hw5
Shoshana Buck
Author

Shoshana Buck

Published

December 9, 2022

Code
library(tidyverse)
library(alr4)
library(smss)

knitr::opts_chunk$set(echo = TRUE)

Question 1

Code
data(house.selling.price)
house.selling.price
    case Taxes Beds Baths New  Price Size
1      1  3104    4     2   0 279900 2048
2      2  1173    2     1   0 146500  912
3      3  3076    4     2   0 237700 1654
4      4  1608    3     2   0 200000 2068
5      5  1454    3     3   0 159900 1477
6      6  2997    3     2   1 499900 3153
7      7  4054    3     2   0 265500 1355
8      8  3002    3     2   1 289900 2075
9      9  6627    5     4   0 587000 3990
10    10   320    3     2   0  70000 1160
11    11   630    3     2   0  64500 1220
12    12  1780    3     2   0 167000 1690
13    13  1630    3     2   0 114600 1380
14    14  1530    3     2   0 103000 1590
15    15   930    3     1   0 101000 1050
16    16   590    2     1   0  70000  770
17    17  1050    3     2   0  85000 1410
18    18    20    3     1   0  22500 1060
19    19   870    2     2   0  90000 1300
20    20  1320    3     2   0 133000 1500
21    21  1350    2     1   0  90500  820
22    22  5616    4     3   1 577500 3949
23    23   680    2     1   0 142500 1170
24    24  1840    3     2   0 160000 1500
25    25  3680    4     2   0 240000 2790
26    26  1660    3     1   0  87000 1030
27    27  1620    3     2   0 118600 1250
28    28  3100    3     2   0 140000 1760
29    29  2070    2     3   0 148000 1550
30    30   830    3     2   0  69000 1120
31    31  2260    4     2   0 176000 2000
32    32  1760    3     1   0  86500 1350
33    33  2750    3     2   1 180000 1840
34    34  2020    4     2   0 179000 2510
35    35  4900    3     3   1 338000 3110
36    36  1180    4     2   0 130000 1760
37    37  2150    3     2   0 163000 1710
38    38  1600    2     1   0 125000 1110
39    39  1970    3     2   0 100000 1360
40    40  2060    3     1   0 100000 1250
41    41  1980    3     1   0 100000 1250
42    42  1510    3     2   0 146500 1480
43    43  1710    3     2   0 144900 1520
44    44  1590    3     2   0 183000 2020
45    45  1230    3     2   0  69900 1010
46    46  1510    2     2   0  60000 1640
47    47  1450    2     2   0 127000  940
48    48   970    3     2   0  86000 1580
49    49   150    2     2   0  50000  860
50    50  1470    3     2   0 137000 1420
51    51  1850    3     2   0 121300 1270
52    52   820    2     1   0  81000  980
53    53  2050    4     2   0 188000 2300
54    54   710    3     2   0  85000 1430
55    55  1280    3     2   0 137000 1380
56    56  1360    3     2   0 145000 1240
57    57   830    3     2   0  69000 1120
58    58   800    3     2   0 109300 1120
59    59  1220    3     2   0 131500 1900
60    60  3360    4     3   0 200000 2430
61    61   210    3     2   0  81900 1080
62    62   380    2     1   0  91200 1350
63    63  1920    4     3   0 124500 1720
64    64  4350    3     3   0 225000 4050
65    65  1510    3     2   0 136500 1500
66    66  4154    3     3   0 381000 2581
67    67  1976    3     2   1 250000 2120
68    68  3605    3     3   1 354900 2745
69    69  1400    3     2   0 140000 1520
70    70   790    2     2   0  89900 1280
71    71  1210    3     2   0 137000 1620
72    72  1550    3     2   0 103000 1520
73    73  2800    3     2   0 183000 2030
74    74  2560    3     2   0 140000 1390
75    75  1390    4     2   0 160000 1880
76    76  5443    3     2   0 434000 2891
77    77  2850    2     1   0 130000 1340
78    78  2230    2     2   0 123000  940
79    79    20    2     1   0  21000  580
80    80  1510    4     2   0  85000 1410
81    81   710    3     2   0  69900 1150
82    82  1540    3     2   0 125000 1380
83    83  1780    3     2   1 162600 1470
84    84  2920    2     2   1 156900 1590
85    85  1710    3     2   1 105900 1200
86    86  1880    3     2   0 167500 1920
87    87  1680    3     2   0 151800 2150
88    88  3690    5     3   0 118300 2200
89    89   900    2     2   0  94300  860
90    90   560    3     1   0  93900 1230
91    91  2040    4     2   0 165000 1140
92    92  4390    4     3   1 285000 2650
93    93   690    3     1   0  45000 1060
94    94  2100    3     2   0 124900 1770
95    95  2880    4     2   0 147000 1860
96    96   990    2     2   0 176000 1060
97    97  3030    3     2   0 196500 1730
98    98  1580    3     2   0 132200 1370
99    99  1770    3     2   0  88400 1560
100  100  1430    3     2   0 127200 1340

1a.

For backward elimination, which variable would be deleted first? Why?

‘Beds’ would be the variable that would be deleted first because it has the highest p-value.

1b.

For forward selection, which variable would be added first? Why?

‘New’ and ‘Size’ are two variables that would be added first because it has the smallest p-value. However, looking at the correlation matrix ‘Size’ has a higher correlation (0.89) with ‘Price’ than ‘New’ (0.357), so ‘Size’ would be added first.

1c.

Why do you think that BEDS has such a large P-value in the multiple regression model, even though it has a substantial correlation with PRICE?

I think that ‘Beds’ has a large p-value because there are too many variables and or redundant interaction terms. I think also the fact that there are only 100 observations does not get an large enough sample which causes for such a high p-value in ‘Beds.’

1d.

Using software with these four predictors, find the model that would be selected using each criterion:

Code
hsp<-lm(Price~ .-Taxes - case, data = house.selling.price)
hsp2<- lm(Price~ .- Taxes - case- Beds, data = house.selling.price)
hsp3<- lm (Price~ .- Taxes - case- Beds - Baths, data = house.selling.price)
hsp4<- lm (Price~ .- Taxes - case- Beds-New, data = house.selling.price)

R2 & Adjusted R2

Code
summary(hsp)

Call:
lm(formula = Price ~ . - Taxes - case, data = house.selling.price)

Residuals:
    Min      1Q  Median      3Q     Max 
-215747  -30833   -5574   18800  164471 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) -28849.22   27261.16  -1.058  0.29262    
Beds         -8202.38   10449.84  -0.785  0.43445    
Baths         5273.78   13080.17   0.403  0.68772    
New          54562.38   19214.89   2.840  0.00553 ** 
Size           118.12      12.32   9.585 1.27e-15 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 54250 on 95 degrees of freedom
Multiple R-squared:  0.7245,    Adjusted R-squared:  0.713 
F-statistic: 62.47 on 4 and 95 DF,  p-value: < 2.2e-16
Code
summary(hsp2)

Call:
lm(formula = Price ~ . - Taxes - case - Beds, data = house.selling.price)

Residuals:
    Min      1Q  Median      3Q     Max 
-204134  -34520   -5483   18325  161674 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) -43433.23   19908.84  -2.182  0.03158 *  
Baths         3057.13   12746.12   0.240  0.81096    
New          57745.94   18744.37   3.081  0.00269 ** 
Size           114.42      11.36  10.070  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 54140 on 96 degrees of freedom
Multiple R-squared:  0.7228,    Adjusted R-squared:  0.7141 
F-statistic: 83.42 on 3 and 96 DF,  p-value: < 2.2e-16
Code
summary(hsp3)

Call:
lm(formula = Price ~ . - Taxes - case - Beds - Baths, data = house.selling.price)

Residuals:
    Min      1Q  Median      3Q     Max 
-205102  -34374   -5778   18929  163866 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept) -40230.867  14696.140  -2.738  0.00737 ** 
New          57736.283  18653.041   3.095  0.00257 ** 
Size           116.132      8.795  13.204  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 53880 on 97 degrees of freedom
Multiple R-squared:  0.7226,    Adjusted R-squared:  0.7169 
F-statistic: 126.3 on 2 and 97 DF,  p-value: < 2.2e-16
Code
summary(hsp4)

Call:
lm(formula = Price ~ . - Taxes - case - Beds - New, data = house.selling.price)

Residuals:
    Min      1Q  Median      3Q     Max 
-235844  -27889   -2667   20749  154091 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) -54042.0    20449.0  -2.643  0.00959 ** 
Baths         2972.8    13292.2   0.224  0.82350    
Size           124.9       11.3  11.053  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 56460 on 97 degrees of freedom
Multiple R-squared:  0.6954,    Adjusted R-squared:  0.6891 
F-statistic: 110.7 on 2 and 97 DF,  p-value: < 2.2e-16

PRESS

Code
#hsp
res<- resid(hsp)
p<- resid(hsp)/(1-lm.influence(hsp)$hat)
PRESS<- sum(p^2)
PRESS
[1] 366008520409
Code
#hsp2
res2<- resid(hsp2)
p2<- resid(hsp2)/(1-lm.influence(hsp2)$hat)
PRESS2<- sum(p2^2)
PRESS2
[1] 3.43386e+11
Code
#hsp3
res3<- resid(hsp3)
p3<- resid(hsp3)/(1-lm.influence(hsp3)$hat)
PRESS3<- sum(p3^2)
PRESS3
[1] 3.33901e+11
Code
#hsp4
res4<- resid(hsp4)
p4<- resid(hsp4)/(1-lm.influence(hsp4)$hat)
PRESS4<- sum(p4^2)
PRESS4
[1] 361316756861

AIC

Code
AIC(hsp)
[1] 2470.942
Code
AIC(hsp2)
[1] 2469.588
Code
AIC(hsp3)
[1] 2467.648
Code
AIC(hsp4)
[1] 2477.016

BIC

Code
BIC(hsp)
[1] 2486.573
Code
BIC(hsp2)
[1] 2482.614
Code
BIC(hsp3)
[1] 2478.069
Code
BIC(hsp4)
[1] 2487.437

1e.

Explain which model you prefer and why.

I prefer using the AIC or BIC model because they penalize the addition of variables and the smaller the output value is the better the model is.

Question 2

Code
data(trees)
trees
   Girth Height Volume
1    8.3     70   10.3
2    8.6     65   10.3
3    8.8     63   10.2
4   10.5     72   16.4
5   10.7     81   18.8
6   10.8     83   19.7
7   11.0     66   15.6
8   11.0     75   18.2
9   11.1     80   22.6
10  11.2     75   19.9
11  11.3     79   24.2
12  11.4     76   21.0
13  11.4     76   21.4
14  11.7     69   21.3
15  12.0     75   19.1
16  12.9     74   22.2
17  12.9     85   33.8
18  13.3     86   27.4
19  13.7     71   25.7
20  13.8     64   24.9
21  14.0     78   34.5
22  14.2     80   31.7
23  14.5     74   36.3
24  16.0     72   38.3
25  16.3     77   42.6
26  17.3     81   55.4
27  17.5     82   55.7
28  17.9     80   58.3
29  18.0     80   51.5
30  18.0     80   51.0
31  20.6     87   77.0

2a.

fit a multiple regression model with the Volume as the outcome and Girth and Height as the explanatory variables.

Code
t<- lm(Volume ~ Girth + Height, data = trees)
summary(t)

Call:
lm(formula = Volume ~ Girth + Height, data = trees)

Residuals:
    Min      1Q  Median      3Q     Max 
-6.4065 -2.6493 -0.2876  2.2003  8.4847 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) -57.9877     8.6382  -6.713 2.75e-07 ***
Girth         4.7082     0.2643  17.816  < 2e-16 ***
Height        0.3393     0.1302   2.607   0.0145 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.882 on 28 degrees of freedom
Multiple R-squared:  0.948, Adjusted R-squared:  0.9442 
F-statistic:   255 on 2 and 28 DF,  p-value: < 2.2e-16

2b.

Run regression diagnostic plots on the model. Based on the plots, do you think any of the regression assumptions is violated?

Code
par(mfrow = c (2,3)); plot(t,which = 1:6)

After running a diagnostic plot on the models I think that the Residuals vs Fitted and Scale- Location have been violated in the regression assumptions.

Residuals vs Fitted graph the residuals should be more uniform and in an arch that is surrounding the red line.

Scale-Location residuals should be more uniform and surrounding the red line.

Question 3

Code
data(florida)
florida
               Gore   Bush Buchanan
ALACHUA       47300  34062      262
BAKER          2392   5610       73
BAY           18850  38637      248
BRADFORD       3072   5413       65
BREVARD       97318 115185      570
BROWARD      386518 177279      789
CALHOUN        2155   2873       90
CHARLOTTE     29641  35419      182
CITRUS        25501  29744      270
CLAY          14630  41745      186
COLLIER       29905  60426      122
COLUMBIA       7047  10964       89
DADE         328702 289456      561
DE SOTO        3322   4256       36
DIXIE          1825   2698       29
DUVAL        107680 152082      650
ESCAMBIA      40958  73029      504
FLAGLER       13891  12608       83
FRANKLIN       2042   2448       33
GADSDEN        9565   4750       39
GILCHRIST      1910   3300       29
GLADES         1420   1840        9
GULF           2389   3546       71
HAMILTON       1718   2153       24
HARDEE         2341   3764       30
HENDRY         3239   4743       22
HERNANDO      32644  30646      242
HIGHLANDS     14152  20196       99
HILLSBOROUGH 166581 176967      836
HOLMES         2154   4985       76
INDIAN RIVER  19769  28627      105
JACKSON        6868   9138      102
JEFFERSON      3038   2481       29
LAFAYETTE       788   1669       10
LAKE          36555  49963      289
LEE           73560 106141      305
LEON          61425  39053      282
LEVY           5403   6860       67
LIBERTY        1011   1316       39
MADISON        3011   3038       29
MANATEE       49169  57948      272
MARION        44648  55135      563
MARTIN        26619  33864      108
MONROE        16483  16059       47
NASSAU         6952  16404       90
OKALOOSA      16924  52043      267
OKEECHOBEE     4588   5058       43
ORANGE       140115 134476      446
OSCEOLA       28177  26216      145
PALM BEACH   268945 152846     3407
PASCO         69550  68581      570
PINELLAS     199660 184312     1010
POLK          74977  90101      538
PUTNAM        12091  13439      147
ST. JOHNS     19482  39497      229
ST. LUCIE     41559  34705      124
SANTA ROSA    12795  36248      311
SARASOTA      72854  83100      305
SEMINOLE      58888  75293      194
SUMTER         9634  12126      114
SUWANNEE       4084   8014      108
TAYLOR         2647   4051       27
UNION          1399   2326       26
VOLUSIA       97063  82214      396
WAKULLA        3835   4511       46
WALTON         5637  12176      120
WASHINGTON     2796   4983       88

3a.

Run a simple linear regression model where the Buchanan vote is the outcome and the Bush vote is the explanatory variable. Produce the regression diagnostic plots. Is Palm Beach County an outlier based on the diagnostic plots? Why or why not?

Code
flo<-lm(Buchanan ~ Bush, data = florida)
summary(flo)

Call:
lm(formula = Buchanan ~ Bush, data = florida)

Residuals:
    Min      1Q  Median      3Q     Max 
-907.50  -46.10  -29.19   12.26 2610.19 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) 4.529e+01  5.448e+01   0.831    0.409    
Bush        4.917e-03  7.644e-04   6.432 1.73e-08 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 353.9 on 65 degrees of freedom
Multiple R-squared:  0.3889,    Adjusted R-squared:  0.3795 
F-statistic: 41.37 on 1 and 65 DF,  p-value: 1.727e-08

Diagnostic plot

Code
par(mfrow = c (2,3)); plot(flo,which = 1:6)

Based on the diagnostic plots ‘Palm Beach’ is an outlier. Most of the residuals are grouped together don’t violate the the regression assumptions. However, in all of the plots the ‘Palm Beach’ residual violates all of the regression assumptions. For example, in the Residuals vs Fitted plot the data is uniform and linear. The ‘Palm Beach’ residual is no where near the rest of the residuals.

3b.

Take the log of both variables (Bush vote and Buchanan Vote) and repeat the analysis in (a). Does your findings change?

Code
log_flo<- lm(log(Buchanan) ~ log(Bush), data = florida)
summary(log_flo)

Call:
lm(formula = log(Buchanan) ~ log(Bush), data = florida)

Residuals:
     Min       1Q   Median       3Q      Max 
-0.96075 -0.25949  0.01282  0.23826  1.66564 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) -2.57712    0.38919  -6.622 8.04e-09 ***
log(Bush)    0.75772    0.03936  19.251  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.4673 on 65 degrees of freedom
Multiple R-squared:  0.8508,    Adjusted R-squared:  0.8485 
F-statistic: 370.6 on 1 and 65 DF,  p-value: < 2.2e-16
Code
par(mfrow = c (2,3)); plot(log_flo,which = 1:6)

Yes, the findings did change after I logged ‘Buchanan’ and ‘Bush.’ After running a diagnostic plot the Residuals vs Fitted residuals are more uniform and evenly dispersed across the line. The scale-location has a similar pattern as the Residuals vs Fitted, there is more uniformity and even dispersement of residuals. Furthermore, the Normal Q-Q residuals seem to be better fit to the line because there are linear and uniform.