Final Project Proposal

finalpart1
Part 1
Author

Saaradhaa M

Published

October 9, 2022

Code
# load libraries.
library(tidyverse)
library(ggplot2)
library(summarytools)

knitr::opts_chunk$set(echo = TRUE)

Introduction

Prior research literature in the social sciences has continually stressed the need for more research on the Global South. However, few papers actually focus on it. Hence, I am interested to learn more about this region. A data source that lends itself useful for this is the World Values Survey, a global survey with an easily accessible database.

I am specifically interested in understanding what drives subjective well-being, which can be interpreted via happiness and life satisfaction (Addai et al., 2013).

Research Questions

A. What predicts happiness and life satisfaction in the Global South?

B. Do predictors of happiness and life satisfaction differ between the Global North and South?

This project will be useful to better understand motivations and desires in the Global South, reduce inter-cultural tensions and enhance cross-cultural cohesion. Governments can also benefit from this research in terms of policy prioritization to maximize citizens’ well-being.

Hypothesis

Past researchers have studied happiness and life satisfaction in the Global South via the World Values Survey (Addai et al., 2013; Ngamaba, 2016). The studies focused on Ghana and Rwanda respectively. The common predictors of happiness and life satisfaction across both countries were satisfaction with health and income.

To the best of my knowledge, few studies comparing well-being in the Global North and South exist. Alba (2019) found that happiness was generally greater in the Global North than the Global South, and indicated that future research should attempt to cover the factors behind this. I think happiness and well-being in the Global North may depend on more subjective measures, given that health and income-related issues should be relatively more accounted for.

Given the above, we can frame our hypotheses as follows:

H0A

Health and financial satisfaction will not be statistically significant predictors of happiness and life satisfaction in the Global South.

H1A

Health and financial satisfaction will be statistically significant predictors of happiness and life satisfaction in the Global South.

H0B

Predictors of happiness and life satisfaction will not differ between the Global North and South.

H1B

Predictors of happiness and life satisfaction will differ between the Global North and South.

Reading In Dataset

I will be working with the most recent wave of the World Values Survey, Wave 7, which was conducted from 2017 to 2022. The data is freely available for non-profit purposes. It must be cited properly and not re-distributed (Haerpfer et al., 2022).

Representative samples of the population aged 18 and above were collected from 59 countries. Data was mostly collected by interviewing respondents at their homes (“WVS Database”, 2022).

I am using the most recent version of Wave 7 released in May 2022. The most final version of the dataset will be released in Oct 2022. I may update the dataset below at a later date, if time permits.

I will indicate my comments in each code chunk to keep track of my progress.

Code
# read in dataset.
wvs <- read_csv("~/Desktop/2022_Fall/DACSS 603/General/Final Project/WVS/4. Data/WVS_Cross-National_Wave_7_csv_v4_0.csv", show_col_types = FALSE) %>% select("A_YEAR", "B_COUNTRY_ALPHA", "Q_MODE", "G_TOWNSIZE", "H_SETTLEMENT", "H_URBRURAL", "O1_LONGITUDE", "O2_LATITUDE", "Q1", "Q2", "Q3", "Q6", "Q46", "Q47", "Q48", "Q49", "Q50", "Q57", "Q171", "Q260", "Q262", "Q263", "Q269", "Q270", "Q271", "Q273", "Q274", "Q275", "Q279", "Q288", "Q288R", "Q289", "Q290", "I_WOMJOB", "I_WOMPOL", "I_WOMEDU", "I_HOMOLIB", "I_ABORTLIB", "womenparl")

The dataset originally had 552 columns. I have selected a subset of columns based on variables used in past papers, as well as some variables I am interested to examine. These include place/area of residence, literacy, demographics, importance of various social aspects, happiness and wellbeing indicators, trust, religiosity, equality of gender/sexual orientation and abortion attitudes.

I will first create a dummy variable for Global North/South. The Global South comprises low- and lower-middle income countries, as defined by the World Bank (“World Bank Country and Lending Groups”, 2022). Global South countries surveyed include Ethiopia, Philippines, Indonesia, Bangladesh, Iran, Kenya, Bolivia, Kyrgyzstan, Lebanon, Tajikistan, Tunisia, Ukraine, Mongolia, Morocco, Egypt, Myanmar, Vietnam, Nicaragua, Zimbabwe, Nigeria and Pakistan.

Code
# create dummy.
wvs <- mutate(wvs, NS = case_when(B_COUNTRY_ALPHA == "ETH" | B_COUNTRY_ALPHA == "PHL" | B_COUNTRY_ALPHA == "IDN" | B_COUNTRY_ALPHA == "BGD" | B_COUNTRY_ALPHA == "IRN" | B_COUNTRY_ALPHA == "KEN" | B_COUNTRY_ALPHA == "BOL" | B_COUNTRY_ALPHA == "KGZ" | B_COUNTRY_ALPHA == "LBN" | B_COUNTRY_ALPHA == "TJK" | B_COUNTRY_ALPHA == "TUN" | B_COUNTRY_ALPHA == "MOR" | B_COUNTRY_ALPHA == "UKR" | B_COUNTRY_ALPHA == "MNG" | B_COUNTRY_ALPHA == "EGY" | B_COUNTRY_ALPHA == "MMR" | B_COUNTRY_ALPHA == "VNM" | B_COUNTRY_ALPHA == "NIC" | B_COUNTRY_ALPHA == "ZWE" | B_COUNTRY_ALPHA == "NGA" | B_COUNTRY_ALPHA == "PAK" ~ "1"))

# replace "NA" with "O" (for Global North).
wvs$NS <- replace_na(wvs$NS, "0")

# change to factor.
wvs$NS <- as.factor(wvs$NS)

# check counts of levels.
wvs %>% select(NS) %>% summary()
 NS       
 0:59178  
 1:28644  
Code
# sanity check.
wvs %>% filter(B_COUNTRY_ALPHA == "ETH" | B_COUNTRY_ALPHA == "PHL" | B_COUNTRY_ALPHA == "IDN" | B_COUNTRY_ALPHA == "BGD" | B_COUNTRY_ALPHA == "IRN" | B_COUNTRY_ALPHA == "KEN" | B_COUNTRY_ALPHA == "BOL" | B_COUNTRY_ALPHA == "KGZ" | B_COUNTRY_ALPHA == "LBN" | B_COUNTRY_ALPHA == "TJK" | B_COUNTRY_ALPHA == "TUN" | B_COUNTRY_ALPHA == "MOR" | B_COUNTRY_ALPHA == "UKR" | B_COUNTRY_ALPHA == "MNG" | B_COUNTRY_ALPHA == "EGY" | B_COUNTRY_ALPHA == "MMR" | B_COUNTRY_ALPHA == "VNM" | B_COUNTRY_ALPHA == "NIC" | B_COUNTRY_ALPHA == "ZWE" | B_COUNTRY_ALPHA == "NGA" | B_COUNTRY_ALPHA == "PAK") %>% nrow()
[1] 28644
Code
# rename columns.
names(wvs) <- c("A_YEAR", "B_COUNTRY_ALPHA", "Q_MODE", "G_TOWNSIZE", "H_SETTLEMENT", "H_URBRURAL", "Long", "Lat", "FamImpt", "FriendsImpt", "LeisureImpt", "ReligionImpt", "Happiness", "PerceivedHealth", "FOC", "LS", "FS", "Trust", "AttendReligious", "Sex", "Age", "Immigrant", "Citizen", "HHSize", "Parents", "Married", "Kids", "Edu", "Job", "Income", "IncomeR", "Religion", "Race", "I_WOMJOB", "I_WOMPOL", "I_WOMEDU", "I_HOMOLIB", "I_ABORTLIB", "womenparl", "NS")

The sanity check shows that the creation of the dummy was successful, with 28,644 datapoints from the Global South.

Exploratory Analysis of Data

Code
# check rows, columns and variable types.
str(wvs)
tibble [87,822 × 40] (S3: tbl_df/tbl/data.frame)
 $ A_YEAR         : num [1:87822] 2019 2019 2019 2019 2019 ...
 $ B_COUNTRY_ALPHA: chr [1:87822] "CYP" "CYP" "CYP" "CYP" ...
 $ Q_MODE         : num [1:87822] 2 2 2 2 2 2 2 2 2 2 ...
 $ G_TOWNSIZE     : num [1:87822] 6 6 6 6 6 6 6 6 6 6 ...
 $ H_SETTLEMENT   : num [1:87822] 4 4 4 4 4 4 4 4 4 4 ...
 $ H_URBRURAL     : num [1:87822] 1 1 1 1 1 1 1 1 1 1 ...
 $ Long           : num [1:87822] 34.8 34.8 34.8 34.8 34.8 ...
 $ Lat            : num [1:87822] 32.4 32.4 32.4 32.4 32.5 ...
 $ FamImpt        : num [1:87822] 1 1 1 1 1 1 2 1 1 1 ...
 $ FriendsImpt    : num [1:87822] 1 3 2 2 NA 1 2 2 1 2 ...
 $ LeisureImpt    : num [1:87822] 1 1 1 1 2 1 2 1 1 2 ...
 $ ReligionImpt   : num [1:87822] 1 1 1 1 1 3 2 1 3 1 ...
 $ Happiness      : num [1:87822] 2 1 2 2 3 2 2 1 2 3 ...
 $ PerceivedHealth: num [1:87822] 4 2 1 3 3 1 1 1 1 4 ...
 $ FOC            : num [1:87822] 10 5 5 5 3 7 5 5 5 NA ...
 $ LS             : num [1:87822] 8 7 9 5 5 8 4 7 8 9 ...
 $ FS             : num [1:87822] 8 5 5 5 5 7 3 5 8 4 ...
 $ Trust          : num [1:87822] 2 2 2 2 2 2 2 2 2 2 ...
 $ AttendReligious: num [1:87822] 7 2 3 2 4 4 2 4 4 2 ...
 $ Sex            : num [1:87822] 1 2 2 2 2 1 1 2 1 2 ...
 $ Age            : num [1:87822] 61 61 42 64 52 39 61 25 36 77 ...
 $ Immigrant      : num [1:87822] 1 1 2 1 2 2 1 1 1 1 ...
 $ Citizen        : num [1:87822] 1 1 1 1 1 1 1 1 1 1 ...
 $ HHSize         : num [1:87822] 2 4 6 2 8 1 2 3 2 3 ...
 $ Parents        : num [1:87822] 1 1 1 1 1 1 1 1 1 1 ...
 $ Married        : num [1:87822] 1 1 1 1 5 3 1 1 2 1 ...
 $ Kids           : num [1:87822] 2 2 4 2 3 2 2 1 2 3 ...
 $ Edu            : num [1:87822] 1 1 4 3 3 3 2 3 1 0 ...
 $ Job            : num [1:87822] 1 1 5 1 1 1 1 7 1 5 ...
 $ Income         : num [1:87822] 5 5 3 5 3 5 3 5 7 3 ...
 $ IncomeR        : num [1:87822] 2 2 1 2 1 2 1 2 2 1 ...
 $ Religion       : num [1:87822] 3 3 3 3 3 3 3 3 3 3 ...
 $ Race           : num [1:87822] 196001 196001 196001 196001 196001 ...
 $ I_WOMJOB       : num [1:87822] 0.75 0.5 1 0.75 0.5 0.5 0.5 0.75 0.5 0.5 ...
 $ I_WOMPOL       : num [1:87822] 0.66 NA 1 0.66 NA 0.33 0.66 0.66 NA 0.33 ...
 $ I_WOMEDU       : num [1:87822] 0.66 1 1 0.66 0.33 1 0.66 0.66 0.66 0.66 ...
 $ I_HOMOLIB      : num [1:87822] 0 0 0.444 0 0 ...
 $ I_ABORTLIB     : num [1:87822] 0 0 0 0 0 ...
 $ womenparl      : num [1:87822] 17.9 17.9 17.9 17.9 17.9 ...
 $ NS             : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
Code
# check basic descriptive statistics.
summary(wvs)
     A_YEAR     B_COUNTRY_ALPHA        Q_MODE        G_TOWNSIZE   
 Min.   :2017   Length:87822       Min.   :1.000   Min.   :1.000  
 1st Qu.:2018   Class :character   1st Qu.:1.000   1st Qu.:3.000  
 Median :2018   Mode  :character   Median :2.000   Median :6.000  
 Mean   :2019                      Mean   :1.734   Mean   :5.312  
 3rd Qu.:2020                      3rd Qu.:2.000   3rd Qu.:8.000  
 Max.   :2022                      Max.   :5.000   Max.   :8.000  
                                                   NA's   :1274   
  H_SETTLEMENT     H_URBRURAL         Long              Lat        
 Min.   :1.000   Min.   :1.000   Min.   :-156.34   Min.   :-43.26  
 1st Qu.:2.000   1st Qu.:1.000   1st Qu.:   7.66   1st Qu.:  6.99  
 Median :3.000   Median :1.000   Median :  39.94   Median : 24.75  
 Mean   :3.066   Mean   :1.318   Mean   :  36.16   Mean   : 21.35  
 3rd Qu.:5.000   3rd Qu.:2.000   3rd Qu.: 100.27   3rd Qu.: 35.70  
 Max.   :5.000   Max.   :2.000   Max.   : 156.89   Max.   :100.35  
 NA's   :207     NA's   :32      NA's   :27098     NA's   :27094   
    FamImpt       FriendsImpt     LeisureImpt     ReligionImpt  
 Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
 1st Qu.:1.000   1st Qu.:1.000   1st Qu.:1.000   1st Qu.:1.000  
 Median :1.000   Median :2.000   Median :2.000   Median :2.000  
 Mean   :1.112   Mean   :1.721   Mean   :1.788   Mean   :1.938  
 3rd Qu.:1.000   3rd Qu.:2.000   3rd Qu.:2.000   3rd Qu.:3.000  
 Max.   :4.000   Max.   :4.000   Max.   :4.000   Max.   :4.000  
 NA's   :146     NA's   :289     NA's   :473     NA's   :831    
   Happiness     PerceivedHealth      FOC               LS        
 Min.   :1.000   Min.   :1.000   Min.   : 1.000   Min.   : 1.000  
 1st Qu.:1.000   1st Qu.:2.000   1st Qu.: 6.000   1st Qu.: 6.000  
 Median :2.000   Median :2.000   Median : 7.000   Median : 7.000  
 Mean   :1.857   Mean   :2.194   Mean   : 7.203   Mean   : 7.043  
 3rd Qu.:2.000   3rd Qu.:3.000   3rd Qu.: 9.000   3rd Qu.: 9.000  
 Max.   :4.000   Max.   :5.000   Max.   :10.000   Max.   :10.000  
 NA's   :574     NA's   :254     NA's   :800      NA's   :393     
       FS             Trust       AttendReligious      Sex       
 Min.   : 1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
 1st Qu.: 5.000   1st Qu.:2.000   1st Qu.:2.000   1st Qu.:1.000  
 Median : 6.000   Median :2.000   Median :4.000   Median :2.000  
 Mean   : 6.172   Mean   :1.765   Mean   :4.139   Mean   :1.525  
 3rd Qu.: 8.000   3rd Qu.:2.000   3rd Qu.:6.000   3rd Qu.:2.000  
 Max.   :10.000   Max.   :2.000   Max.   :7.000   Max.   :2.000  
 NA's   :545      NA's   :1198    NA's   :1034    NA's   :62     
      Age           Immigrant        Citizen          HHSize      
 Min.   : 16.00   Min.   :1.000   Min.   :1.000   Min.   : 1.000  
 1st Qu.: 29.00   1st Qu.:1.000   1st Qu.:1.000   1st Qu.: 2.000  
 Median : 41.00   Median :1.000   Median :1.000   Median : 4.000  
 Mean   : 42.85   Mean   :1.059   Mean   :1.022   Mean   : 3.945  
 3rd Qu.: 55.00   3rd Qu.:1.000   3rd Qu.:1.000   3rd Qu.: 5.000  
 Max.   :103.00   Max.   :2.000   Max.   :2.000   Max.   :63.000  
 NA's   :339      NA's   :344     NA's   :5164    NA's   :852     
    Parents         Married          Kids             Edu             Job      
 Min.   :1.000   Min.   :1.00   Min.   : 0.000   Min.   :0.000   Min.   :1.00  
 1st Qu.:1.000   1st Qu.:1.00   1st Qu.: 0.000   1st Qu.:2.000   1st Qu.:1.00  
 Median :1.000   Median :1.00   Median : 2.000   Median :3.000   Median :3.00  
 Mean   :1.353   Mean   :2.65   Mean   : 1.766   Mean   :3.546   Mean   :3.13  
 3rd Qu.:2.000   3rd Qu.:5.00   3rd Qu.: 3.000   3rd Qu.:5.000   3rd Qu.:5.00  
 Max.   :4.000   Max.   :6.00   Max.   :24.000   Max.   :8.000   Max.   :8.00  
 NA's   :1438    NA's   :504    NA's   :1201     NA's   :818     NA's   :1143  
     Income          IncomeR         Religion          Race       
 Min.   : 1.000   Min.   :1.000   Min.   :0.000   Min.   : 20001  
 1st Qu.: 3.000   1st Qu.:1.000   1st Qu.:1.000   1st Qu.:158002  
 Median : 5.000   Median :2.000   Median :3.000   Median :410004  
 Mean   : 4.859   Mean   :1.841   Mean   :3.005   Mean   :416252  
 3rd Qu.: 6.000   3rd Qu.:2.000   3rd Qu.:5.000   3rd Qu.:630001  
 Max.   :10.000   Max.   :3.000   Max.   :9.000   Max.   :862005  
 NA's   :2330     NA's   :2330    NA's   :2485    NA's   :9486    
    I_WOMJOB         I_WOMPOL         I_WOMEDU        I_HOMOLIB    
 Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.000  
 1st Qu.:0.2500   1st Qu.:0.3300   1st Qu.:0.6600   1st Qu.:0.000  
 Median :0.5000   Median :0.6600   Median :0.6600   Median :0.111  
 Mean   :0.5075   Mean   :0.5427   Mean   :0.6649   Mean   :0.316  
 3rd Qu.:0.7500   3rd Qu.:0.6600   3rd Qu.:1.0000   3rd Qu.:0.556  
 Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.000  
 NA's   :648      NA's   :2222     NA's   :1250     NA's   :5691   
   I_ABORTLIB       womenparl     NS       
 Min.   :0.0000   Min.   : 3.38   0:59178  
 1st Qu.:0.0000   1st Qu.:17.39   1:28644  
 Median :0.1111   Median :21.88            
 Mean   :0.2659   Mean   :23.77            
 3rd Qu.:0.4444   3rd Qu.:28.99            
 Max.   :1.0000   Max.   :53.08            
 NA's   :1979     NA's   :5448             
Code
print(dfSummary(wvs, varnumbers = FALSE, plain.ascii = FALSE, graph.magnif = 0.30, style = "grid", valid.col = FALSE), 
      method = 'render', table.classes = 'table-condensed')

Data Frame Summary

wvs

Dimensions: 87822 x 40
Duplicates: 45
Variable Stats / Values Freqs (% of Valid) Graph Missing
A_YEAR [numeric]
Mean (sd) : 2018.8 (1.3)
min ≤ med ≤ max:
2017 ≤ 2018 ≤ 2022
IQR (CV) : 2 (0)
2017:9722(11.1%)
2018:40647(46.3%)
2019:7007(8.0%)
2020:21187(24.1%)
2021:5918(6.7%)
2022:3341(3.8%)
0 (0.0%)
B_COUNTRY_ALPHA [character]
1. CAN
2. IDN
3. CHN
4. USA
5. TUR
6. NLD
7. HKG
8. BOL
9. SGP
10. PAK
[ 49 others ]
4018(4.6%)
3200(3.6%)
3036(3.5%)
2596(3.0%)
2415(2.7%)
2145(2.4%)
2075(2.4%)
2067(2.4%)
2012(2.3%)
1995(2.3%)
62263(70.9%)
0 (0.0%)
Q_MODE [numeric]
Mean (sd) : 1.7 (0.9)
min ≤ med ≤ max:
1 ≤ 2 ≤ 5
IQR (CV) : 1 (0.5)
1:42686(48.6%)
2:30197(34.4%)
3:10642(12.1%)
4:4223(4.8%)
5:74(0.1%)
0 (0.0%)
G_TOWNSIZE [numeric]
Mean (sd) : 5.3 (2.4)
min ≤ med ≤ max:
1 ≤ 6 ≤ 8
IQR (CV) : 5 (0.5)
1:8337(9.6%)
2:8407(9.7%)
3:7237(8.4%)
4:6240(7.2%)
5:10100(11.7%)
6:8447(9.8%)
7:15461(17.9%)
8:22319(25.8%)
1274 (1.5%)
H_SETTLEMENT [numeric]
Mean (sd) : 3.1 (1.5)
min ≤ med ≤ max:
1 ≤ 3 ≤ 5
IQR (CV) : 3 (0.5)
1:18302(20.9%)
2:17840(20.4%)
3:14116(16.1%)
4:14500(16.5%)
5:22857(26.1%)
207 (0.2%)
H_URBRURAL [numeric]
Min : 1
Mean : 1.3
Max : 2
1:59862(68.2%)
2:27928(31.8%)
32 (0.0%)
Long [numeric]
Mean (sd) : 36.2 (68.1)
min ≤ med ≤ max:
-156.3 ≤ 39.9 ≤ 156.9
IQR (CV) : 92.6 (1.9)
5482 distinct values 27098 (30.9%)
Lat [numeric]
Mean (sd) : 21.4 (20)
min ≤ med ≤ max:
-43.3 ≤ 24.8 ≤ 100.3
IQR (CV) : 28.7 (0.9)
3911 distinct values 27094 (30.9%)
FamImpt [numeric]
Mean (sd) : 1.1 (0.4)
min ≤ med ≤ max:
1 ≤ 1 ≤ 4
IQR (CV) : 0 (0.3)
1:78979(90.1%)
2:7722(8.8%)
3:793(0.9%)
4:182(0.2%)
146 (0.2%)
FriendsImpt [numeric]
Mean (sd) : 1.7 (0.7)
min ≤ med ≤ max:
1 ≤ 2 ≤ 4
IQR (CV) : 1 (0.4)
1:38026(43.4%)
2:37657(43.0%)
3:10105(11.5%)
4:1745(2.0%)
289 (0.3%)
LeisureImpt [numeric]
Mean (sd) : 1.8 (0.8)
min ≤ med ≤ max:
1 ≤ 2 ≤ 4
IQR (CV) : 1 (0.4)
1:35509(40.7%)
2:37328(42.7%)
3:12046(13.8%)
4:2466(2.8%)
473 (0.5%)
ReligionImpt [numeric]
Mean (sd) : 1.9 (1.1)
min ≤ med ≤ max:
1 ≤ 2 ≤ 4
IQR (CV) : 2 (0.6)
1:42455(48.8%)
2:18300(21.0%)
3:15396(17.7%)
4:10840(12.5%)
831 (0.9%)
Happiness [numeric]
Mean (sd) : 1.9 (0.7)
min ≤ med ≤ max:
1 ≤ 2 ≤ 4
IQR (CV) : 1 (0.4)
1:27071(31.0%)
2:47564(54.5%)
3:10659(12.2%)
4:1954(2.2%)
574 (0.7%)
PerceivedHealth [numeric]
Mean (sd) : 2.2 (0.9)
min ≤ med ≤ max:
1 ≤ 2 ≤ 5
IQR (CV) : 1 (0.4)
1:19021(21.7%)
2:38932(44.5%)
3:24210(27.6%)
4:4434(5.1%)
5:971(1.1%)
254 (0.3%)
FOC [numeric]
Mean (sd) : 7.2 (2.3)
min ≤ med ≤ max:
1 ≤ 7 ≤ 10
IQR (CV) : 3 (0.3)
1:2162(2.5%)
2:1243(1.4%)
3:2445(2.8%)
4:3500(4.0%)
5:10992(12.6%)
6:9521(10.9%)
7:13833(15.9%)
8:16714(19.2%)
9:7937(9.1%)
10:18675(21.5%)
800 (0.9%)
LS [numeric]
Mean (sd) : 7 (2.3)
min ≤ med ≤ max:
1 ≤ 7 ≤ 10
IQR (CV) : 3 (0.3)
1:2484(2.8%)
2:1284(1.5%)
3:2875(3.3%)
4:4064(4.6%)
5:10620(12.1%)
6:10040(11.5%)
7:14730(16.8%)
8:17517(20.0%)
9:8939(10.2%)
10:14876(17.0%)
393 (0.4%)
FS [numeric]
Mean (sd) : 6.2 (2.4)
min ≤ med ≤ max:
1 ≤ 6 ≤ 10
IQR (CV) : 3 (0.4)
1:4989(5.7%)
2:2834(3.2%)
3:5059(5.8%)
4:6455(7.4%)
5:14206(16.3%)
6:11865(13.6%)
7:13932(16.0%)
8:13170(15.1%)
9:5783(6.6%)
10:8984(10.3%)
545 (0.6%)
Trust [numeric]
Min : 1
Mean : 1.8
Max : 2
1:20326(23.5%)
2:66298(76.5%)
1198 (1.4%)
AttendReligious [numeric]
Mean (sd) : 4.1 (2.2)
min ≤ med ≤ max:
1 ≤ 4 ≤ 7
IQR (CV) : 4 (0.5)
1:11941(13.8%)
2:16094(18.5%)
3:8890(10.2%)
4:13579(15.6%)
5:4512(5.2%)
6:10835(12.5%)
7:20937(24.1%)
1034 (1.2%)
Sex [numeric]
Min : 1
Mean : 1.5
Max : 2
1:41654(47.5%)
2:46106(52.5%)
62 (0.1%)
Age [numeric]
Mean (sd) : 42.9 (16.4)
min ≤ med ≤ max:
16 ≤ 41 ≤ 103
IQR (CV) : 26 (0.4)
85 distinct values 339 (0.4%)
Immigrant [numeric]
Min : 1
Mean : 1.1
Max : 2
1:82299(94.1%)
2:5179(5.9%)
344 (0.4%)
Citizen [numeric]
Min : 1
Mean : 1
Max : 2
1:80826(97.8%)
2:1832(2.2%)
5164 (5.9%)
HHSize [numeric]
Mean (sd) : 3.9 (2.2)
min ≤ med ≤ max:
1 ≤ 4 ≤ 63
IQR (CV) : 3 (0.6)
33 distinct values 852 (1.0%)
Parents [numeric]
Mean (sd) : 1.4 (0.6)
min ≤ med ≤ max:
1 ≤ 1 ≤ 4
IQR (CV) : 1 (0.4)
1:61004(70.6%)
2:20796(24.1%)
3:4048(4.7%)
4:536(0.6%)
1438 (1.6%)
Married [numeric]
Mean (sd) : 2.6 (2.1)
min ≤ med ≤ max:
1 ≤ 1 ≤ 6
IQR (CV) : 4 (0.8)
1:49193(56.3%)
2:6782(7.8%)
3:3614(4.1%)
4:1909(2.2%)
5:4770(5.5%)
6:21050(24.1%)
504 (0.6%)
Kids [numeric]
Mean (sd) : 1.8 (1.7)
min ≤ med ≤ max:
0 ≤ 2 ≤ 24
IQR (CV) : 3 (1)
23 distinct values 1201 (1.4%)
Edu [numeric]
Mean (sd) : 3.5 (2)
min ≤ med ≤ max:
0 ≤ 3 ≤ 8
IQR (CV) : 3 (0.6)
0:4690(5.4%)
1:10721(12.3%)
2:12179(14.0%)
3:22178(25.5%)
4:8235(9.5%)
5:7446(8.6%)
6:15158(17.4%)
7:5402(6.2%)
8:995(1.1%)
818 (0.9%)
Job [numeric]
Mean (sd) : 3.1 (2.1)
min ≤ med ≤ max:
1 ≤ 3 ≤ 8
IQR (CV) : 4 (0.7)
1:31351(36.2%)
2:7467(8.6%)
3:12868(14.8%)
4:10126(11.7%)
5:12073(13.9%)
6:5034(5.8%)
7:6783(7.8%)
8:977(1.1%)
1143 (1.3%)
Income [numeric]
Mean (sd) : 4.9 (2.1)
min ≤ med ≤ max:
1 ≤ 5 ≤ 10
IQR (CV) : 3 (0.4)
1:6904(8.1%)
2:5163(6.0%)
3:9612(11.2%)
4:11839(13.8%)
5:20733(24.3%)
6:13216(15.5%)
7:9950(11.6%)
8:4966(5.8%)
9:1417(1.7%)
10:1692(2.0%)
2330 (2.7%)
IncomeR [numeric]
Mean (sd) : 1.8 (0.6)
min ≤ med ≤ max:
1 ≤ 2 ≤ 3
IQR (CV) : 1 (0.3)
1:21679(25.4%)
2:55738(65.2%)
3:8075(9.4%)
2330 (2.7%)
Religion [numeric]
Mean (sd) : 3 (2.6)
min ≤ med ≤ max:
0 ≤ 3 ≤ 9
IQR (CV) : 4 (0.9)
0:19919(23.3%)
1:16027(18.8%)
2:6508(7.6%)
3:7762(9.1%)
4:235(0.3%)
5:23807(27.9%)
6:569(0.7%)
7:5556(6.5%)
8:2777(3.3%)
9:2177(2.6%)
2485 (2.8%)
Race [numeric]
Mean (sd) : 416251.8 (250427.1)
min ≤ med ≤ max:
20001 ≤ 410004 ≤ 862005
IQR (CV) : 471999 (0.6)
373 distinct values 9486 (10.8%)
I_WOMJOB [numeric]
Mean (sd) : 0.5 (0.3)
min ≤ med ≤ max:
0 ≤ 0.5 ≤ 1
IQR (CV) : 0.5 (0.7)
5 distinct values 648 (0.7%)
I_WOMPOL [numeric]
Mean (sd) : 0.5 (0.3)
min ≤ med ≤ max:
0 ≤ 0.7 ≤ 1
IQR (CV) : 0.3 (0.6)
4 distinct values 2222 (2.5%)
I_WOMEDU [numeric]
Mean (sd) : 0.7 (0.3)
min ≤ med ≤ max:
0 ≤ 0.7 ≤ 1
IQR (CV) : 0.3 (0.4)
4 distinct values 1250 (1.4%)
I_HOMOLIB [numeric]
Mean (sd) : 0.3 (0.4)
min ≤ med ≤ max:
0 ≤ 0.1 ≤ 1
IQR (CV) : 0.6 (1.2)
10 distinct values 5691 (6.5%)
I_ABORTLIB [numeric]
Mean (sd) : 0.3 (0.3)
min ≤ med ≤ max:
0 ≤ 0.1 ≤ 1
IQR (CV) : 0.4 (1.2)
10 distinct values 1979 (2.3%)
womenparl [numeric]
Mean (sd) : 23.8 (10.6)
min ≤ med ≤ max:
3.4 ≤ 21.9 ≤ 53.1
IQR (CV) : 11.6 (0.4)
54 distinct values 5448 (6.2%)
NS [factor]
1. 0
2. 1
59178(67.4%)
28644(32.6%)
0 (0.0%)

Generated by summarytools 1.0.1 (R version 4.2.1)
2022-10-13

The dataset has 87,822 rows, each representing one participant, and 40 columns. All variables seem to be labelled correctly.

Referring to the codebook, these are some noteworthy descriptive statistics:

  • Respondents tended to come from more urban settings (H_URBRURAL).

  • On average, family was perceived as more important than friends, leisure time and religion (FamImpt, FriendsImpt, LeisureImpt, ReligionImpt).

  • On average, people were “quite happy” (the second-highest option for Happiness).

  • Life satisfaction tended to be 7/10 (LS).

  • People tended to err on the side of caution when it came to trusting others (Trust).

  • Households had 4 people on average, with maximum household size being 63 (HHSize)!

  • The interquartile range for education was lower secondary to short-cycle tertiary education (Edu).

  • For the survey variables (FamImpt to I_ABORTLIB), missing data ranged from 0.2% to 10.8%, which is acceptable.

  • 67.4% of the respondents came from the Global North (NS).

Let’s check if life satisfaction and happiness differ between the Global North and South.

Code
t.test(Happiness ~ NS, wvs)

    Welch Two Sample t-test

data:  Happiness by NS
t = 4.1272, df = 49878, p-value = 3.677e-05
alternative hypothesis: true difference in means between group 0 and group 1 is not equal to 0
95 percent confidence interval:
 0.01164249 0.03270103
sample estimates:
mean in group 0 mean in group 1 
       1.863945        1.841774 
Code
t.test(LS ~ NS, wvs)

    Welch Two Sample t-test

data:  LS by NS
t = 13.283, df = 47990, p-value < 2.2e-16
alternative hypothesis: true difference in means between group 0 and group 1 is not equal to 0
95 percent confidence interval:
 0.1962795 0.2642322
sample estimates:
mean in group 0 mean in group 1 
       7.117885        6.887629 

The Welch’s two-sample t-tests show that there is a significant difference in happiness and life satisfaction between the Global North and South, where the former has higher mean values for both, p < .001. This echoes Alba (2019)’s finding on happiness and adds new knowledge to the literature regarding life satisfaction.

We can also create graphs to visualize the latitude and longitude of countries in the Global North and Global South.

Code
ggplot(wvs) + geom_bin2d(mapping = aes(x = Long, y = Lat)) + facet_wrap(vars(NS))
Warning: Removed 27098 rows containing non-finite values (stat_bin2d).

The graph above shows that the Global North (“0”) and South (“1”) are not neatly divided by physical location, due to the existence of developed countries physically located in the South (e.g., South Korea) and developing countries physically located in the North (e.g., Ukraine).

Bibliography

Addai, I., Opoku-Agyeman, C., & Amanfu, S. (2013). Exploring Predictors of Subjective Well-Being in Ghana: A Micro-Level Study. Journal Of Happiness Studies, 15(4), 869-890.

Alba, C. (2019). A Data Analysis of the World Happiness Index and its Relation to the North-South Divide. Undergraduate Economic Review, 16(1).

Haerpfer, C., Inglehart, R., Moreno, A., Welzel, C., Kizilova, K., Diez-Medrano J., M. Lagos, P. Norris, E. Ponarin & B. Puranen (eds.). 2022. World Values Survey: Round Seven - Country-Pooled Datafile Version 4.0. Madrid, Spain & Vienna, Austria: JD Systems Institute & WVSA Secretariat.

Ngamaba, K. (2016). Happiness and life satisfaction in Rwanda. Journal Of Psychology In Africa, 26(5), 407-414.

World Bank Country and Lending Groups. World Bank Data Help Desk. (2022). Retrieved from https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups.

WVS Database. World Values Survey. (2022). Retrieved from https://www.worldvaluessurvey.org/WVSDocumentationWV7.jsp.