Landreth Descriptive Project

final project
Connor Landreth
dplyr
Author

Connor Landreth

Published

July 18, 2023

Setup

Load in Relevant Packages

For descriptive analysis, we’ll use quite a few classic packages including Tidyverse, ggplot2, knitr, and summarytools

Code
library(tidyverse)
── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
✔ ggplot2 3.4.0      ✔ purrr   1.0.0 
✔ tibble  3.1.8      ✔ dplyr   1.0.10
✔ tidyr   1.2.1      ✔ stringr 1.5.0 
✔ readr   2.1.3      ✔ forcats 0.5.2 
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
Code
library(knitr)
library(kableExtra)
Warning: package 'kableExtra' was built under R version 4.2.3

Attaching package: 'kableExtra'

The following object is masked from 'package:dplyr':

    group_rows
Code
library(xml2)
library(psych)
Warning: package 'psych' was built under R version 4.2.3

Attaching package: 'psych'

The following objects are masked from 'package:ggplot2':

    %+%, alpha
Code
library(ggplot2)
library(ggthemes)
Warning: package 'ggthemes' was built under R version 4.2.3
Code
library(summarytools)
Warning: package 'summarytools' was built under R version 4.2.3

Attaching package: 'summarytools'

The following object is masked from 'package:tibble':

    view
Code
library(dplyr)
library(reshape2)

Attaching package: 'reshape2'

The following object is masked from 'package:tidyr':

    smiths
Code
library(SmartEDA)
Warning: package 'SmartEDA' was built under R version 4.2.3
Registered S3 method overwritten by 'GGally':
  method from   
  +.gg   ggplot2
Code
install.packages("summarytools")
Warning: package 'summarytools' is in use and will not be installed
Code
library(summarytools)

Set wd and read in data

Code
getwd()
[1] "C:/Users/cjlan/OneDrive/Desktop/603_Summer2023_Sec_1/posts"
Code
#JP = Job Performance
JP <- read.csv("Connor_datafolder/JP.csv")

#View(JP)

Clean

Change variable names then make a descriptive table, make new column

First and foremost, there are a few glaring things I want to clean within this data. First, there are two psych score columns. I have no need for two separate columns because it doesn’t increase their value. Instead, I’ll average out the two scores in a new column and delete the original two. As I clean the data, I have the following primary research question in mind: How does quantity of hours worked and quantity of personal development hours affect client satisfaction?

Also, I’ll rename headers to make the data easier to work with.

Code
#head(JP)

# Add psych test 1 & 2 and divide by two, making new average score column

JP$avg_psych_score <- (JP$PsychTest1 + JP$PsychTest2)/2
#Remove psych tests 1 & 2
JP <- JP[ ,-1]
JP <- JP[ ,-1]

#Create new df with renamed variables
JP_Clean <- JP %>% 
  rename(hrs_personal_dev = "HrsTrn",
         hrs_working = "HrsWrk",
         client_sat = "ClientSat",
         super_sat = "SuperSat",
         success_project_complete = "ProjCompl",
         years_edu = "YrsEdu"
  )

head(JP_Clean)
  years_edu  IQ hrs_personal_dev hrs_working client_sat super_sat
1         5  97                6          33         84        59
2         2  93                7          54         55        38
3         2  96                5          47         70        68
4         4 103                7          80         63        81
5         4  98                5          53         55        39
6         3 102               10          56         63        68
  success_project_complete avg_psych_score
1                       34            70.0
2                       56            36.5
3                       38            71.5
4                       78            55.5
5                       56            41.5
6                       57            58.5

Create df with variables, meaning, and measurement scale

The data is only as impactful as our understanding of it. I will create a indexed df below with each variable and its meaning.

Code
# Create variables
Variables <- c('years_edu', 'IQ', 'hrs_personal_dev', 'hrs_working', 'client_sat', 'super_sat', 'success_project_complete', 'avg_psych_score')
# Add meaning for each variable
Meaning <- c('Years of higher education', 'IQ Test Score', 'Hours dedicated to personal culture, outside of work', 'Hours worked on average per week', 'Customer satisfaction with the worker, score 0-100', 'Satisfaction of the superior with the worker, score 0-100', 'Percentage of projects successfully completed, score 0-100', 'Psychological test, score 0-100 (2 tests)')
# Add measurement scale for each variable 
Measurement.Scale <- c('Discrete', 'Continuous', 'Continuous','Continuous', 'Continuous','Continuous', 'Continuous', 'Continuous')

# Join the variables to create a data frame
Index_1 <- data.frame(Variables, Meaning, Measurement.Scale)
#View(Index)

Summarize

Load in summarytools to get stats analysis of variables

The best way I have found to get a holistic understanding and look at all variables is to use summarytools (only works for numeric variables, luckily all of mine are numeric). It displays mean, std. deviation, max, min, and other measures that may be valuable for our descriptive analysis.

Code
summarytools::descr(JP_Clean)
Descriptive Statistics  
JP_Clean  
N: 1000  

                    avg_psych_score   client_sat   hrs_personal_dev   hrs_working        IQ
----------------- ----------------- ------------ ------------------ ------------- ---------
             Mean             49.64        54.97               6.03         47.81     97.59
          Std.Dev             11.40        18.00               2.48         24.08      3.72
              Min             13.00         0.00               0.00          0.00     90.00
               Q1             42.00        43.00               4.00         30.00     95.00
           Median             49.50        55.00               6.00         47.00     97.00
               Q3             57.00        67.00               8.00         64.00    101.00
              Max             83.50       100.00              17.00        100.00    105.00
              MAD             11.12        17.79               2.97         25.20      4.45
              IQR             15.00        24.00               4.00         34.00      6.00
               CV              0.23         0.33               0.41          0.50      0.04
         Skewness             -0.08        -0.05               0.60          0.15     -0.01
      SE.Skewness              0.08         0.08               0.08          0.08      0.08
         Kurtosis             -0.03        -0.09               0.72         -0.59     -0.91
          N.Valid           1000.00      1000.00            1000.00       1000.00   1000.00
        Pct.Valid            100.00       100.00             100.00        100.00    100.00

Table: Table continues below

 

                    success_project_complete   super_sat   years_edu
----------------- -------------------------- ----------- -----------
             Mean                      48.13       49.91        2.51
          Std.Dev                      20.54       17.19        1.72
              Min                       0.00        0.00        0.00
               Q1                      33.00       38.00        1.00
           Median                      48.00       50.00        3.00
               Q3                      63.00       62.00        4.00
              Max                     100.00      100.00        5.00
              MAD                      22.24       17.79        2.22
              IQR                      30.00       24.00        3.00
               CV                       0.43        0.34        0.68
         Skewness                       0.08        0.03       -0.02
      SE.Skewness                       0.08        0.08        0.08
         Kurtosis                      -0.54       -0.34       -1.28
          N.Valid                    1000.00     1000.00     1000.00
        Pct.Valid                     100.00      100.00      100.00
Code
#All numeric so all present 

CDF & PDF

Plot PDF and CDF

Below we’ll get deeper into the statistical analysis and map out the Probability Density Function and Cumulative Probability Function

Code
# Example dataset
data <- rnorm(1000, mean = 0, sd = 1)

# Create a data frame
#JP_Clean <- data.frame(x = data)

# Calculate the CDF and PDF
JP_Clean$cdf_sat <- ecdf(data)(JP_Clean$client_sat)
JP_Clean$pdf_sat <- dnorm(JP_Clean$client_sat, mean = mean(data), sd = sd(data))

# Plot the CDF
ggplot(JP_Clean, aes(x = client_sat, y = cdf_sat)) +
  geom_line() +
  labs(title = "Cumulative Distribution Function (CDF)", x = "Client Satisfaction", y = "CDF")

Code
# Plot the PDF
ggplot(JP_Clean, aes(x = client_sat, y = pdf_sat)) +
  geom_line() +
  labs(title = "Probability Density Function (PDF)", x = "Client Satisfaction", y = "PDF")

Code
# Example dataset
data2 <- rnorm(1000, mean = 0, sd = 1)

# Create a data frame
#JP_Clean <- data.frame(x = data)

# Calculate the CDF and PDF
JP_Clean$cdf_hours <- ecdf(data2)(JP_Clean$hrs_working)
JP_Clean$pdf_hours <- dnorm(JP_Clean$hrs_working, mean = mean(data2), sd = sd(data2))

# Plot the CDF
ggplot(JP_Clean, aes(x = hrs_working, y = cdf_hours)) +
  geom_line() +
  labs(title = "Cumulative Distribution Function (CDF)", x = "Hours Worked", y = "CDF")

Code
# Plot the PDF
ggplot(JP_Clean, aes(x = hrs_working, y = pdf_hours)) +
  geom_line() +
  labs(title = "Probability Density Function (PDF)", x = "Hours Worked", y = "PDF")

Both variables here are heavily skewed. This is a common trend among productivity numbers (Numeric variables that tend to only be positive).The data is far from normally distributed.

Descriptive Analysis

Group

Code
avgs_sat <- JP_Clean %>% 
        group_by(client_sat, hrs_working) %>% 
        summarise(mean(client_sat),
                  
                  sd(client_sat), 
                  n())
`summarise()` has grouped output by 'client_sat'. You can override using the
`.groups` argument.
Code
#print the results to the console
print(avgs_sat)
# A tibble: 910 × 5
# Groups:   client_sat [97]
   client_sat hrs_working `mean(client_sat)` `sd(client_sat)` `n()`
        <int>       <int>              <dbl>            <dbl> <int>
 1          0          36                  0               NA     1
 2          0          45                  0               NA     1
 3          1          29                  1               NA     1
 4          1          74                  1               NA     1
 5          3          37                  3               NA     1
 6          5          52                  5               NA     1
 7          6          45                  6               NA     1
 8          7          64                  7               NA     1
 9          9          60                  9               NA     1
10         10          30                 10               NA     1
# … with 900 more rows
Code
avgs_work <- JP_Clean %>% 
        group_by(client_sat, hrs_working) %>% 
        summarize(mean(hrs_working), 
                  sd(hrs_working), 
                  n())
`summarise()` has grouped output by 'client_sat'. You can override using the
`.groups` argument.
Code
# print the results to the console
print(avgs_work)
# A tibble: 910 × 5
# Groups:   client_sat [97]
   client_sat hrs_working `mean(hrs_working)` `sd(hrs_working)` `n()`
        <int>       <int>               <dbl>             <dbl> <int>
 1          0          36                  36                NA     1
 2          0          45                  45                NA     1
 3          1          29                  29                NA     1
 4          1          74                  74                NA     1
 5          3          37                  37                NA     1
 6          5          52                  52                NA     1
 7          6          45                  45                NA     1
 8          7          64                  64                NA     1
 9          9          60                  60                NA     1
10         10          30                  30                NA     1
# … with 900 more rows

Histograms of Hours Worked, Hours of Personal Development

To help visualize distributions, I’ll create a few histograms below for the relevant variables.

Code
hist_working_hours<-ggplot(JP_Clean, aes(x= hrs_working)) +
  geom_histogram() +
  labs(title = "Histogram of Hours Worked Bi-Weekly", x = 'Hours Worked (Weekly)', y="Fequency") +
theme_economist()

hist_working_hours
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Code
#I now HIGHLY question the legitimacy of this data
Code
hist_development_hours<-ggplot(JP_Clean, aes(x= hrs_personal_dev)) +
  geom_histogram() +
  labs(title = "Histogram of Hours Spent on Personal Development", x = 'Persnal Development (Hours)', y="Frequency") +
theme_economist()

hist_development_hours
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Plots of client satisfaction vs. hrs worked, hrs personal development

My personal favorite visualizations - geom_jitter/point to help show the correlation between hours of personal development and customer satisfaction. Below the viz, we’ll calculate the correlation and see if there is any significance.

Code
#Client sat has a mean of 54.9, so we will filter for the best performers and evaluate their hours worked, then look at all hours worked.

JP_Clean %>% 
    #filter(client_sat >= "54.9") %>% 
  ggplot(aes(client_sat,hrs_personal_dev))+
  geom_jitter(size=2, alpha = 0.5)+
  #width = x
  geom_smooth(method = "lm")+
  #facet_wrap(~Gender)+
  labs(x='Client Satisfaction Score', y='Hours of Personal Development') +
  theme_linedraw()+
  labs(title="Client Satisfaction vs. Hours of Personal Development ")
`geom_smooth()` using formula = 'y ~ x'

Code
# NOW LETS LOOK AT HOURS OF PERSONAL DEVELOPMENT AND SEE IF THAT ACTUALLY INCREASES CLIENT SATIFACTION
correlation2 <- cor(JP_Clean$hrs_personal_dev,JP_Clean$client_sat)

print(correlation2)
[1] 0.1546341
Code
JP_Clean %>% 
  #filter(hrs_working < 50) %>% 
    #filter(client_sat >= "54.9") %>% 
  ggplot(aes(client_sat,hrs_working, color = client_sat))+
  geom_jitter(size=2, alpha = 0.5)+
  #width = x
  geom_smooth(method = "lm")+
  #facet_wrap(~Gender)+
  labs(x='Client Satisfaction Score', y='Hours Working') +
  theme_linedraw()+
  labs(title="Client Satisfaction & Hours Worked")
`geom_smooth()` using formula = 'y ~ x'
Warning: The following aesthetics were dropped during statistical transformation: colour
ℹ This can happen when ggplot fails to infer the correct grouping structure in
  the data.
ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
  variable into a factor?

Code
# We'll new look at
correlation <- cor(JP_Clean$client_sat, JP_Clean$hrs_working)

print(correlation)
[1] 0.1107844
Code
summary(lm(JP_Clean$client_sat ~ JP_Clean$hrs_working))

Call:
lm(formula = JP_Clean$client_sat ~ JP_Clean$hrs_working)

Residuals:
    Min      1Q  Median      3Q     Max 
-56.139 -11.898  -0.161  11.516  45.919 

Coefficients:
                     Estimate Std. Error t value Pr(>|t|)    
(Intercept)          51.01020    1.25892  40.519  < 2e-16 ***
JP_Clean$hrs_working  0.08282    0.02352   3.521 0.000449 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 17.9 on 998 degrees of freedom
Multiple R-squared:  0.01227,   Adjusted R-squared:  0.01128 
F-statistic:  12.4 on 1 and 998 DF,  p-value: 0.0004485
Code
# No real correlation, seems more hours worked doesn't necessarily mean those hours were used wisely, as client often seems unhappy as hours increase. 

No real correlation, seems more hours worked doesn’t necessarily mean those hours were used wisely, as client often seems unhappy as hours increase.

Estimations, SE, CI, Separating by Years of edu

Code
#Dplyr built into Tidy function below

edu <- JP_Clean %>% 
  filter(years_edu != "0") %>% 
  #have to slice random sample to avoid problem with 'result' later
  slice(1:171)

no_edu <- JP_Clean %>% 
  filter(years_edu == "0")
Code
colnames(edu) <- c("Education", "IQ", "Y_bar_e", "edu", "no_edu")
colnames(no_edu) <- c("Education", "IQ", "Y_bar_n_e", "e", "n_e")
Code
gap <- edu$Y_bar_e - no_edu$Y_bar_n_e

gap_se <- sqrt(edu$edu^2 / edu$no_edu + no_edu$e^2 / no_edu$n_e)

gap_ci_l <- gap - 1.96 * gap_se

gap_ci_u <- gap + 1.96 * gap_se

result <- cbind(edu[, -1], no_edu[,-(1:2)], gap, gap_se, gap_ci_l, gap_ci_u)



print(result)
     IQ Y_bar_e edu no_edu NA NA.1 NA.2  NA.3          NA.4  NA.5          NA.6
1    97       6  33     84 59   34 70.0 1.000  0.000000e+00 1.000 2.230403e-234
2    93       7  54     55 38   56 36.5 1.000  0.000000e+00 1.000  0.000000e+00
3    96       5  47     70 68   38 71.5 1.000  0.000000e+00 1.000  0.000000e+00
4   103       7  80     63 81   78 55.5 1.000  0.000000e+00 1.000  0.000000e+00
5    98       5  53     55 39   56 41.5 1.000  0.000000e+00 1.000  0.000000e+00
6   102      10  56     63 68   57 58.5 1.000  0.000000e+00 1.000  0.000000e+00
7    95       7  75     58 71   75 59.5 1.000  0.000000e+00 1.000  0.000000e+00
8    96      10  69     63 61   62 41.5 1.000  0.000000e+00 1.000  0.000000e+00
9   103       3  12     60 35   16 55.5 1.000  0.000000e+00 1.000  5.071515e-32
10   91       9  69     85 79   73 76.0 1.000  0.000000e+00 1.000  0.000000e+00
11   96       6  31     64 35   28 56.0 1.000  0.000000e+00 1.000 5.650160e-207
12   99       8  82     39 52   76 30.5 1.000 1.482197e-323 1.000  0.000000e+00
13   95       4  44     49 28   47 34.0 1.000  0.000000e+00 1.000  0.000000e+00
14  101       7  56     58 61   50 54.0 1.000  0.000000e+00 1.000  0.000000e+00
15   92       7  59     45 42   60 36.0 1.000  0.000000e+00 1.000  0.000000e+00
16  105       6  57     92 64   58 61.5 1.000  0.000000e+00 1.000  0.000000e+00
17   93       6  27     30 30   26 45.5 1.000 6.122819e-192 1.000 2.652556e-157
18   95      10  83     65 73   78 55.5 1.000  0.000000e+00 1.000  0.000000e+00
19   95       7  35     74 48   34 62.5 1.000  0.000000e+00 1.000 1.709185e-263
20  100       6  61     56 67   61 57.5 1.000  0.000000e+00 1.000  0.000000e+00
21   98       6  44     38 38   52 37.0 1.000 3.285331e-307 1.000  0.000000e+00
22  104       6  65     54 60   65 47.0 1.000  0.000000e+00 1.000  0.000000e+00
23   95       7  45     56 55   45 57.5 1.000  0.000000e+00 1.000  0.000000e+00
24   97       4  50     47 54   47 56.5 1.000  0.000000e+00 1.000  0.000000e+00
25   95       4  55     93 67   49 75.5 1.000  0.000000e+00 1.000  0.000000e+00
26   94       5  62     55 53   62 42.5 1.000  0.000000e+00 1.000  0.000000e+00
27   94       3  43     24 46   44 43.0 1.000 2.807246e-123 1.000  0.000000e+00
28  101      13 100     76 75   95 39.5 1.000  0.000000e+00 1.000  0.000000e+00
29  101       6  72     71 77   71 60.5 1.000  0.000000e+00 1.000  0.000000e+00
30   92       4  30     10  8   35 19.0 1.000  2.255355e-22 1.000 6.485307e-194
31  104       3  28     26 40   38 44.5 1.000 1.801336e-144 1.000 4.443574e-169
32  102       3  27     39 30   31 38.0 1.000 1.482197e-323 1.000 2.652556e-157
33  100       8  68     45 72   71 49.5 1.000  0.000000e+00 1.000  0.000000e+00
34   95       8  74     75 79   64 69.0 1.000  0.000000e+00 1.000  0.000000e+00
35   94       4  36     51 33   41 41.5 1.000  0.000000e+00 1.000 1.079004e-278
36  102       7  63     23 56   57 31.5 1.000 2.565751e-113 1.000  0.000000e+00
37   95       9  62     32 53   62 38.0 1.000 3.243352e-218 1.000  0.000000e+00
38   94       5  58     62 57   55 59.5 1.000  0.000000e+00 1.000  0.000000e+00
39  102       3  44     40 44   51 38.5 1.000  0.000000e+00 1.000  0.000000e+00
40   95       6  54     27 39   51 22.0 1.000 1.056435e-155 1.000  0.000000e+00
41   96       9  86     67 65   78 44.0 1.000  0.000000e+00 1.000  0.000000e+00
42   99       5  59     21 55   54 49.5 1.000  1.148854e-94 1.000  0.000000e+00
43  101       7  32     64 47   34 58.5 1.000  0.000000e+00 1.000 1.837434e-220
44  101       3  31     19 18   33 23.0 1.000  1.039659e-77 1.000 5.650160e-207
45   92       7  38     37 41   35 41.5 1.000 2.558566e-291 1.000 2.236420e-310
46  102       5  16     92 42   23 65.5 1.000  0.000000e+00 1.000  5.155705e-56
47  101       7  64     82 67   55 65.0 1.000  0.000000e+00 1.000  0.000000e+00
48   98       5  47     43 46   49 40.5 1.000  0.000000e+00 1.000  0.000000e+00
49  104       4   8     28 22   17 38.5 1.000 2.336065e-167 1.000  7.084668e-15
50  101       7  48     60 47   45 45.5 1.000  0.000000e+00 1.000  0.000000e+00
51   99       7  78     25 63   74 38.5 1.000 1.158085e-133 1.000  0.000000e+00
52  102       9  79     80 79   78 59.0 1.000  0.000000e+00 1.000  0.000000e+00
53  101       5  57     68 55   59 50.0 1.000  0.000000e+00 1.000  0.000000e+00
54   97       9  76     49 52   67 36.5 1.000  0.000000e+00 1.000  0.000000e+00
55  100       8  86     38 63   82 41.0 1.000 3.285331e-307 1.000  0.000000e+00
56   98       8  71     64 63   65 51.5 1.000  0.000000e+00 1.000  0.000000e+00
57   99       6  70     33 48   61 39.0 1.000 5.465205e-232 1.000  0.000000e+00
58  105       9  88     67 71   83 48.0 1.000  0.000000e+00 1.000  0.000000e+00
59   93       7  57     43 46   49 36.0 1.000  0.000000e+00 1.000  0.000000e+00
60   97       6  39     48 44   40 48.5 1.000  0.000000e+00 1.000  0.000000e+00
61   94       5  39     34 34   39 38.0 1.000 3.472266e-246 1.000  0.000000e+00
62  102       8  72     42 57   69 34.5 1.000  0.000000e+00 1.000  0.000000e+00
63  104       5  48     50 50   54 47.0 1.000  0.000000e+00 1.000  0.000000e+00
64   98       6  70     92 75   72 65.5 1.000  0.000000e+00 1.000  0.000000e+00
65   96       3  33     68 39   30 51.0 1.000  0.000000e+00 1.000 2.230403e-234
66  102       4  26     74 34   35 49.5 1.000  0.000000e+00 1.000 5.910408e-146
67  101       6  52     52 42   52 43.0 1.000  0.000000e+00 1.000  0.000000e+00
68  102      11 100     48 87   86 48.5 1.000  0.000000e+00 1.000  0.000000e+00
69   97       9  85     71 90   75 70.0 1.000  0.000000e+00 1.000  0.000000e+00
70   93       8  83     46 63   83 49.0 1.000  0.000000e+00 1.000  0.000000e+00
71   94       4  31     59 45   35 52.5 1.000  0.000000e+00 1.000 5.650160e-207
72  101       6  50     74 71   55 66.0 1.000  0.000000e+00 1.000  0.000000e+00
73  100       3   4     52 27   12 58.5 1.000  0.000000e+00 1.000  1.405509e-04
74   98       4  31     50 35   34 43.0 1.000  0.000000e+00 1.000 5.650160e-207
75   97       5  43     41 51   44 50.5 1.000  0.000000e+00 1.000  0.000000e+00
76   99       4  45     42 51   46 50.0 1.000  0.000000e+00 1.000  0.000000e+00
77  101       5  40     31 22   44 22.0 1.000 7.257311e-205 1.000  0.000000e+00
78  100       7  65     53 53   63 37.5 1.000  0.000000e+00 1.000  0.000000e+00
79  101       7  36     31 39   44 36.5 1.000 7.257311e-205 1.000 1.079004e-278
80  102       8  51     41 46   49 38.0 1.000  0.000000e+00 1.000  0.000000e+00
81   99       4  10     72 22   18 56.0 1.000  0.000000e+00 1.000  1.360464e-22
82   98       8  84     68 79   81 56.0 1.000  0.000000e+00 1.000  0.000000e+00
83  100       9  78     69 81   71 64.0 1.000  0.000000e+00 1.000  0.000000e+00
84  100       5  47     42 57   46 51.0 1.000  0.000000e+00 1.000  0.000000e+00
85   99       7  43     43 51   42 53.0 1.000  0.000000e+00 1.000  0.000000e+00
86   98       5  51     34 44   45 39.0 1.000 3.472266e-246 1.000  0.000000e+00
87   99       6  47     78 59   47 68.5 1.000  0.000000e+00 1.000  0.000000e+00
88   96       7  43     93 51   50 65.0 1.000  0.000000e+00 1.000  0.000000e+00
89   97       3  11     27 29    9 48.5 1.000 1.056435e-155 1.000  4.299342e-27
90  100       6  40     75 51   36 52.0 1.000  0.000000e+00 1.000  0.000000e+00
91  102       9  61     59 63   66 53.0 1.000  0.000000e+00 1.000  0.000000e+00
92   95       7  62     78 66   70 59.5 1.000  0.000000e+00 1.000  0.000000e+00
93   95       6  60     59 61   57 60.5 1.000  0.000000e+00 1.000  0.000000e+00
94  102       8  63     53 64   58 47.0 1.000  0.000000e+00 1.000  0.000000e+00
95  101       5  46     60 61   49 58.5 1.000  0.000000e+00 1.000  0.000000e+00
96  104       8  75     88 74   66 69.5 1.000  0.000000e+00 1.000  0.000000e+00
97   92       3  43     70 56   42 61.5 1.000  0.000000e+00 1.000  0.000000e+00
98   97      11  91     72 89   88 64.5 1.000  0.000000e+00 1.000  0.000000e+00
99  103       6  51     54 62   54 61.5 1.000  0.000000e+00 1.000  0.000000e+00
100  99       6  26     56 41   30 53.0 1.000  0.000000e+00 1.000 5.910408e-146
101  92      11  86     73 68   71 44.0 1.000  0.000000e+00 1.000  0.000000e+00
102  94       7  65     37 63   65 47.5 1.000 2.558566e-291 1.000  0.000000e+00
103 100       8  74     76 70   71 54.0 1.000  0.000000e+00 1.000  0.000000e+00
104  98       2  10     50 45   15 65.5 1.000  0.000000e+00 1.000  1.360464e-22
105  95       7  80     81 83   77 64.5 1.000  0.000000e+00 1.000  0.000000e+00
106 101       7  47     48 43   52 42.5 1.000  0.000000e+00 1.000  0.000000e+00
107  99       6  64     33 52   60 34.5 1.000 5.465205e-232 1.000  0.000000e+00
108  91       5  61     49 51   53 47.5 1.000  0.000000e+00 1.000  0.000000e+00
109 103       7  60     38 61   65 44.0 1.000 3.285331e-307 1.000  0.000000e+00
110  98       5  33     64 44   34 54.0 1.000  0.000000e+00 1.000 2.230403e-234
111  91       8  85     73 85   79 66.0 1.000  0.000000e+00 1.000  0.000000e+00
112 102       7  54     51 45   59 34.5 1.000  0.000000e+00 1.000  0.000000e+00
113  95       4  48     65 50   47 55.5 1.000  0.000000e+00 1.000  0.000000e+00
114 103       8  54     45 62   64 47.5 1.000  0.000000e+00 1.000  0.000000e+00
115  97       3  37     64 43   40 51.0 1.000  0.000000e+00 1.000 2.542599e-294
116  97       9  53     87 63   57 64.0 1.000  0.000000e+00 1.000  0.000000e+00
117  97       4  14     83 46   21 78.0 1.000  0.000000e+00 1.000  3.670045e-43
118  96       4  48     45 61   51 48.5 1.000  0.000000e+00 1.000  0.000000e+00
119 103       4  12     66 42   17 57.0 1.000  0.000000e+00 1.000  5.071515e-32
120  92       9  80     49 51   76 36.0 1.000  0.000000e+00 1.000  0.000000e+00
121 100       8  64     33 51   59 38.0 1.000 5.465205e-232 1.000  0.000000e+00
122  94       6  28     65 34   22 52.5 1.000  0.000000e+00 1.000 4.443574e-169
123 103       6  49     80 78   51 75.5 1.000  0.000000e+00 1.000  0.000000e+00
124 101       4   9     69 47    9 64.0 1.000  0.000000e+00 1.000  1.606915e-18
125  95       6  30     69 35   29 54.0 1.000  0.000000e+00 1.000 6.485307e-194
126  98       5  34     64 48   33 47.5 1.000  0.000000e+00 1.000 1.010592e-248
127  97       4  49     31 30   45 27.5 1.000 7.257311e-205 1.000  0.000000e+00
128 101       2  37     45 54   37 59.5 1.000  0.000000e+00 1.000 2.542599e-294
129  96       4  39     46 28   48 31.0 1.000  0.000000e+00 1.000  0.000000e+00
130  94       2   0     47  7    6 37.5 1.000  0.000000e+00 0.491  3.959860e-01
131 101       0  13     61 42   24 54.5 1.000  0.000000e+00 1.000  2.233028e-37
132  94      12 100     59 85   96 53.5 1.000  0.000000e+00 1.000  0.000000e+00
133  98       9  77     85 74   64 63.0 1.000  0.000000e+00 1.000  0.000000e+00
134  95      10  64     35 55   58 41.0 1.000 8.317895e-261 1.000  0.000000e+00
135  95       6  50     55 59   57 59.5 1.000  0.000000e+00 1.000  0.000000e+00
136  99       8  65     53 67   66 53.5 1.000  0.000000e+00 1.000  0.000000e+00
137 102       7  74     70 75   72 58.5 1.000  0.000000e+00 1.000  0.000000e+00
138 105       7  36     43 43   46 49.0 1.000  0.000000e+00 1.000 1.079004e-278
139  98       5  26     63 41   25 58.5 1.000  0.000000e+00 1.000 5.910408e-146
140  96       5  47     86 58   52 68.0 1.000  0.000000e+00 1.000  0.000000e+00
141 103       9  74      1 46   74 16.0 0.844  2.384825e-01 1.000  0.000000e+00
142  94       5  31     31 29   32 33.0 1.000 7.257311e-205 1.000 5.650160e-207
143 100       7  53     61 62   55 58.0 1.000  0.000000e+00 1.000  0.000000e+00
144 100       2   0     32  7   14 31.0 1.000 3.243352e-218 0.491  3.959860e-01
145  99       7  68     66 62   61 43.0 1.000  0.000000e+00 1.000  0.000000e+00
146  92       3  26     21 31   28 39.0 1.000  1.148854e-94 1.000 5.910408e-146
147  97      13  98     77 95   86 68.0 1.000  0.000000e+00 1.000  0.000000e+00
148  96       9  75     55 64   66 48.0 1.000  0.000000e+00 1.000  0.000000e+00
149 100       5  64     64 59   58 53.0 1.000  0.000000e+00 1.000  0.000000e+00
150  93       5  60     68 69   64 71.0 1.000  0.000000e+00 1.000  0.000000e+00
151  94       2   0     63 15    8 54.5 1.000  0.000000e+00 0.491  3.959860e-01
152 100       8  63     51 60   69 46.0 1.000  0.000000e+00 1.000  0.000000e+00
153  96       2  14     27 23   17 41.0 1.000 1.056435e-155 1.000  3.670045e-43
154  94       2  25     41 42   28 56.0 1.000  0.000000e+00 1.000 4.915764e-135
155 102       5  43     66 51   47 56.0 1.000  0.000000e+00 1.000  0.000000e+00
156  94       9  66     46 45   61 33.0 1.000  0.000000e+00 1.000  0.000000e+00
157 104      12 100     93 94   93 71.0 1.000  0.000000e+00 1.000  0.000000e+00
158 100       9  73     53 59   66 46.0 1.000  0.000000e+00 1.000  0.000000e+00
159  94       9  57     53 59   51 51.0 1.000  0.000000e+00 1.000  0.000000e+00
160  99       6  60     58 58   65 46.5 1.000  0.000000e+00 1.000  0.000000e+00
161  95       6  33     62 49   41 60.5 1.000  0.000000e+00 1.000 2.230403e-234
162 103       2  38     39 48   40 49.5 1.000 1.482197e-323 1.000 2.236420e-310
163  94       9  67     89 66   68 59.0 1.000  0.000000e+00 1.000  0.000000e+00
164  99       4  40     76 67   39 78.5 1.000  0.000000e+00 1.000  0.000000e+00
165  95       6  37     46 30   40 44.5 1.000  0.000000e+00 1.000 2.542599e-294
166  95       6  31     44 38   30 48.5 1.000  0.000000e+00 1.000 5.650160e-207
167 105       3  11     70 46   21 68.0 1.000  0.000000e+00 1.000  4.299342e-27
168  94       6  24     54 41   27 53.5 1.000  0.000000e+00 1.000 1.526109e-124
169  99       3   2     85 25   13 55.0 1.000  0.000000e+00 0.982  5.354454e-02
170  95       4  48     41 36   44 44.5 1.000  0.000000e+00 1.000  0.000000e+00
171  98       5  47     58 48   39 49.5 1.000  0.000000e+00 1.000  0.000000e+00
    Y_bar_n_e   e n_e NA NA.1 NA.2  NA.3          NA.4  NA.5          NA.6 gap
1           8  54  61 53   53 47.5 1.000  0.000000e+00 1.000  0.000000e+00  -2
2           6  68  66 56   63 45.5 1.000  0.000000e+00 1.000  0.000000e+00   1
3           3  25  59 37   24 60.0 1.000  0.000000e+00 1.000 4.915764e-135   2
4           6  47  33 48   41 50.0 1.000 5.465205e-232 1.000  0.000000e+00   1
5           5  62  33 56   55 39.0 1.000 5.465205e-232 1.000  0.000000e+00   0
6           4  48  63 52   51 60.0 1.000  0.000000e+00 1.000  0.000000e+00   6
7           5  45  68 61   47 66.5 1.000  0.000000e+00 1.000  0.000000e+00   2
8           4  22  35 39   23 53.5 1.000 8.317895e-261 1.000 7.649561e-105   6
9           4  44  44 47   42 51.0 1.000  0.000000e+00 1.000  0.000000e+00  -1
10          8  60  65 64   55 62.5 1.000  0.000000e+00 1.000  0.000000e+00   1
11          5  37  38 31   35 37.5 1.000 3.285331e-307 1.000 2.542599e-294   1
12          3  30  45 46   35 53.5 1.000  0.000000e+00 1.000 6.485307e-194   5
13          4  26  52 32   31 48.5 1.000  0.000000e+00 1.000 5.910408e-146   0
14          8  80  61 79   71 59.0 1.000  0.000000e+00 1.000  0.000000e+00  -1
15          5  19  22 28   22 42.5 1.000 8.841839e-104 1.000  1.674437e-78   2
16          7  40  68 47   42 54.0 1.000  0.000000e+00 1.000  0.000000e+00  -1
17          8  69  51 58   60 44.0 1.000  0.000000e+00 1.000  0.000000e+00  -2
18          5  39  50 50   39 60.0 1.000  0.000000e+00 1.000  0.000000e+00   5
19         11  85  45 61   81 34.0 1.000  0.000000e+00 1.000  0.000000e+00  -4
20          5  62  48 56   58 45.0 1.000  0.000000e+00 1.000  0.000000e+00   1
21          7  50  49 37   50 34.0 1.000  0.000000e+00 1.000  0.000000e+00  -1
22          7  32  59 52   31 62.0 1.000  0.000000e+00 1.000 1.837434e-220  -1
23          6  25  57 22   27 42.0 1.000  0.000000e+00 1.000 4.915764e-135   1
24         12 100  75 80   92 49.0 1.000  0.000000e+00 1.000  0.000000e+00  -8
25          2  36   0 25   40 28.0 0.490  3.939614e-01 1.000 1.079004e-278   2
26          9  80  41 55   70 32.0 1.000  0.000000e+00 1.000  0.000000e+00  -4
27          4  15  21 24   16 37.5 1.000  1.148854e-94 1.000  2.251486e-49  -1
28          5  58  62 58   53 55.0 1.000  0.000000e+00 1.000  0.000000e+00   8
29          9  71  51 64   69 52.5 1.000  0.000000e+00 1.000  0.000000e+00  -3
30          2   2  51 33    7 57.0 1.000  0.000000e+00 0.982  5.354454e-02   2
31          5  16  21 25   14 37.0 1.000  1.148854e-94 1.000  5.155705e-56  -2
32          4  27  43 27   25 40.5 1.000  0.000000e+00 1.000 2.652556e-157  -1
33         11  85  61 53   79 36.0 1.000  0.000000e+00 1.000  0.000000e+00  -3
34          7  47  76 50   45 57.5 1.000  0.000000e+00 1.000  0.000000e+00   1
35          6  53  38 49   49 42.0 1.000 3.285331e-307 1.000  0.000000e+00  -2
36          5  39  37 40   40 42.5 1.000 2.558566e-291 1.000  0.000000e+00   2
37          5  42  32 41   44 36.0 1.000 3.243352e-218 1.000  0.000000e+00   4
38          4  29  72 36   20 50.0 1.000  0.000000e+00 1.000 2.778569e-181   1
39          7  44  63 49   41 51.5 1.000  0.000000e+00 1.000  0.000000e+00  -4
40          6  57  44 45   54 45.0 1.000  0.000000e+00 1.000  0.000000e+00   0
41          4  34  31 39   40 41.5 1.000 7.257311e-205 1.000 1.010592e-248   5
42          5  40  36 42   44 42.5 1.000 7.512906e-276 1.000  0.000000e+00   0
43          8  57  19 29   57 23.0 1.000  1.039659e-77 1.000  0.000000e+00  -1
44          2   0  45 26    1 53.5 1.000  0.000000e+00 0.491  3.959860e-01   1
45          6  62  63 65   56 56.0 1.000  0.000000e+00 1.000  0.000000e+00   1
46          5  48  51 61   48 57.5 1.000  0.000000e+00 1.000  0.000000e+00   0
47          6  27  31 34   38 44.0 1.000 7.257311e-205 1.000 2.652556e-157   1
48          7  56  69 69   47 69.5 1.000  0.000000e+00 1.000  0.000000e+00  -2
49          4  19  42 25    8 44.0 1.000  0.000000e+00 1.000  1.674437e-78   0
50          3  34  32 27   30 34.5 1.000 3.243352e-218 1.000 1.010592e-248   4
51          4  55  64 43   53 46.0 1.000  0.000000e+00 1.000  0.000000e+00   3
52          4  25  91 47   27 72.5 1.000  0.000000e+00 1.000 4.915764e-135   5
53          3   7  61 23   12 54.0 1.000  0.000000e+00 1.000  1.165915e-11   2
54          3  16  74 52   24 67.5 1.000  0.000000e+00 1.000  5.155705e-56   6
55          6  26  57 27   27 47.0 1.000  0.000000e+00 1.000 5.910408e-146   2
56          4  11  71 43   20 67.5 1.000  0.000000e+00 1.000  4.299342e-27   4
57          5  49  24 57   46 44.0 1.000 2.807246e-123 1.000  0.000000e+00   1
58          3  10  32 23   15 36.5 1.000 3.243352e-218 1.000  1.360464e-22   6
59          6  64  78 55   58 49.5 1.000  0.000000e+00 1.000  0.000000e+00   1
60          8  41  82 39   42 52.5 1.000  0.000000e+00 1.000  0.000000e+00  -2
61          5  56  35 57   47 48.5 1.000 8.317895e-261 1.000  0.000000e+00   0
62          5  32  47 29   28 43.5 1.000  0.000000e+00 1.000 1.837434e-220   3
63          5  23  65 47   33 69.0 1.000  0.000000e+00 1.000 1.768482e-114   0
64          7  65  39 64   61 48.5 1.000 1.482197e-323 1.000  0.000000e+00  -1
65          6  47  41 47   42 46.0 1.000  0.000000e+00 1.000  0.000000e+00  -3
66          8  56  52 57   54 53.0 1.000  0.000000e+00 1.000  0.000000e+00  -4
67          7  61  24 47   55 40.0 1.000 2.807246e-123 1.000  0.000000e+00  -1
68          7  60  53 49   59 45.5 1.000  0.000000e+00 1.000  0.000000e+00   4
69          5  34  35 29   32 36.5 1.000 8.317895e-261 1.000 1.010592e-248   4
70          7  76  27 56   69 40.5 1.000 1.056435e-155 1.000  0.000000e+00   1
71          3  17  38 23   20 37.0 1.000 3.285331e-307 1.000  4.406843e-63   1
72          5  18  54 23   25 45.5 1.000  0.000000e+00 1.000  1.406008e-70   1
73          2   0  38 26    6 49.5 1.000 3.285331e-307 0.491  3.959860e-01   1
74          6  41  56 36   43 50.5 1.000  0.000000e+00 1.000  0.000000e+00  -2
75          5  53  30 38   44 31.0 1.000 6.122819e-192 1.000  0.000000e+00   0
76          8  47  51 45   47 48.0 1.000  0.000000e+00 1.000  0.000000e+00  -4
77          4  45  33 36   41 37.0 1.000 5.465205e-232 1.000  0.000000e+00   1
78          5  21  75 38   13 59.0 1.000  0.000000e+00 1.000  1.235075e-95   2
79          6  40  36 54   40 57.0 1.000 7.512906e-276 1.000  0.000000e+00   1
80          4  38  53 42   44 46.0 1.000  0.000000e+00 1.000 2.236420e-310   4
81          6  35  23 43   41 53.0 1.000 2.565751e-113 1.000 1.709185e-263  -2
82          2  20  45 24   19 49.5 1.000  0.000000e+00 1.000  7.443388e-87   6
83          6  33  55 40   34 54.0 1.000  0.000000e+00 1.000 2.230403e-234   3
84          6  29   1 15   25 19.0 0.844  2.384825e-01 1.000 2.778569e-181  -1
85          7  51  57 63   59 66.0 1.000  0.000000e+00 1.000  0.000000e+00   0
86          8  40  57 41   29 45.5 1.000  0.000000e+00 1.000  0.000000e+00  -3
87          6  70  68 48   63 41.5 1.000  0.000000e+00 1.000  0.000000e+00   0
88         11  89  76 81   79 60.0 1.000  0.000000e+00 1.000  0.000000e+00  -4
89          9  69  49 49   63 36.0 1.000  0.000000e+00 1.000  0.000000e+00  -6
90          9  64  52 65   47 57.0 1.000  0.000000e+00 1.000  0.000000e+00  -3
91          3  43  51 58   42 66.0 1.000  0.000000e+00 1.000  0.000000e+00   6
92          7  71  29 59   73 51.0 1.000 1.947696e-179 1.000  0.000000e+00   0
93         10  92  57 76   82 50.0 1.000  0.000000e+00 1.000  0.000000e+00  -4
94          8  87  77 75   76 59.5 1.000  0.000000e+00 1.000  0.000000e+00   0
95          4  46  58 54   48 53.5 1.000  0.000000e+00 1.000  0.000000e+00   1
96          5  20  67 29   23 57.0 1.000  0.000000e+00 1.000  7.443388e-87   3
97          4   9  42 39    4 52.5 1.000  0.000000e+00 1.000  1.606915e-18  -1
98         12 100  62 88   89 53.0 1.000  0.000000e+00 1.000  0.000000e+00  -1
99          7  70  33 48   63 34.5 1.000 5.465205e-232 1.000  0.000000e+00  -1
100         7  39  51 52   39 58.5 1.000  0.000000e+00 1.000  0.000000e+00  -1
101         6  51  89 54   43 64.0 1.000  0.000000e+00 1.000  0.000000e+00   5
102         8  88  64 70   86 50.0 1.000  0.000000e+00 1.000  0.000000e+00  -1
103         4  46  62 47   46 48.0 1.000  0.000000e+00 1.000  0.000000e+00   4
104         6  52  59 58   47 55.0 1.000  0.000000e+00 1.000  0.000000e+00  -4
105         5  39  51 46   47 55.5 1.000  0.000000e+00 1.000  0.000000e+00   2
106         4  21  54 27   30 45.0 1.000  0.000000e+00 1.000  1.235075e-95   3
107         7  64   7 40   66 24.5 1.000  1.491932e-11 1.000  0.000000e+00  -1
108         7  79  29 58   67 35.5 1.000 1.947696e-179 1.000  0.000000e+00  -2
109         5  16  29 23   22 43.0 1.000 1.947696e-179 1.000  5.155705e-56   2
110         5  32  12 28   32 29.5 1.000  1.050741e-31 1.000 1.837434e-220   0
111        14 100  39 82   87 48.0 1.000 1.482197e-323 1.000  0.000000e+00  -6
112         5  55  42 50   47 52.5 1.000  0.000000e+00 1.000  0.000000e+00   2
113         7  40  68 54   40 55.5 1.000  0.000000e+00 1.000  0.000000e+00  -3
114         4  42  43 33   50 38.0 1.000  0.000000e+00 1.000  0.000000e+00   4
115         4  50  36 62   47 57.0 1.000 7.512906e-276 1.000  0.000000e+00  -1
116         9  81  44 54   68 33.0 1.000  0.000000e+00 1.000  0.000000e+00   0
117         5  17  56 37   16 59.0 1.000  0.000000e+00 1.000  4.406843e-63  -1
118         2  10  32 33    9 57.0 1.000 3.243352e-218 1.000  1.360464e-22   2
119         8  66  46 66   64 59.0 1.000  0.000000e+00 1.000  0.000000e+00  -4
120         6  45  70 50   48 60.5 1.000  0.000000e+00 1.000  0.000000e+00   3
121         4  10  58 29   11 54.0 1.000  0.000000e+00 1.000  1.360464e-22   4
122         8  41  29 31   52 36.0 1.000 1.947696e-179 1.000  0.000000e+00  -2
123         6  47  43 48   42 48.0 1.000  0.000000e+00 1.000  0.000000e+00   0
124         8  86  70 79   78 60.5 1.000  0.000000e+00 1.000  0.000000e+00  -4
125         8  60  94 75   54 72.0 1.000  0.000000e+00 1.000  0.000000e+00  -2
126         1   0  45 22    2 52.5 1.000  0.000000e+00 0.491  3.959860e-01   4
127         4  13  59 29   15 52.5 1.000  0.000000e+00 1.000  2.233028e-37   0
128         3  41  41 37   39 43.5 1.000  0.000000e+00 1.000  0.000000e+00  -1
129         7  79  64 64   71 51.0 1.000  0.000000e+00 1.000  0.000000e+00  -3
130         6  38  38 26   39 28.0 1.000 3.285331e-307 1.000 2.236420e-310  -4
131         9  48  97 69   41 74.0 1.000  0.000000e+00 1.000  0.000000e+00  -9
132        11  67  63 65   58 52.5 1.000  0.000000e+00 1.000  0.000000e+00   1
133         6  67  61 57   67 49.0 1.000  0.000000e+00 1.000  0.000000e+00   3
134         5  33  43 50   32 52.0 1.000  0.000000e+00 1.000 2.230403e-234   5
135         3  48  35 42   43 47.5 1.000 8.317895e-261 1.000  0.000000e+00   3
136         3   7  40 15   11 42.0 1.000  0.000000e+00 1.000  1.165915e-11   5
137         5  41  74 49   46 58.5 1.000  0.000000e+00 1.000  0.000000e+00   2
138         5  16  32 22   20 39.5 1.000 3.243352e-218 1.000  5.155705e-56   2
139         7  40  22 25   30 32.0 1.000 8.841839e-104 1.000  0.000000e+00  -2
140         8  88  77 76   79 59.5 1.000  0.000000e+00 1.000  0.000000e+00  -3
141         9  48  79 51   44 60.5 1.000  0.000000e+00 1.000  0.000000e+00   0
142        10  87  43 60   76 32.5 1.000  0.000000e+00 1.000  0.000000e+00  -5
143         9  73  41 51   59 41.5 1.000  0.000000e+00 1.000  0.000000e+00  -2
144         7  79  66 83   70 63.0 1.000  0.000000e+00 1.000  0.000000e+00  -5
145         6  43  58 32   48 44.5 1.000  0.000000e+00 1.000  0.000000e+00   1
146         8  48  73 45   47 48.0 1.000  0.000000e+00 1.000  0.000000e+00  -5
147         3  12  56 24   23 42.0 1.000  0.000000e+00 1.000  5.071515e-32  10
148        10  95  50 80   90 50.5 1.000  0.000000e+00 1.000  0.000000e+00  -1
149         4  14  47 19   16 44.5 1.000  0.000000e+00 1.000  3.670045e-43   1
150         7  40  84 71   41 78.0 1.000  0.000000e+00 1.000  0.000000e+00  -2
151        11 100  24 65   84 23.0 1.000 2.807246e-123 1.000  0.000000e+00  -9
152         7  73  36 62   74 41.0 1.000 7.512906e-276 1.000  0.000000e+00   1
153         1   0  31  7    0 41.0 1.000 7.257311e-205 0.491  3.959860e-01   1
154        10  63  74 80   58 69.5 1.000  0.000000e+00 1.000  0.000000e+00  -8
155        12  73  56 61   74 47.0 1.000  0.000000e+00 1.000  0.000000e+00  -7
156         6  47  31 42   45 35.5 1.000 7.257311e-205 1.000  0.000000e+00   3
157         3   8  48 29   19 53.0 1.000  0.000000e+00 1.000  7.084668e-15   9
158         4   9  67 33   11 55.5 1.000  0.000000e+00 1.000  1.606915e-18   5
159         9  62  50 53   61 50.0 1.000  0.000000e+00 1.000  0.000000e+00   0
160         5  26  23 29   29 32.5 1.000 2.565751e-113 1.000 5.910408e-146   1
161        13 100  50 73   86 39.5 1.000  0.000000e+00 1.000  0.000000e+00  -7
162         4  24  47 25   19 46.0 1.000  0.000000e+00 1.000 1.526109e-124  -2
163         5  54  88 50   54 61.0 1.000  0.000000e+00 1.000  0.000000e+00   4
164         9  57  55 72   54 55.0 1.000  0.000000e+00 1.000  0.000000e+00  -5
165         8  77  81 72   70 63.5 1.000  0.000000e+00 1.000  0.000000e+00  -2
166         8  82  41 66   77 39.0 1.000  0.000000e+00 1.000  0.000000e+00  -2
167         6  68  60 70   65 55.5 1.000  0.000000e+00 1.000  0.000000e+00  -3
168         3  32  66 30   42 46.0 1.000  0.000000e+00 1.000 1.837434e-220   3
169         5  38  48 48   35 56.5 1.000  0.000000e+00 1.000 2.236420e-310  -2
170         4  27  50 44   29 65.5 1.000  0.000000e+00 1.000 2.652556e-157   0
171        14 100  44 65   96 28.0 1.000  0.000000e+00 1.000  0.000000e+00  -9
        gap_se      gap_ci_l   gap_ci_u
1    7.7953553  -17.27889641  13.278896
2   11.0940880  -20.74441242  22.744412
3    6.4923311  -10.72496897  14.724969
4   12.9817832  -24.44429511  26.444295
5   12.9444033  -25.37103039  25.371030
6    9.2924274  -12.21315764  24.213158
7   11.2588707  -20.06738665  24.067387
8    9.4551573  -12.53210835  24.532108
9    6.8117545  -14.35103891  12.351039
10  10.5544484  -19.68671878  21.686719
11   7.1443643  -13.00295396  15.002954
12  13.8712024  -22.18755673  32.187557
13   7.2463925  -14.20292928  14.202929
14  12.6090047  -25.71364912  23.713649
15   9.6832147  -16.97910077  20.979101
16   7.6710253  -16.03520959  14.035210
17  10.8467941  -23.25971634  19.259716
18  11.6792386  -17.89130775  27.891308
19  13.3082534  -30.08417674  22.084177
20  12.1049478  -22.72569774  24.725698
21  10.0979095  -20.79190265  18.791903
22   9.7773551  -20.16361602  18.163616
23   6.8648107  -12.45502906  14.455029
24  13.6574091  -34.76852179  18.768522
25         Inf          -Inf        Inf
26  15.0329129  -33.46450927  25.464509
27   9.3678147  -19.36091683  17.360917
28  13.6322050  -18.71912171  34.719122
29  13.1094325  -28.69448780  22.694488
30   9.4909658  -16.60229292  20.602293
31   6.5072515  -14.75421298  10.754213
32   5.9704100  -12.70200368  10.702004
33  14.8727327  -32.15055613  26.150556
34  10.1034213  -18.80270583  20.802706
35   9.9665850  -21.53450668  17.534507
36  14.6175691  -26.65043538  30.650435
37  13.2382023  -21.94687650  29.946876
38   8.1202599  -14.91570931  16.915709
39   8.8955134  -21.43520627  13.435206
40  13.4848400  -26.43028635  26.430286
41  12.1522995  -18.81850695  28.818507
42  14.4984947  -28.41704966  28.417050
43  13.6747943  -27.80259689  25.802597
44   7.1118877  -12.93929999  14.939300
45  10.0021448  -18.60420375  20.604204
46   6.9252494  -13.57348883  13.573489
47   8.5713096  -15.79976685  17.799767
48   9.8397850  -21.28597855  17.285979
49   3.2986289   -6.46531257   6.465313
50   8.6327863  -12.92026123  20.920261
51  17.0477455  -30.41358109  36.413581
52   9.2130685  -13.05761433  23.057614
53   6.9701284  -11.66145174  15.661452
54  11.0153080  -15.59000369  27.590004
55  14.3698026  -26.16481319  30.164813
56   8.9704989  -13.58217783  21.582178
57  15.7647238  -29.89885856  31.898859
58  10.8952783  -15.35474550  27.354745
59  11.3168441  -21.18101441  23.181014
60   7.2240916  -16.15921961  12.159220
61  11.5903104  -22.71700830  22.717008
62  12.0505521  -20.61908208  26.619082
63   7.3633186  -14.43210455  14.432105
64  12.7119709  -25.91546287  23.915463
65   8.3601887  -19.38596980  13.385970
66   8.3332363  -20.33314317  12.333143
67  14.3889425  -29.20232733  27.202327
68  16.6210066  -28.57717301  36.577173
69  11.6098723  -18.75534971  26.755350
70  19.0705741  -36.37832518  38.378325
71   4.8880874   -8.58065137  10.580651
72   6.3074388  -11.36257998  13.362580
73   0.5547002   -0.08721238   2.087212
74   7.0169692  -15.75325969  11.753260
75  11.7784080  -23.08567962  23.085680
76   9.5670273  -22.75137349  14.751373
77  10.6290423  -19.83292285  21.832923
78   9.2518637  -16.13365277  20.133653
79   9.2871361  -17.20278666  19.202787
80   9.5228309  -14.66474847  22.664748
81   7.3925475  -16.48939309  12.489393
82  10.6138398  -14.80312596  26.803126
83  10.3910497  -17.36645733  23.366457
84  29.8930634  -59.59040422  57.590404
85   9.4144346  -18.45229183  18.452292
86  10.2259560  -23.04287370  17.042874
87  10.0189489  -19.63713977  19.637140
88  11.1402605  -25.83491064  17.834911
89  10.0819019  -25.76052781  13.760528
90  10.0051269  -22.61004871  16.610049
91   9.9660774  -13.53351169  25.533512
92  14.9368550  -29.27623581  29.276236
93  14.4743973  -32.36981871  24.369819
94  13.1599960  -25.79359209  25.793592
95   8.4705032  -15.60218637  17.602186
96   8.3600600  -13.38571767  19.385718
97   5.3238010  -11.43464997   9.434650
98  16.6224009  -33.57990575  31.579906
99  14.0232491  -28.48556822  26.485568
100  6.4726315  -13.68635766  11.686358
101 11.4254010  -17.39378592  27.393786
102 15.3358791  -31.05832313  29.058323
103 10.3044487  -16.19671953  24.196720
104  6.9159604  -17.55528242   9.555282
105 10.4324434  -18.44758904  22.447589
106  7.3612159  -11.42798323  17.427983
107 26.6320121  -53.19874374  51.198744
108 17.0629913  -35.44346295  31.443463
109 10.1766610  -17.94625548  21.946255
110 10.1167662  -19.82886175  19.828862
111 18.8516010  -42.94913790  30.949138
112 11.3666301  -20.27859502  24.278595
113  7.6795550  -18.05192788  12.051928
114 10.2870431  -16.16260448  24.162604
115  9.5307434  -19.68025703  17.680257
116 13.4685186  -26.39829641  26.398296
117  2.7426557   -6.37560509   4.375605
118  7.3705495  -12.44627703  16.446277
119  9.8426353  -23.29156526  15.291565
120 12.6309468  -21.75665567  27.756656
121 11.2180814  -17.98743952  25.987440
122  8.3682170  -18.40170531  14.401705
123  9.0213410  -17.68182831  17.681828
124 10.3359110  -24.25838553  16.258386
125  7.1652879  -16.04396427  12.043964
126  4.2500000   -4.33000000  12.330000
127  8.9619205  -17.56536425  17.565364
128  8.4511669  -17.56428715  15.564287
129 11.4271975  -25.39730707  19.397307
130  6.1644140  -16.08225145   8.082251
131  5.1500553  -19.09410830   1.094108
132 15.5159754  -29.41131185  31.411312
133 11.9725981  -20.46629226  26.466292
134 11.9312260  -18.38520287  28.385203
135 10.5490813  -17.67619940  23.676199
136  8.9967762  -12.63368126  22.633681
137 10.0471283  -17.69237152  21.692372
138  6.1757214  -10.10441396  14.104414
139  9.1355039  -19.90558764  15.905588
140 11.2364352  -25.02341291  19.023413
141 74.1967961 -145.42572043 145.425720
142 14.3883027  -33.20107338  23.201073
143 13.2674334  -28.00416954  24.004170
144  9.7242278  -24.05948646  14.059486
145 10.0965299  -18.78919864  20.789199
146  7.9844925  -20.64960524  10.649605
147 11.2826726  -12.11403832  32.114038
148 16.8158475  -33.95906111  31.959061
149  8.2565255  -15.18278991  17.182790
150  8.4846211  -18.62985739  14.629857
151 20.4124145  -49.00833247  31.008332
152 15.0283501  -28.45556623  30.455566
153  2.6943013   -4.28083046   6.280830
154  8.2993396  -24.26670559   8.266706
155 11.0984623  -28.75298614  14.752986
156 12.8823025  -22.24931282  28.249313
157 10.4336099  -11.44987536  29.449875
158 10.0874241  -14.77135124  24.771351
159 11.7550792  -23.03995521  23.039955
160  9.5634863  -17.74443311  19.744433
161 14.7500683  -35.91013395  21.910134
162  7.0200399  -15.75927820  11.759278
163  9.1419126  -13.91814869  21.918149
164  8.9512769  -22.54450280  12.544503
165 10.1468419  -21.88781011  17.887810
166 13.6323479  -28.71940187  24.719402
167  8.8766682  -20.39826965  14.398270
168  5.1168172   -7.02896170  13.028962
169  5.4891158  -12.75866695   8.758667
170  8.4127951  -16.48907846  16.489078
171 16.2898414  -40.92808922  22.928089

Additional Plots

Will act as auxiliary visualizations - No need to evaluate now necessarily

Code
plot(JP_Clean$client_sat,
     JP_Clean$hrs_working,
     type = "p",
     main = "Scatter of Client Satisfaction vs. Hours Worked",
     xlab = "Client Satisfaction",
     ylab = "Hours Worked",
     col = "red4",
     #Star of David Scatter
     pch=11)

Code
plot(JP_Clean$client_sat ~ JP_Clean$hrs_working)

abline(a=54.97,
       b=0.11)

Code
mean <- 

barplot(JP_Clean$client_sat,
        xlab="Frequency",
        col="blue",
        space=5,
        main = "Client Satifaction Distibution"
        )
abline( h = mean(JP_Clean$client_sat), col = "blue", lwd = 4)

legend("topright", legend = "Mean", col = "blue", lwd = 6, label(JP_Client$clientsat, TRUE))