Code
library(tidyverse)
library(ggplot2)
library(stats)
library(alr4)
library(smss)
::opts_chunk$set(echo = TRUE) knitr
Adithya Parupudi
April 24, 2023
From the above result, we can say that the house was sold for 37704 dollars greater than predicted.
Using the prediction equation ŷ = -10536 + 53.8x1 + 2.84x2, where x2 equals lot size, the house selling price is expected to increase by 53.8 dollars per each square-foot increase in home size given the lot sized is fixed. This is because a fixed lot size would make 2.84x2 a set number in the prediction equation. Therefore, we would not need to factor in a change in the output based on any input. Then, we are left with the coefficient for the home size variable, which is 53.8. For x1 = 1, representing one square-foot of home size, the output would increase by 53.8 * 1 = 53.8.
For fixed home size, 53.8 * 1 = 2.84x2
An increase in lot size of about 18.94 square-feet would have the same impact as an increase of 1 square-foot in home size on the predicted selling price.
degree rank sex year ysdeg salary
1 Masters Prof Male 25 35 36350
2 Masters Prof Male 13 22 35350
3 Masters Prof Male 10 23 28200
4 Masters Prof Female 7 27 26775
5 PhD Prof Male 19 30 33696
6 Masters Prof Male 16 21 28516
7 PhD Prof Female 0 32 24900
8 Masters Prof Male 16 18 31909
9 PhD Prof Male 13 30 31850
10 PhD Prof Male 13 31 32850
11 Masters Prof Male 12 22 27025
12 Masters Assoc Male 15 19 24750
13 Masters Prof Male 9 17 28200
14 PhD Assoc Male 9 27 23712
15 Masters Prof Male 9 24 25748
16 Masters Prof Male 7 15 29342
17 Masters Prof Male 13 20 31114
18 PhD Assoc Male 11 14 24742
19 PhD Assoc Male 10 15 22906
20 PhD Prof Male 6 21 24450
21 PhD Asst Male 16 23 19175
22 PhD Assoc Male 8 31 20525
23 Masters Prof Male 7 13 27959
24 Masters Prof Female 8 24 38045
25 Masters Assoc Male 9 12 24832
26 Masters Prof Male 5 18 25400
27 Masters Assoc Male 11 14 24800
28 Masters Prof Female 5 16 25500
29 PhD Assoc Male 3 7 26182
30 PhD Assoc Male 3 17 23725
31 PhD Asst Female 10 15 21600
32 PhD Assoc Male 11 31 23300
33 PhD Asst Male 9 14 23713
34 PhD Assoc Female 4 33 20690
35 PhD Assoc Female 6 29 22450
36 Masters Assoc Male 1 9 20850
37 Masters Asst Female 8 14 18304
38 Masters Asst Male 4 4 17095
39 Masters Asst Male 4 5 16700
40 Masters Asst Male 4 4 17600
41 Masters Asst Male 3 4 18075
42 PhD Asst Male 3 11 18000
43 Masters Assoc Male 0 7 20999
44 Masters Asst Female 3 3 17250
45 Masters Asst Male 2 3 16500
46 Masters Asst Male 2 1 16094
47 Masters Asst Female 2 6 16150
48 Masters Asst Female 2 2 15350
49 Masters Asst Male 1 1 16244
50 Masters Asst Female 1 1 16686
51 Masters Asst Female 1 1 15000
52 Masters Asst Female 0 2 20300
Call:
lm(formula = salary ~ sex, data = salary)
Residuals:
Min 1Q Median 3Q Max
-8602.8 -4296.6 -100.8 3513.1 16687.9
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 24697 938 26.330 <2e-16 ***
sexFemale -3340 1808 -1.847 0.0706 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 5782 on 50 degrees of freedom
Multiple R-squared: 0.0639, Adjusted R-squared: 0.04518
F-statistic: 3.413 on 1 and 50 DF, p-value: 0.0706
The null hypothesis would be that mean salary for men and mean salary for women are equal, and the alternative hypothesis would be that the salaries are not equal. I ran a regression with sex as the explanatory variable and salary as the outcome variable. The female coefficient is -3340, which means that women do make less than men not considering any other variables. However, if we consider the other variables and also there is a significance level of 0.07, so we fail to reject the null hypothesis and therefore cannot conclude that there is a difference between mean salaries for men and women.
Call:
lm(formula = salary ~ ., data = salary)
Residuals:
Min 1Q Median 3Q Max
-4045.2 -1094.7 -361.5 813.2 9193.1
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 15746.05 800.18 19.678 < 2e-16 ***
degreePhD 1388.61 1018.75 1.363 0.180
rankAssoc 5292.36 1145.40 4.621 3.22e-05 ***
rankProf 11118.76 1351.77 8.225 1.62e-10 ***
sexFemale 1166.37 925.57 1.260 0.214
year 476.31 94.91 5.018 8.65e-06 ***
ysdeg -124.57 77.49 -1.608 0.115
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2398 on 45 degrees of freedom
Multiple R-squared: 0.855, Adjusted R-squared: 0.8357
F-statistic: 44.24 on 6 and 45 DF, p-value: < 2.2e-16
2.5 % 97.5 %
(Intercept) 14134.4059 17357.68946
degreePhD -663.2482 3440.47485
rankAssoc 2985.4107 7599.31080
rankProf 8396.1546 13841.37340
sexFemale -697.8183 3030.56452
year 285.1433 667.47476
ysdeg -280.6397 31.49105
Assuming there is no interaction between sex and other predictors, we can be 95% confident that the difference in salary of women compared to men falls between -697.8183 dollars and 3030.56452 dollars.
For degree as the predictor, a PHD would be expected to increase salary by 1388.61 dollars in reference to a Masters degree salary. However, at a significance level of 0.18, we cannot conclude that degree level has a statistically significant impact on salary.
For the rank variable, an Associate can expect a 5292.36 dollar increase in salary compared to Assistant, while a Professor can expect a 11118.76 dollar salary increase compared to Assistant. Both ranks have significance levels well below 0.05 and we can determine that rank does have a statistically significant impact on salary. For the variable of sex, a Female can expect a salary increase of 1166.37 dollars in comparison to Male salary, but the significance level is 0.214, so this is not a statistically significant relationship.
For year, a faculty member can expect a salary increase of 476.31 dollars for an increase in 1 year of employment in his/her/their position. Additionally, the level of significance is less than 0.01 so the relationship between year and salary appears to be significant.
For the ysdeg variable, an increase in years since earning highest degree can expect a decrease in salary, with a coefficient of -124.57. However, with a 0.115 level of significance, this relationship cannot be found to be statistically significant.
Call:
lm(formula = salary ~ rank, data = salary)
Residuals:
Min 1Q Median 3Q Max
-5209.0 -1819.2 -417.8 1586.6 8386.0
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 29659.0 669.3 44.316 < 2e-16 ***
rankAsst -11890.3 972.4 -12.228 < 2e-16 ***
rankAssoc -6483.0 1043.0 -6.216 1.09e-07 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2993 on 49 degrees of freedom
Multiple R-squared: 0.7542, Adjusted R-squared: 0.7442
F-statistic: 75.17 on 2 and 49 DF, p-value: 1.174e-15
After changing the baseline category for the rank variable, an Associate can expect a 6483.0 dollar decrease in salary compared to Professor, while a Assistant can expect a 11890.3 dollar salary decrease compared to Professor. Both ranks have significance levels well below 0.05 and we can determine that rank does have a statistically significant impact on salary.
Call:
lm(formula = salary ~ degree + sex + year + ysdeg, data = salary)
Residuals:
Min 1Q Median 3Q Max
-8146.9 -2186.9 -491.5 2279.1 11186.6
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 17183.57 1147.94 14.969 < 2e-16 ***
degreePhD -3299.35 1302.52 -2.533 0.014704 *
sexFemale -1286.54 1313.09 -0.980 0.332209
year 351.97 142.48 2.470 0.017185 *
ysdeg 339.40 80.62 4.210 0.000114 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3744 on 47 degrees of freedom
Multiple R-squared: 0.6312, Adjusted R-squared: 0.5998
F-statistic: 20.11 on 4 and 47 DF, p-value: 1.048e-09
When removing the variable “rank”, the coefficient for sex is -1286.54 compared to the above regression that included rank with a coefficient for sex at 1166.37. The new coefficient predicts that a female salary would be 1286.54 less than a male salary, when excluding the variable of rank. However, the significance level is 0.332, which is very high and therefore the results cannot be found to be statistically significant. While the change of the coefficient to negative upon removal of rank is interesting, the significance level would likely prevent these results from holding up in court as an indication of discrimination on the basis of sex.
Call:
lm(formula = salary ~ hired, data = salary)
Residuals:
Min 1Q Median 3Q Max
-8294 -3486 -1772 3829 10576
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 27469.4 913.4 30.073 < 2e-16 ***
hired1 -7343.5 1291.8 -5.685 6.73e-07 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4658 on 50 degrees of freedom
Multiple R-squared: 0.3926, Adjusted R-squared: 0.3804
F-statistic: 32.32 on 1 and 50 DF, p-value: 6.734e-07
Call:
lm(formula = salary ~ sex + rank + degree + hired, data = salary)
Residuals:
Min 1Q Median 3Q Max
-6187.5 -1750.9 -438.9 1719.5 9362.9
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 29511.3 784.0 37.640 < 2e-16 ***
sexFemale -829.2 997.6 -0.831 0.410
rankAsst -11925.7 1512.4 -7.885 4.37e-10 ***
rankAssoc -7100.4 1297.0 -5.474 1.76e-06 ***
degreePhD 1126.2 1018.4 1.106 0.275
hired1 319.0 1303.8 0.245 0.808
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3023 on 46 degrees of freedom
Multiple R-squared: 0.7645, Adjusted R-squared: 0.7389
F-statistic: 29.87 on 5 and 46 DF, p-value: 2.192e-13
I created a dummy variable called “hired” which coded those employed for 15 years or less (thus hired by the new Dean) as 1 and those who have been employed for over 15 years as 0. Then, I fit a new regression model and decided to include the variables of sex, rank, degree, and hired. I omitted the year and ysdeg variables to prevent overlapping or multicollinearity. Multicollinearity can be a concern when variables are highly correlated or related in some way. The idea of regression is to observe how each variable partially effects the output while holding the other variables fixed. We cannot reasonably change the year or ysdeg or hired variables individually while holding the other two fixed since they tend to “grow” in similar manners. Since the variable hired is a product of the ysdeg variable, we could not include both.
Based on the regression model, those hired by the current Dean are predicted to make 319 dollars more than those not hired by the Dean. When it comes to salary, this is a rather insignificant number. Furthermore, the level of significance for the hired variable is .81, which is astronomical and indicates that the relationship between hired and salary is not statistically significant. Based on these factors, I would state that findings do not indicate any favorable treatment by the Dean toward faculty that the Dean specifically hired.
case Taxes Beds Baths New Price Size
1 1 3104 4 2 0 279900 2048
2 2 1173 2 1 0 146500 912
3 3 3076 4 2 0 237700 1654
4 4 1608 3 2 0 200000 2068
5 5 1454 3 3 0 159900 1477
6 6 2997 3 2 1 499900 3153
7 7 4054 3 2 0 265500 1355
8 8 3002 3 2 1 289900 2075
9 9 6627 5 4 0 587000 3990
10 10 320 3 2 0 70000 1160
11 11 630 3 2 0 64500 1220
12 12 1780 3 2 0 167000 1690
13 13 1630 3 2 0 114600 1380
14 14 1530 3 2 0 103000 1590
15 15 930 3 1 0 101000 1050
16 16 590 2 1 0 70000 770
17 17 1050 3 2 0 85000 1410
18 18 20 3 1 0 22500 1060
19 19 870 2 2 0 90000 1300
20 20 1320 3 2 0 133000 1500
21 21 1350 2 1 0 90500 820
22 22 5616 4 3 1 577500 3949
23 23 680 2 1 0 142500 1170
24 24 1840 3 2 0 160000 1500
25 25 3680 4 2 0 240000 2790
26 26 1660 3 1 0 87000 1030
27 27 1620 3 2 0 118600 1250
28 28 3100 3 2 0 140000 1760
29 29 2070 2 3 0 148000 1550
30 30 830 3 2 0 69000 1120
31 31 2260 4 2 0 176000 2000
32 32 1760 3 1 0 86500 1350
33 33 2750 3 2 1 180000 1840
34 34 2020 4 2 0 179000 2510
35 35 4900 3 3 1 338000 3110
36 36 1180 4 2 0 130000 1760
37 37 2150 3 2 0 163000 1710
38 38 1600 2 1 0 125000 1110
39 39 1970 3 2 0 100000 1360
40 40 2060 3 1 0 100000 1250
41 41 1980 3 1 0 100000 1250
42 42 1510 3 2 0 146500 1480
43 43 1710 3 2 0 144900 1520
44 44 1590 3 2 0 183000 2020
45 45 1230 3 2 0 69900 1010
46 46 1510 2 2 0 60000 1640
47 47 1450 2 2 0 127000 940
48 48 970 3 2 0 86000 1580
49 49 150 2 2 0 50000 860
50 50 1470 3 2 0 137000 1420
51 51 1850 3 2 0 121300 1270
52 52 820 2 1 0 81000 980
53 53 2050 4 2 0 188000 2300
54 54 710 3 2 0 85000 1430
55 55 1280 3 2 0 137000 1380
56 56 1360 3 2 0 145000 1240
57 57 830 3 2 0 69000 1120
58 58 800 3 2 0 109300 1120
59 59 1220 3 2 0 131500 1900
60 60 3360 4 3 0 200000 2430
61 61 210 3 2 0 81900 1080
62 62 380 2 1 0 91200 1350
63 63 1920 4 3 0 124500 1720
64 64 4350 3 3 0 225000 4050
65 65 1510 3 2 0 136500 1500
66 66 4154 3 3 0 381000 2581
67 67 1976 3 2 1 250000 2120
68 68 3605 3 3 1 354900 2745
69 69 1400 3 2 0 140000 1520
70 70 790 2 2 0 89900 1280
71 71 1210 3 2 0 137000 1620
72 72 1550 3 2 0 103000 1520
73 73 2800 3 2 0 183000 2030
74 74 2560 3 2 0 140000 1390
75 75 1390 4 2 0 160000 1880
76 76 5443 3 2 0 434000 2891
77 77 2850 2 1 0 130000 1340
78 78 2230 2 2 0 123000 940
79 79 20 2 1 0 21000 580
80 80 1510 4 2 0 85000 1410
81 81 710 3 2 0 69900 1150
82 82 1540 3 2 0 125000 1380
83 83 1780 3 2 1 162600 1470
84 84 2920 2 2 1 156900 1590
85 85 1710 3 2 1 105900 1200
86 86 1880 3 2 0 167500 1920
87 87 1680 3 2 0 151800 2150
88 88 3690 5 3 0 118300 2200
89 89 900 2 2 0 94300 860
90 90 560 3 1 0 93900 1230
91 91 2040 4 2 0 165000 1140
92 92 4390 4 3 1 285000 2650
93 93 690 3 1 0 45000 1060
94 94 2100 3 2 0 124900 1770
95 95 2880 4 2 0 147000 1860
96 96 990 2 2 0 176000 1060
97 97 3030 3 2 0 196500 1730
98 98 1580 3 2 0 132200 1370
99 99 1770 3 2 0 88400 1560
100 100 1430 3 2 0 127200 1340
Call:
lm(formula = Price ~ Size + New, data = house.selling.price)
Residuals:
Min 1Q Median 3Q Max
-205102 -34374 -5778 18929 163866
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -40230.867 14696.140 -2.738 0.00737 **
Size 116.132 8.795 13.204 < 2e-16 ***
New 57736.283 18653.041 3.095 0.00257 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 53880 on 97 degrees of freedom
Multiple R-squared: 0.7226, Adjusted R-squared: 0.7169
F-statistic: 126.3 on 2 and 97 DF, p-value: < 2.2e-16
Both Size and New significantly positively predict selling price. As each predictor goes up by 1 unit, selling price rises by 116.132 dollars and 57736.283 dollars respectively.
Call:
lm(formula = Price ~ Size, data = new)
Residuals:
Min 1Q Median 3Q Max
-78606 -16092 -987 20068 76140
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -100755.31 42513.73 -2.370 0.0419 *
Size 166.35 17.09 9.735 4.47e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 45500 on 9 degrees of freedom
Multiple R-squared: 0.9133, Adjusted R-squared: 0.9036
F-statistic: 94.76 on 1 and 9 DF, p-value: 4.474e-06
Call:
lm(formula = Price ~ Size, data = old)
Residuals:
Min 1Q Median 3Q Max
-175748 -29155 -7297 14159 192519
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -22227.808 15708.186 -1.415 0.161
Size 104.438 9.538 10.950 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 52620 on 87 degrees of freedom
Multiple R-squared: 0.5795, Adjusted R-squared: 0.5747
F-statistic: 119.9 on 1 and 87 DF, p-value: < 2.2e-16
Size significantly positively predicts price for both new and old houses, but by a greater magnitude for new houses. Adjusted R-squared for the model is also much higher (0.91 vs. 0.58).
New_Price = 166 * Size - 100755.31
Old_Price = 104 * Size - 22227.808
Call:
lm(formula = Price ~ Size * New, data = house.selling.price)
Residuals:
Min 1Q Median 3Q Max
-175748 -28979 -6260 14693 192519
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -22227.808 15521.110 -1.432 0.15536
Size 104.438 9.424 11.082 < 2e-16 ***
New -78527.502 51007.642 -1.540 0.12697
Size:New 61.916 21.686 2.855 0.00527 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 52000 on 96 degrees of freedom
Multiple R-squared: 0.7443, Adjusted R-squared: 0.7363
F-statistic: 93.15 on 3 and 96 DF, p-value: < 2.2e-16
The predicted selling price, based on the new regression that includes interaction between Size and Newness, would look like:
New_Price = -22227.81 + 104.44 * Size - 78527.50 * 1 + 61.92 * Size * 1
Old_Price = -22227.81 + 104.44 * Size
[1] 148784.7
[1] 134432.2
As size of home goes up, the difference in predicted selling prices between old and new homes becomes larger.
The prediction model with interaction has a significantly large negative coefficient for the New variable. The adjusted r-squared for the model with interaction is 0.7363 and the adjusted r-squared for the first model without interaction is 0.7169. The increase in the adjusted r-squared with the interaction model could be due to an additional variable or could indicate a slightly better fit for the prediction of the data. Since the models do have similar adjusted r-squared values, I would prefer the model with interaction because the regression indicates that the interaction term is statistically significant to selling price prediction, so I feel it is necessary to utilize an equation that factors for this.
---
title: "Homework 4"
author: "Adithya Parupudi"
description: "my homework 4"
date: "04/24/2023"
format:
html:
toc: true
code-fold: true
code-copy: true
code-tools: true
categories:
- hw4
- Adithya Parupudi
---
```{r}
#| label: setup
#| warning: false
library(tidyverse)
library(ggplot2)
library(stats)
library(alr4)
library(smss)
knitr::opts_chunk$set(echo = TRUE)
```
## Question 1
## A
```{r}
Pred_selling_price <- -10536 + 53.8 * 1240 + 2.84 * 18000
Pred_selling_price
```
```{r}
Residual <- Pred_selling_price - 145000
Residual
```
From the above result, we can say that the house was sold for 37704 dollars greater than predicted.
## B
Using the prediction equation ŷ = -10536 + 53.8x1 + 2.84x2, where x2 equals lot size, the house selling price is expected to increase by 53.8 dollars per each square-foot increase in home size given the lot sized is fixed. This is because a fixed lot size would make 2.84x2 a set number in the prediction equation. Therefore, we would not need to factor in a change in the output based on any input. Then, we are left with the coefficient for the home size variable, which is 53.8. For x1 = 1, representing one square-foot of home size, the output would increase by 53.8 * 1 = 53.8.
## C
For fixed home size,
53.8 * 1 = 2.84x2
```{r}
result <- 53.8/2.84
result
```
An increase in lot size of about 18.94 square-feet would have the same impact as an increase of 1 square-foot in home size on the predicted selling price.
## Question 2
```{r}
data("salary")
salary
```
## A
```{r}
summary(lm(salary ~ sex, data = salary))
```
The null hypothesis would be that mean salary for men and mean salary for women are equal, and the alternative hypothesis would be that the salaries are not equal. I ran a regression with sex as the explanatory variable and salary as the outcome variable. The female coefficient is -3340, which means that women do make less than men not considering any other variables. However, if we consider the other variables and also there is a significance level of 0.07, so we fail to reject the null hypothesis and therefore cannot conclude that there is a difference between mean salaries for men and women.
## B
```{r}
model <- lm(salary ~ ., data = salary)
summary(model)
```
```{r}
confint(model)
```
Assuming there is no interaction between sex and other predictors, we can be 95% confident that the difference in salary of women compared to men falls between -697.8183 dollars and 3030.56452 dollars.
## C
For degree as the predictor, a PHD would be expected to increase salary by 1388.61 dollars in reference to a Masters degree salary. However, at a significance level of 0.18, we cannot conclude that degree level has a statistically significant impact on salary.
For the rank variable, an Associate can expect a 5292.36 dollar increase in salary compared to Assistant, while a Professor can expect a 11118.76 dollar salary increase compared to Assistant. Both ranks have significance levels well below 0.05 and we can determine that rank does have a statistically significant impact on salary. For the variable of sex, a Female can expect a salary increase of 1166.37 dollars in comparison to Male salary, but the significance level is 0.214, so this is not a statistically significant relationship.
For year, a faculty member can expect a salary increase of 476.31 dollars for an increase in 1 year of employment in his/her/their position. Additionally, the level of significance is less than 0.01 so the relationship between year and salary appears to be significant.
For the ysdeg variable, an increase in years since earning highest degree can expect a decrease in salary, with a coefficient of -124.57. However, with a 0.115 level of significance, this relationship cannot be found to be statistically significant.
## D
```{r}
salary$rank <- relevel(salary$rank, ref = "Prof")
summary(lm(salary ~ rank, salary))
```
After changing the baseline category for the rank variable, an Associate can expect a 6483.0 dollar decrease in salary compared to Professor, while a Assistant can expect a 11890.3 dollar salary decrease compared to Professor. Both ranks have significance levels well below 0.05 and we can determine that rank does have a statistically significant impact on salary.
## E
```{r}
summary(lm(salary ~ degree + sex + year + ysdeg, salary))
```
When removing the variable “rank”, the coefficient for sex is -1286.54 compared to the above regression that included rank with a coefficient for sex at 1166.37. The new coefficient predicts that a female salary would be 1286.54 less than a male salary, when excluding the variable of rank. However, the significance level is 0.332, which is very high and therefore the results cannot be found to be statistically significant. While the change of the coefficient to negative upon removal of rank is interesting, the significance level would likely prevent these results from holding up in court as an indication of discrimination on the basis of sex.
## F
```{r}
salary <- salary %>%
mutate(hired = case_when(ysdeg <= 15 ~ "1", ysdeg > 15 ~ "0"))
summary(lm(salary ~ hired, data = salary))
```
```{r}
summary(lm(salary ~ sex + rank + degree + hired, data = salary))
```
I created a dummy variable called “hired” which coded those employed for 15 years or less (thus hired by the new Dean) as 1 and those who have been employed for over 15 years as 0. Then, I fit a new regression model and decided to include the variables of sex, rank, degree, and hired. I omitted the year and ysdeg variables to prevent overlapping or multicollinearity. Multicollinearity can be a concern when variables are highly correlated or related in some way. The idea of regression is to observe how each variable partially effects the output while holding the other variables fixed. We cannot reasonably change the year or ysdeg or hired variables individually while holding the other two fixed since they tend to “grow” in similar manners. Since the variable hired is a product of the ysdeg variable, we could not include both.
Based on the regression model, those hired by the current Dean are predicted to make 319 dollars more than those not hired by the Dean. When it comes to salary, this is a rather insignificant number. Furthermore, the level of significance for the hired variable is .81, which is astronomical and indicates that the relationship between hired and salary is not statistically significant. Based on these factors, I would state that findings do not indicate any favorable treatment by the Dean toward faculty that the Dean specifically hired.
## Question 3
```{r}
data("house.selling.price")
house.selling.price
```
## A
```{r}
summary(lm(Price ~ Size + New, house.selling.price))
```
Both Size and New significantly positively predict selling price. As each predictor goes up by 1 unit, selling price rises by 116.132 dollars and 57736.283 dollars respectively.
## B
```{r}
new <- house.selling.price %>%
filter(New == 1)
summary(lm(Price ~ Size, data = new))
```
```{r}
old <- house.selling.price %>%
filter(New == 0)
summary(lm(Price ~ Size, data = old))
```
Size significantly positively predicts price for both new and old houses, but by a greater magnitude for new houses. Adjusted R-squared for the model is also much higher (0.91 vs. 0.58).
New_Price = 166 * Size - 100755.31
Old_Price = 104 * Size - 22227.808
## C
```{r}
Size <- 3000
New_Price = 166 * Size - 100755.31
Old_Price = 104 * Size - 22227.808
New_Price
Old_Price
```
## D
```{r}
summary(lm(Price ~ Size*New, data = house.selling.price))
```
## E
The predicted selling price, based on the new regression that includes interaction between Size and Newness, would look like:
New_Price = -22227.81 + 104.44 * Size - 78527.50 * 1 + 61.92 * Size * 1
Old_Price = -22227.81 + 104.44 * Size
## F
```{r}
Size <- 3000
New_Price = -22227.81 + 104.44 * Size - 78527.50 * 1 + 61.92 * Size * 1
Old_Price = -22227.81 + 104.44 * Size
New_Price
Old_Price
```
## G
```{r}
Size <- 1500
New_Price = -22227.81 + 104.44 * Size - 78527.50 * 1 + 61.92 * Size * 1
Old_Price = -22227.81 + 104.44 * Size
New_Price
Old_Price
```
As size of home goes up, the difference in predicted selling prices between old and new homes becomes larger.
## H
The prediction model with interaction has a significantly large negative coefficient for the New variable. The adjusted r-squared for the model with interaction is 0.7363 and the adjusted r-squared for the first model without interaction is 0.7169. The increase in the adjusted r-squared with the interaction model could be due to an additional variable or could indicate a slightly better fit for the prediction of the data. Since the models do have similar adjusted r-squared values, I would prefer the model with interaction because the regression indicates that the interaction term is statistically significant to selling price prediction, so I feel it is necessary to utilize an equation that factors for this.