finalpart1
desriptive statistics
probability
Author

Ken Docekal

Published

October 10, 2022

Code
library(tidyverse)

knitr::opts_chunk$set(echo = TRUE)

Research Question

How much does state policy intervention impact future social and economic value preferences in residents?

While political values often explicitly inform social and economic policy actions taken by governments, policy actions themselves can also affect the development of the values of both program recipients and the greater public. Low-income recipients are assumed to benefit from, and therefore favor, state intervention and redistributive policies while upper income groups are assumed to be against but this is not always true, especially at the program level (Bueno et al.). Authors like Holland note that “the poor only have an economic interest in supporting social expenditures in contexts where they expect policies to redistribute resources or risks in their favor”.

This study seeks to better understand the relationship between policy action and value formation at the sub-national level by looking at the effect of US state policy interventions on residents’ subsequent policy preferences. By looking at how differences in US states’ social and economic policy intervention from 1936 to 2000 we can see how these factors may shape the subsequent policy values of residents. The dataset “Correlates of State Policy” includes variables which also allow us to better understand the role of differences in policy design and implementation by controlling for variables that may moderate impact, such as the length of policy implementation (Soss) and differences in economic interest (Ansell).

Sources:

Ansell, Ben. 2014. “The Political Economy of Ownership.” American Political Science Review 108(02):383{402.

Boehmke, Frederick J., and Paul Skinner. 2012. “State Policy Innovativeness Revisited.” State Politics and Policy Quarterly, 12(3):303-29.

Bueno, Natalia and Nunes, Felipe and Zucco, Cesar, Making the bourgeoisie? Values, voice, and state-provided homeownership (January 7, 2022). SSRN.

Caughey, Devin, and Christopher Warshaw. 2015. “The Dynamics of State Policy Liberalism, 1936–2014.” American Journal of Political Science, September. doi: 10.1111/ajps.12219.

Holland, Alisha C. 2018. “Diminished Expectations: Redistributive preferences in truncated welfare states.” World Politics 70(4):555{594

Jacoby, William G., and Saundra K. Schneider. 2008. “A New Measure of Policy Spending Priorities in the American States.”

Jordan, Marty P. and Matt Grossmann. 2016. The Correlates of State Policy Project v.1.10. East Lansing, MI: Institute for Public Policy and Social Research (IPPSR).

Rigby, Elizabeth and Gerald C. Wright. 2013. “Political Parties and Representation of the Poor in the American States.” American Journal of Political Science 57(3): 552-565.

Soss, Joe. 1999. “Lessons of Welfare: Policy Design, Political Learning, and Political Action.” The American Political Science Review 93(2):363{380.

Hypothesis

Increased state intervention increases US state residents’ preference for future interventions in social and economic policy.

This study proposes to build on Bueno et al.’s exploration of the effects of state-provided home ownership on political values and policy preferences by exploring that relationship at the level of US states. Additionally, instead of focusing on a single social program, we will examine the cumulative effects of multiple policy interventions across 65 years in 50 US states. This will provide insights into the effect of public policy on value differences at the sub-national level and on different subgroups including program non-participants. We will be able to see how this relationship may vary according to state and population characteristics despite differences in policy design and implementation.

Descriptive Statistics

This dataset is from the Correlates of State Policy Project by the Institute for Public Policy and Social Research at Michigan State University. The full dataset, which contains 928 variables and covers data from 1900 to 2016, draws from multiple sources including government agencies and peer-reviewed articles listed in the Sources section. Due to limited data coverage across all years however, this study will focus on the period from 1935 to 2000. We will examining the following 25 variables (listed with description and years available):

Independent-

Year 1935 - 2000

State 1935 - 2000

Econdev - Did State adopt Strategic Planning for Economic Development? 1981 – 1992

Pldvpag - Did State adopt Planning/Development Agency? 1935 – 1978

Urbrenen - Did State adopt Urban Renewal ? 1941 – 1952

Pollib_median - State Policy Liberalism Score – Median 1936 – 2014

Policypriorityscore - State Policy Priority Score - collective goods (e.g., education and highways) v particularized benefits (e.g., health care and welfare) 1982-2005

Poptotal - Population Total 1900 – 2008

Popfemale - Female Population 1994 – 2010

Nonwhite - Proportion of the population that is nonwhite 1974 - 2011

Soc_capital_ma - Hawes et al. Weighted Moving Average Measure of Social Capital 1984 - 2011

Evangelical_pop - Evangelical Population 1975 - 2013

Newimmig - New Immigrant Green Card Holders 1988 – 2011

Popdensity - Population Density 1975 – 1999

Gsp_q - Gross State Product Combined in Millions of 2016 Dollars 1963 – 2010

Gini_coef - Gini Coefficient 1917 - 2013

Hsdiploma - High School Diploma 1975 – 2006

Educspend - State Education Spending 1975 – 2001

Nofelons - Number of Felons Ineligible to Vote 1980 – 2010

Co2emissions - Total CO2 emissions from fossil-fuels (metric tons) 1960 – 2001

Ideo - State Ideology Score 1976 – 2011

Dependent-

Vst_ec - Mean Economic Liberalism- All Voters 2000

Vst_soc - Mean Social Liberalism- All Voters 2000

Vavgec_low - Mean Economic Liberalism Score for Low Income Voting Citizens 2000

Vavgsoc_low - Mean Social Liberalism Score for Low Income Voting Citizens 2000

Reading in dataset

Code
library(readr)
library(readxl)


statedata <- read.csv("_data/correlatesofstatepolicyprojectv1_10.csv")

Specifying variables

Code
statedata1 = subset(statedata, select = c(policypriorityscore, econdev, pldvpag, urbrenen, year, state, poptotal, popfemale, nonwhite, soc_capital_ma, evangelical_pop, newimmig, popdensity, gsp_q, gini_coef, hsdiploma, educspend, nofelons, co2emissions, ideo, pollib_median,vst_ec, vst_soc, vavgec_low, vavgsoc_low))

Specifying date range

Code
sd <- subset(statedata1, year>1934 & year<2001, na.rm = TRUE ) 

Descriptive statistics

Code
str(sd)
'data.frame':   3366 obs. of  25 variables:
 $ policypriorityscore: num  NA NA NA NA NA NA NA NA NA NA ...
 $ econdev            : int  0 0 0 0 0 0 0 0 0 0 ...
 $ pldvpag            : int  0 0 0 0 0 0 0 0 0 0 ...
 $ urbrenen           : int  0 0 0 0 0 0 0 0 0 0 ...
 $ year               : int  1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 ...
 $ state              : chr  "Alaska" "Alaska" "Alaska" "Alaska" ...
 $ poptotal           : int  NA NA NA NA NA NA NA NA NA NA ...
 $ popfemale          : int  NA NA NA NA NA NA NA NA NA NA ...
 $ nonwhite           : num  NA NA NA NA NA NA NA NA NA NA ...
 $ soc_capital_ma     : num  NA NA NA NA NA NA NA NA NA NA ...
 $ evangelical_pop    : num  NA NA NA NA NA NA NA NA NA NA ...
 $ newimmig           : int  NA NA NA NA NA NA NA NA NA NA ...
 $ popdensity         : num  NA NA NA NA NA NA NA NA NA NA ...
 $ gsp_q              : int  NA NA NA NA NA NA NA NA NA NA ...
 $ gini_coef          : num  NA NA NA NA NA NA NA NA NA NA ...
 $ hsdiploma          : num  NA NA NA NA NA NA NA NA NA NA ...
 $ educspend          : int  NA NA NA NA NA NA NA NA NA NA ...
 $ nofelons           : int  NA NA NA NA NA NA NA NA NA NA ...
 $ co2emissions       : int  NA NA NA NA NA NA NA NA NA NA ...
 $ ideo               : num  NA NA NA NA NA NA NA NA NA NA ...
 $ pollib_median      : num  NA NA NA NA NA NA NA NA NA NA ...
 $ vst_ec             : num  NA NA NA NA NA NA NA NA NA NA ...
 $ vst_soc            : num  NA NA NA NA NA NA NA NA NA NA ...
 $ vavgec_low         : num  NA NA NA NA NA NA NA NA NA NA ...
 $ vavgsoc_low        : num  NA NA NA NA NA NA NA NA NA NA ...
Code
glimpse(sd)
Rows: 3,366
Columns: 25
$ policypriorityscore <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ econdev             <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
$ pldvpag             <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
$ urbrenen            <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
$ year                <int> 1935, 1936, 1937, 1938, 1939, 1940, 1941, 1942, 19…
$ state               <chr> "Alaska", "Alaska", "Alaska", "Alaska", "Alaska", …
$ poptotal            <int> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ popfemale           <int> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ nonwhite            <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ soc_capital_ma      <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ evangelical_pop     <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ newimmig            <int> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ popdensity          <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ gsp_q               <int> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ gini_coef           <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ hsdiploma           <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ educspend           <int> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ nofelons            <int> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ co2emissions        <int> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ ideo                <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ pollib_median       <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ vst_ec              <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ vst_soc             <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ vavgec_low          <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ vavgsoc_low         <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
Code
summary(sd)
 policypriorityscore    econdev           pldvpag          urbrenen     
 Min.   :-0.2296     Min.   :0.00000   Min.   :0.0000   Min.   :0.0000  
 1st Qu.:-0.0372     1st Qu.:0.00000   1st Qu.:1.0000   1st Qu.:0.0000  
 Median : 0.0144     Median :0.00000   Median :1.0000   Median :1.0000  
 Mean   : 0.0093     Mean   :0.09364   Mean   :0.7703   Mean   :0.5327  
 3rd Qu.: 0.0638     3rd Qu.:0.00000   3rd Qu.:1.0000   3rd Qu.:1.0000  
 Max.   : 0.1987     Max.   :1.00000   Max.   :1.0000   Max.   :1.0000  
 NA's   :2416        NA's   :66        NA's   :66       NA's   :66      
      year         state              poptotal          popfemale       
 Min.   :1935   Length:3366        Min.   :  100000   Min.   :  236763  
 1st Qu.:1951   Class :character   1st Qu.:  960954   1st Qu.:  645293  
 Median :1968   Mode  :character   Median : 2600000   Median : 1900000  
 Mean   :1968                      Mean   : 3892303   Mean   : 2692111  
 3rd Qu.:1984                      3rd Qu.: 4700000   3rd Qu.: 3100000  
 Max.   :2000                      Max.   :34000000   Max.   :17000000  
                                   NA's   :30         NA's   :3009      
    nonwhite      soc_capital_ma    evangelical_pop    newimmig     
 Min.   :0.0048   Min.   :-2.9133   Min.   : 1.10   Min.   :   159  
 1st Qu.:0.0785   1st Qu.:-0.4193   1st Qu.: 9.60   1st Qu.:  1518  
 Median :0.1360   Median : 0.2357   Median :14.10   Median :  3973  
 Mean   :0.1752   Mean   : 0.3108   Mean   :18.83   Mean   : 18447  
 3rd Qu.:0.2586   3rd Qu.: 1.0615   3rd Qu.:26.00   3rd Qu.: 11424  
 Max.   :0.7130   Max.   : 3.0868   Max.   :74.00   Max.   :732735  
 NA's   :2016     NA's   :2550      NA's   :2066    NA's   :2703    
   popdensity            gsp_q           gini_coef        hsdiploma    
 Min.   :   0.6496   Min.   :    993   Min.   :0.3215   Min.   : 0.00  
 1st Qu.:  31.2611   1st Qu.:  12325   1st Qu.:0.4324   1st Qu.:73.90  
 Median :  85.3188   Median :  31568   Median :0.4667   Median :76.80  
 Mean   : 163.7982   Mean   :  74118   Mean   :0.4766   Mean   :75.94  
 3rd Qu.: 165.7868   3rd Qu.:  83769   3rd Qu.:0.5147   3rd Qu.:80.80  
 Max.   :1082.7000   Max.   :1300000   Max.   :0.7172   Max.   :91.80  
 NA's   :2116        NA's   :1428      NA's   :48       NA's   :2054   
   educspend          nofelons       co2emissions         ideo        
 Min.   :    0.0   Min.   :     0   Min.   :  4.00   Min.   :-0.5806  
 1st Qu.:  816.2   1st Qu.:  4668   1st Qu.: 24.00   1st Qu.:-0.2157  
 Median : 1809.5   Median : 15733   Median : 60.00   Median :-0.1392  
 Mean   : 3421.9   Mean   : 34844   Mean   : 88.28   Mean   :-0.1364  
 3rd Qu.: 4058.0   3rd Qu.: 41280   3rd Qu.:107.50   3rd Qu.:-0.0625  
 Max.   :35482.0   Max.   :499362   Max.   :669.00   Max.   : 0.4545  
 NA's   :2054      NA's   :2805     NA's   :1275     NA's   :2129     
 pollib_median          vst_ec          vst_soc         vavgec_low    
 Min.   :-2.32065   Min.   :-0.367   Min.   :-0.379   Min.   :-0.387  
 1st Qu.:-0.66509   1st Qu.:-0.171   1st Qu.:-0.163   1st Qu.: 0.021  
 Median :-0.07600   Median :-0.094   Median :-0.001   Median : 0.108  
 Mean   :-0.01096   Mean   :-0.094   Mean   :-0.024   Mean   : 0.079  
 3rd Qu.: 0.68865   3rd Qu.:-0.047   3rd Qu.: 0.106   3rd Qu.: 0.174  
 Max.   : 2.57199   Max.   : 0.147   Max.   : 0.357   Max.   : 0.290  
 NA's   :114        NA's   :3319     NA's   :3319     NA's   :3319    
  vavgsoc_low    
 Min.   :-0.466  
 1st Qu.:-0.200  
 Median :-0.093  
 Mean   :-0.073  
 3rd Qu.: 0.052  
 Max.   : 0.377  
 NA's   :3319