/_data/AB_NYC_2019.csv")
AB_NYC_2019
# A tibble: 48,895 × 16
      id name      host_id host_…¹ neigh…² neigh…³ latit…⁴ longi…⁵ room_…⁶ price
   <dbl> <chr>       <dbl> <chr>   <chr>   <chr>     <dbl>   <dbl> <chr>   <dbl>
 1  2539 Clean & …    2787 John    Brookl… Kensin…    40.6   -74.0 Privat…   149
 2  2595 Skylit M…    2845 Jennif… Manhat… Midtown    40.8   -74.0 Entire…   225
 3  3647 THE VILL…    4632 Elisab… Manhat… Harlem     40.8   -73.9 Privat…   150
 4  3831 Cozy Ent…    4869 LisaRo… Brookl… Clinto…    40.7   -74.0 Entire…    89
 5  5022 Entire A…    7192 Laura   Manhat… East H…    40.8   -73.9 Entire…    80
 6  5099 Large Co…    7322 Chris   Manhat… Murray…    40.7   -74.0 Entire…   200
 7  5121 BlissArt…    7356 Garon   Brookl… Bedfor…    40.7   -74.0 Privat…    60
 8  5178 Large Fu…    8967 Shunic… Manhat… Hell's…    40.8   -74.0 Privat…    79
 9  5203 Cozy Cle…    7490 MaryEl… Manhat… Upper …    40.8   -74.0 Privat…    79
10  5238 Cute & C…    7549 Ben     Manhat… Chinat…    40.7   -74.0 Entire…   150
# … with 48,885 more rows, 6 more variables: minimum_nights <dbl>,
#   number_of_reviews <dbl>, last_review <date>, reviews_per_month <dbl>,
#   calculated_host_listings_count <dbl>, availability_365 <dbl>, and
#   abbreviated variable names ¹​host_name, ²​neighbourhood_group,
#   ³​neighbourhood, ⁴​latitude, ⁵​longitude, ⁶​room_type

Briefly describe the data

summary(AB_NYC_2019)
       id               name              host_id           host_name        
 Min.   :    2539   Length:48895       Min.   :     2438   Length:48895      
 1st Qu.: 9471945   Class :character   1st Qu.:  7822033   Class :character  
 Median :19677284   Mode  :character   Median : 30793816   Mode  :character  
 Mean   :19017143                      Mean   : 67620011                     
 3rd Qu.:29152178                      3rd Qu.:107434423                     
 Max.   :36487245                      Max.   :274321313                     
                                                                             
 neighbourhood_group neighbourhood         latitude       longitude     
 Length:48895        Length:48895       Min.   :40.50   Min.   :-74.24  
 Class :character    Class :character   1st Qu.:40.69   1st Qu.:-73.98  
 Mode  :character    Mode  :character   Median :40.72   Median :-73.96  
                                        Mean   :40.73   Mean   :-73.95  
                                        3rd Qu.:40.76   3rd Qu.:-73.94  
                                        Max.   :40.91   Max.   :-73.71  
                                                                        
  room_type             price         minimum_nights    number_of_reviews
 Length:48895       Min.   :    0.0   Min.   :   1.00   Min.   :  0.00   
 Class :character   1st Qu.:   69.0   1st Qu.:   1.00   1st Qu.:  1.00   
 Mode  :character   Median :  106.0   Median :   3.00   Median :  5.00   
                    Mean   :  152.7   Mean   :   7.03   Mean   : 23.27   
                    3rd Qu.:  175.0   3rd Qu.:   5.00   3rd Qu.: 24.00   
                    Max.   :10000.0   Max.   :1250.00   Max.   :629.00   
                                                                         
  last_review         reviews_per_month calculated_host_listings_count
 Min.   :2011-03-28   Min.   : 0.010    Min.   :  1.000               
 1st Qu.:2018-07-08   1st Qu.: 0.190    1st Qu.:  1.000               
 Median :2019-05-19   Median : 0.720    Median :  1.000               
 Mean   :2018-10-04   Mean   : 1.373    Mean   :  7.144               
 3rd Qu.:2019-06-23   3rd Qu.: 2.020    3rd Qu.:  2.000               
 Max.   :2019-07-08   Max.   :58.500    Max.   :327.000               
 NA's   :10052        NA's   :10052                                   
 availability_365
 Min.   :  0.0   
 1st Qu.:  0.0   
 Median : 45.0   
 Mean   :112.8   
 3rd Qu.:227.0   
 Max.   :365.0   
                 
colnames(AB_NYC_2019)
 [1] "id"                             "name"                          
 [3] "host_id"                        "host_name"                     
 [5] "neighbourhood_group"            "neighbourhood"                 
 [7] "latitude"                       "longitude"                     
 [9] "room_type"                      "price"                         
[11] "minimum_nights"                 "number_of_reviews"             
[13] "last_review"                    "reviews_per_month"             
[15] "calculated_host_listings_count" "availability_365"              

This dataset is about airbnb listings in New York City from the year 2019. There are approximately 49000 rows and 16 columns. It includes host name with id, location of the property along with the price, and details of reviews.

Tidy Data (as needed)

There are few columns with NA values will be tidying those columns. Columns such as “date_of_last_review” also has NA values but that is alright as there are no reviews yet. So, tidying selected columns to avoid NA values.

table(AB_NYC_2019$reviews_per_month)

 0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09   0.1  0.11  0.12  0.13 
   42   919   804   655   893   579   466   596   593   457   539   413   463 
 0.14  0.15  0.16  0.17  0.18  0.19   0.2  0.21  0.22  0.23  0.24  0.25  0.26 
  399   374   667   321   305   357   276   343   318   289   266   290   305 
 0.27  0.28  0.29   0.3  0.31  0.32  0.33  0.34  0.35  0.36  0.37  0.38  0.39 
  277   264   229   250   248   280   223   165   174   208   201   217   187 
  0.4  0.41  0.42  0.43  0.44  0.45  0.46  0.47  0.48  0.49   0.5  0.51  0.52 
  167   186   227   183   160   178   175   182   168   144   132   114   152 
 0.53  0.54  0.55  0.56  0.57  0.58  0.59   0.6  0.61  0.62  0.63  0.64  0.65 
  163   117   149   125   125   146   146   112   130   105   143   111   136 
 0.66  0.67  0.68  0.69   0.7  0.71  0.72  0.73  0.74  0.75  0.76  0.77  0.78 
  105   112   131    92   131   118    78   112    98   101   114   143    97 
 0.79   0.8  0.81  0.82  0.83  0.84  0.85  0.86  0.87  0.88  0.89   0.9  0.91 
  110    98   123    97    92    80   111    78    92    85    69    87   106 
 0.92  0.93  0.94  0.95  0.96  0.97  0.98  0.99     1  1.01  1.02  1.03  1.04 
   77    87   103    87    83    79    64    74   893    58    66    73    68 
 1.05  1.06  1.07  1.08  1.09   1.1  1.11  1.12  1.13  1.14  1.15  1.16  1.17 
   88    83    64    62    63    67    88    67    78    74    90    51    66 
 1.18  1.19   1.2  1.21  1.22  1.23  1.24  1.25  1.26  1.27  1.28  1.29   1.3 
   81    58    69    56    73    64    56    80    63    67    69    62    72 
 1.31  1.32  1.33  1.34  1.35  1.36  1.37  1.38  1.39   1.4  1.41  1.42  1.43 
   51    54    77    64    45    84    49    59    47    84    66    53    50 
 1.44  1.45  1.46  1.47  1.48  1.49   1.5  1.51  1.52  1.53  1.54  1.55  1.56 
   46    50    70    50    42    51    57    64    54    61    46    57    51 
 1.57  1.58  1.59   1.6  1.61  1.62  1.63  1.64  1.65  1.66  1.67  1.68  1.69 
   63    70    40    46    49    65    47    49    65    39    65    55    48 
  1.7  1.71  1.72  1.73  1.74  1.75  1.76  1.77  1.78  1.79   1.8  1.81  1.82 
   53    52    45    66    40    37    75    35    53    48    61    48    61 
 1.83  1.84  1.85  1.86  1.87  1.88  1.89   1.9  1.91  1.92  1.93  1.94  1.95 
   55    58    44    40    34    70    45    65    46    44    36    57    45 
 1.96  1.97  1.98  1.99     2  2.01  2.02  2.03  2.04  2.05  2.06  2.07  2.08 
   54    40    34    37   406    38    47    45    38    39    40    60    41 
 2.09   2.1  2.11  2.12  2.13  2.14  2.15  2.16  2.17  2.18  2.19   2.2  2.21 
   50    37    45    36    41    42    32    34    39    39    43    38    42 
 2.22  2.23  2.24  2.25  2.26  2.27  2.28  2.29   2.3  2.31  2.32  2.33  2.34 
   54    52    36    32    70    39    43    40    32    66    36    36    57 
 2.35  2.36  2.37  2.38  2.39   2.4  2.41  2.42  2.43  2.44  2.45  2.46  2.47 
   53    42    43    53    40    37    20    50    46    43    39    35    42 
 2.48  2.49   2.5  2.51  2.52  2.53  2.54  2.55  2.56  2.57  2.58  2.59   2.6 
   44    34    69    31    35    35    50    48    40    40    36    42    33 
 2.61  2.62  2.63  2.64  2.65  2.66  2.67  2.68  2.69   2.7  2.71  2.72  2.73 
   33    23    58    35    38    37    44    36    37    42    28    19    54 
 2.74  2.75  2.76  2.77  2.78  2.79   2.8  2.81  2.82  2.83  2.84  2.85  2.86 
   39    39    28    22    36    56    36    45    38    44    36    24    28 
 2.87  2.88  2.89   2.9  2.91  2.92  2.93  2.94  2.95  2.96  2.97  2.98  2.99 
   45    50    33    30    19    36    29    19    32    35    31    30    33 
    3  3.01  3.02  3.03  3.04  3.05  3.06  3.07  3.08  3.09   3.1  3.11  3.12 
  222    29    27    20    43    27    28    32    31    30    36    30    18 
 3.13  3.14  3.15  3.16  3.17  3.18  3.19   3.2  3.21  3.22  3.23  3.24  3.25 
   41    30    20    34    42    34    41    24    36    29    24    29    27 
 3.26  3.27  3.28  3.29   3.3  3.31  3.32  3.33  3.34  3.35  3.36  3.37  3.38 
   29    30    33    23    26    35    24    52    26    22    24    28    28 
 3.39   3.4  3.41  3.42  3.43  3.44  3.45  3.46  3.47  3.48  3.49   3.5  3.51 
   17    31    20    37    21    28    26    27    24    16    20    27    24 
 3.52  3.53  3.54  3.55  3.56  3.57  3.58  3.59   3.6  3.61  3.62  3.63  3.64 
   26    38    15    26    17    18    21    30    21    26    20    30    27 
 3.65  3.66  3.67  3.68  3.69   3.7  3.71  3.72  3.73  3.74  3.75  3.76  3.77 
   26    26    23    25    30    25    22    26    16    17    42     8    15 
 3.78  3.79   3.8  3.81  3.82  3.83  3.84  3.85  3.86  3.87  3.88  3.89   3.9 
   21    28    28    10    18    14    14    26    22    16    26    16    20 
 3.91  3.92  3.93  3.94  3.95  3.96  3.97  3.98  3.99     4  4.01  4.02  4.03 
   19    14    29    23    22    17    22    17    12   130    16    16    16 
 4.04  4.05  4.06  4.07  4.08  4.09   4.1  4.11  4.12  4.13  4.14  4.15  4.16 
   22    18    18    21    18    25    21    15    18    17    19    20    16 
 4.17  4.18  4.19   4.2  4.21  4.22  4.23  4.24  4.25  4.26  4.27  4.28  4.29 
   20    16    21    15    27    14    17    13    18    19    13     4    40 
  4.3  4.31  4.32  4.33  4.34  4.35  4.36  4.37  4.38  4.39   4.4  4.41  4.42 
    6    13     8    15    19    15    23    16    17    10    13    11    11 
 4.43  4.44  4.45  4.46  4.47  4.48  4.49   4.5  4.51  4.52  4.53  4.54  4.55 
   16    24    13    13    17    17    18    19    12    20    13     8    20 
 4.56  4.57  4.58  4.59   4.6  4.61  4.62  4.63  4.64  4.65  4.66  4.67  4.68 
    7    17    23    17     7     5    26    13    12    13    15    13     8 
 4.69   4.7  4.71  4.72  4.73  4.74  4.75  4.76  4.77  4.78  4.79   4.8  4.81 
   20     6    10    10    17    16     7    12    13    13    13     9    11 
 4.82  4.83  4.84  4.85  4.86  4.87  4.88  4.89   4.9  4.91  4.92  4.93  4.94 
   14    10    10     6    13     7    11    12    10    10    10    18     9 
 4.95  4.96  4.97  4.98  4.99     5  5.01  5.02  5.03  5.04  5.05  5.06  5.07 
   10    12     9     7     4    85     6     8    11    10     8     8     5 
 5.08  5.09   5.1  5.11  5.12  5.13  5.14  5.15  5.16  5.17  5.18  5.19   5.2 
   12     6     7    14    11     7     7     4    10     9     6    11    12 
 5.21  5.22  5.23  5.24  5.25  5.26  5.27  5.28  5.29   5.3  5.31  5.32  5.33 
    4     9     6     5     8     9    11     9     7     5     9     5     7 
 5.34  5.35  5.36  5.37  5.38  5.39   5.4  5.41  5.42  5.43  5.44  5.45  5.46 
    8     9     4    16     9     8     7     5     9     5     7    19     4 
 5.47  5.48  5.49   5.5  5.51  5.52  5.53  5.54  5.55  5.56  5.57  5.58  5.59 
    4     2     7     8     6     3     5    10     4     8     4     6    10 
  5.6  5.61  5.62  5.63  5.64  5.65  5.66  5.67  5.68  5.69   5.7  5.71  5.72 
    5     6     6     8     6     8     4     5     5     5     7     6     1 
 5.73  5.74  5.75  5.76  5.77  5.78  5.79   5.8  5.81  5.82  5.83  5.84  5.85 
    7     8     5     1     4     8     6     5     8     7    11     4     3 
 5.86  5.87  5.88  5.89   5.9  5.91  5.92  5.93  5.94  5.95  5.96  5.97  5.98 
    3     8     7     5     6     5     8     3     5     9     3     4     4 
 5.99     6  6.01  6.02  6.03  6.04  6.05  6.06  6.07  6.08  6.09   6.1  6.11 
    4    39     2     4     5     1     5     1     5     5     4     6     5 
 6.12  6.13  6.14  6.15  6.17  6.18  6.19   6.2  6.21  6.22  6.23  6.24  6.25 
    3     5     2     3     2     4     8     4     4     4     8     1     4 
 6.26  6.27  6.28  6.29   6.3  6.31  6.32  6.34  6.35  6.36  6.37  6.38  6.39 
    2     2     3     1     3     5     7     3     4     5     3     6     1 
  6.4  6.41  6.42  6.43  6.44  6.45  6.46  6.47  6.48  6.49   6.5  6.51  6.52 
    3     1     3     6     3     5     8     1     3     3     3     6     2 
 6.53  6.54  6.55  6.56  6.57  6.58  6.59   6.6  6.61  6.62  6.63  6.64  6.65 
    1     3     4     4     1     1     6     1     4     3     1     3     2 
 6.67  6.68  6.69   6.7  6.71  6.72  6.73  6.74  6.75  6.76  6.77  6.78  6.79 
    8     3     1     3     4     3     3     1     2     2     3     4     3 
  6.8  6.82  6.83  6.84  6.86  6.87  6.88   6.9  6.91  6.92  6.94  6.95  6.96 
    5     3     2     2     2     2     2     3     1     5     2     2     3 
 6.97  6.99     7  7.01  7.02  7.03  7.04  7.05  7.06  7.07  7.08   7.1  7.11 
    3     2    17     3     2     3     2     1     2     3     4     1     2 
 7.12  7.13  7.14  7.16  7.17  7.18  7.19   7.2  7.21  7.22  7.23  7.24  7.25 
    4     4     6     1     2     4     2     2     1     2     1     5     1 
 7.26  7.27  7.28  7.29   7.3  7.31  7.32  7.33  7.34  7.36  7.38  7.39  7.41 
    3     6     3     1     2     2     1     4     2     2     3     2     2 
 7.42  7.43  7.45  7.47   7.5  7.53  7.55  7.56  7.57  7.58  7.59   7.6  7.61 
    1     2     1     3    15     2     3     2     4     2     4     2     1 
 7.63  7.64  7.65  7.66  7.67  7.69   7.7  7.71  7.72  7.75  7.76  7.77  7.79 
    1     4     2     2     3     4     2     3     2     2     2     2     4 
 7.83  7.84  7.85  7.86  7.87  7.88  7.89   7.9  7.91  7.92  7.94  7.96  7.97 
    3     1     1     1     2     2     3     1     1     2     2     4     2 
 7.98  7.99     8  8.02  8.03  8.06  8.07  8.11  8.14  8.16  8.17  8.18  8.21 
    2     1     8     3     2     2     1     1     1     1     1     3     2 
 8.24  8.25  8.27  8.29  8.31  8.32  8.33  8.35  8.37  8.38   8.4  8.43  8.44 
    4     1     2     2     2     2     3     1     1     2     1     1     2 
 8.45  8.47  8.48   8.5  8.51  8.52  8.56  8.57  8.58  8.62  8.64  8.68  8.69 
    1     1     3     1     1     2     2     2     1     3     2     1     1 
 8.72  8.73  8.74  8.75  8.79  8.82  8.84  8.86  8.87  8.92  8.93  8.94  8.95 
    1     1     1     1     1     2     1     2     4     1     1     1     3 
 8.97  8.99     9  9.03  9.07  9.08  9.09   9.1  9.12  9.13  9.15  9.16  9.17 
    2     1     3     1     2     1     2     1     1     2     1     1     2 
 9.21  9.23  9.24  9.26  9.29   9.3  9.33  9.34  9.36  9.39   9.4  9.41  9.43 
    1     1     1     1     1     2     1     1     1     2     1     2     1 
 9.47   9.5  9.53  9.56  9.58  9.61  9.62  9.63  9.64  9.66  9.67  9.68  9.73 
    3     1     1     1     2     1     1     2     2     1     1     1     1 
 9.74  9.78  9.82  9.83  9.85  9.93  9.97    10 10.05 10.12 10.15 10.17 10.19 
    1     1     1     1     2     1     1     8     1     1     1     2     2 
10.23 10.28 10.29 10.31 10.34 10.36 10.37 10.38 10.39 10.54 10.56  10.6 10.64 
    1     1     1     1     1     1     1     1     1     1     1     2     1 
10.67 10.72 10.77 10.86 10.91 11.03 11.14 11.16 11.17 11.21 11.25 11.38  11.4 
    1     1     2     3     1     1     1     1     1     1     1     1     1 
11.56 11.59 11.68 11.71 11.72 11.84 11.91    12 12.05 12.11 12.12 12.54 12.84 
    1     2     1     1     1     1     1     2     2     1     1     1     1 
12.99 13.11 13.13 13.15 13.24 13.27  13.3 13.33  13.4 13.42 13.45 13.48    14 
    1     1     1     1     1     1     1     1     1     1     1     1     2 
14.36 14.58 14.62 15.23 15.32 15.78 16.03 16.22 16.81 17.82 19.75 20.94 27.95 
    1     1     1     1     1     1     1     1     1     1     1     1     1 
 58.5 
    1 
replace_na(AB_NYC_2019, list(reviews_per_month = 0))
# A tibble: 48,895 × 16
      id name      host_id host_…¹ neigh…² neigh…³ latit…⁴ longi…⁵ room_…⁶ price
   <dbl> <chr>       <dbl> <chr>   <chr>   <chr>     <dbl>   <dbl> <chr>   <dbl>
 1  2539 Clean & …    2787 John    Brookl… Kensin…    40.6   -74.0 Privat…   149
 2  2595 Skylit M…    2845 Jennif… Manhat… Midtown    40.8   -74.0 Entire…   225
 3  3647 THE VILL…    4632 Elisab… Manhat… Harlem     40.8   -73.9 Privat…   150
 4  3831 Cozy Ent…    4869 LisaRo… Brookl… Clinto…    40.7   -74.0 Entire…    89
 5  5022 Entire A…    7192 Laura   Manhat… East H…    40.8   -73.9 Entire…    80
 6  5099 Large Co…    7322 Chris   Manhat… Murray…    40.7   -74.0 Entire…   200
 7  5121 BlissArt…    7356 Garon   Brookl… Bedfor…    40.7   -74.0 Privat…    60
 8  5178 Large Fu…    8967 Shunic… Manhat… Hell's…    40.8   -74.0 Privat…    79
 9  5203 Cozy Cle…    7490 MaryEl… Manhat… Upper …    40.8   -74.0 Privat…    79
10  5238 Cute & C…    7549 Ben     Manhat… Chinat…    40.7   -74.0 Entire…   150
# … with 48,885 more rows, 6 more variables: minimum_nights <dbl>,
#   number_of_reviews <dbl>, last_review <date>, reviews_per_month <dbl>,
#   calculated_host_listings_count <dbl>, availability_365 <dbl>, and
#   abbreviated variable names ¹​host_name, ²​neighbourhood_group,
#   ³​neighbourhood, ⁴​latitude, ⁵​longitude, ⁶​room_type

Univariate Visualizations

I am interested to find which kind of room type is popular in New York this will give a good idea for the investors. Also, what are the price ranges based on the room style. Furthermore, if we can narrow down popular room types based on the neighborhood it will give good edge to the investors.

AB_NYC_2019 %>%
  dplyr::count(room_type) %>%
  ggplot(aes(x = room_type, y = n, fill = room_type)) +
  geom_bar(stat = "identity") + 
  geom_text(aes(label = n), vjust = -0.5) +
  labs(title="Total Bookings vs Type of the Room", x="Type of the Room", y="Total Booking Count", fill="Room Type")

It is clear that the entire home/apartment is very popular next is a private room. It is surprsing that shared room if preferred by very few people despite of the cost people prefer have private stay. To understand lets analyze the data further in detail to give some good findings to investors.

Bivariate Visualization(s)

Using Bivariate Visualization lets try to find the prices of the room types. This will help the hosts to set the margin of the property based on the room types.

AB_NYC_2019 %>%
  ggplot(aes(room_type, price), fill = room_type) + 
  geom_boxplot() + 
  labs(title = "Price per Listing by room type") + 
  theme_bw()

It is expected that entire home/ apartment are more expensive than private rooms. As you can see entire home/apartments ranges maximum to 8500 whereas, for private rooms majorty of the listings are priced under 3000. However, there are outliers which can cost as high as 10000 for a single private room. May be with more data we can deduce what could the reason behind this. But majorly this gave a good range of prices based on the room type for the investors to set the prices for their properties.

Similarly, using Bivariate Visualization lets also find which kind of room type is popular in a particular neighborhood.

ggplot(AB_NYC_2019) +
  geom_bar(aes(x = room_type, fill=neighbourhood_group)) + 
  labs(x = "Type of room", y = "Count of Airbnbs", title = "Count of Airbnbs vs  Room Type",
       fill = "Neighbourhood")

From this visualization we not only found which room type is popular in the neighborhood but also understood that majority of the listings are in Manhattan and Brooklyn. Since, these two are popular destinations for tourist it is quite understandable why the bookings are so high from these neighborhoods. If you clearly observe there is more inclination towards entire home/apartment in Manhattan than private room. On the contrary, in Brooklyn there is more demand for private room than entire home. However, these small fluctuations can’t contribute to major conclusions. So, more information might be required to strongly conclude on this. Similarly, in Queens private room is more popular. In Bronx and Staten Island there is zero demand for shared room.