Ethan Campbell HW5

Fort Worth climate change based on precipitation, humidity, and temperature from 1981-2020

Ethan Campbell
2022-03-15

Introduction/Importing data

Importing and viewing the data to determine major cleaning changes that need to be made. Here we notice that all the months are separated and that the PARAMETER column holds all of the unique values. I want to combine the months into one column and then spread the unique values. Once I complete this I can select the columns that I want and then remove the Na values. When I have this setup I will be able to run an analysis on the specific segment that I want.

Fort_Worth <- read.csv("Fort_Worth_climate.csv", skip = 18)

Fort_Worth %>%
  slice(1:12) %>%
  knitr::kable(caption = "Original Table", digits = 2) %>%
  kableExtra::kable_styling(bootstrap_options = "striped", full_width = TRUE)
Table 1: Original Table
PARAMETER YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC ANN
PS 1981 99.17 99.00 98.53 98.64 98.18 98.29 98.49 98.45 98.65 98.69 98.76 98.81 98.64
PS 1982 98.81 99.11 98.50 98.52 98.27 98.28 98.51 98.53 98.58 98.76 98.83 98.78 98.62
PS 1983 98.91 98.51 98.06 98.08 98.23 98.26 98.63 98.59 98.65 98.80 98.37 99.20 98.53
PS 1984 99.40 98.61 98.42 98.03 98.38 98.36 98.49 98.47 98.72 98.58 98.90 98.89 98.61
PS 1985 99.24 99.08 98.57 98.47 98.26 98.42 98.49 98.42 98.60 98.66 98.61 99.26 98.67
PS 1986 99.22 98.56 98.70 98.41 98.27 98.40 98.58 98.55 98.56 98.87 98.91 99.18 98.69
PS 1987 98.84 98.61 98.53 98.61 98.38 98.49 98.54 98.45 98.56 99.00 98.90 98.79 98.64
PS 1988 99.33 99.13 98.70 98.34 98.42 98.51 98.57 98.36 98.49 98.90 98.49 99.21 98.70
PS 1989 99.06 99.39 98.64 98.53 98.30 98.40 98.60 98.46 98.69 98.81 98.75 99.24 98.73
PS 1990 98.84 98.85 98.83 98.59 98.21 98.37 98.63 98.63 98.63 98.79 98.89 98.99 98.69
PS 1991 99.10 99.03 98.23 98.19 98.32 98.42 98.56 98.64 98.85 98.61 99.07 99.16 98.68
PS 1992 99.02 98.70 98.55 98.50 98.61 98.08 98.48 98.74 98.61 98.70 98.69 98.92 98.63
Month_combined <- Fort_Worth %>%
pivot_longer(
  cols = c(NOV, JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, DEC),
  names_to = "MONTH",
  values_to = "Month_AVG",
)

Month_combined %>%
  select("PARAMETER", "YEAR", "MONTH", "Month_AVG", "ANN") %>%
  slice(1:12) %>%
  knitr::kable(caption = "Month Combined", digits = 2) %>%
  kableExtra::kable_styling(bootstrap_options = "striped", full_width = TRUE)
Table 1: Month Combined
PARAMETER YEAR MONTH Month_AVG ANN
PS 1981 NOV 98.76 98.64
PS 1981 JAN 99.17 98.64
PS 1981 FEB 99.00 98.64
PS 1981 MAR 98.53 98.64
PS 1981 APR 98.64 98.64
PS 1981 MAY 98.18 98.64
PS 1981 JUN 98.29 98.64
PS 1981 JUL 98.49 98.64
PS 1981 AUG 98.45 98.64
PS 1981 SEP 98.65 98.64
PS 1981 OCT 98.69 98.64
PS 1981 DEC 98.81 98.64
Para_split <- Month_combined %>%
  pivot_wider(names_from = PARAMETER,
              values_from = Month_AVG,
              )


Para_split %>%
  slice(1:12) %>%
  knitr::kable(caption = "PARAMETER split", digits = 2) %>%
  kableExtra::kable_styling(bootstrap_options = "striped", full_width = TRUE)
Table 1: PARAMETER split
YEAR ANN MONTH PS TS T2M QV2M RH2M WD50M WS10M WS50M PRECTOTCORR PRECTOTCORR_SUM
1981 98.64 NOV 98.76 NA NA NA NA NA NA NA NA NA
1981 98.64 JAN 99.17 NA NA NA NA NA NA NA NA NA
1981 98.64 FEB 99.00 NA NA NA NA NA NA NA NA NA
1981 98.64 MAR 98.53 NA NA NA NA NA NA NA NA NA
1981 98.64 APR 98.64 NA NA NA NA NA NA NA NA NA
1981 98.64 MAY 98.18 NA NA NA NA NA NA NA NA NA
1981 98.64 JUN 98.29 NA NA NA NA NA NA NA NA NA
1981 98.64 JUL 98.49 NA NA NA NA NA NA NA NA NA
1981 98.64 AUG 98.45 NA NA NA NA NA NA NA NA NA
1981 98.64 SEP 98.65 NA NA NA NA NA NA NA NA NA
1981 98.64 OCT 98.69 NA NA NA NA NA NA NA NA NA
1981 98.64 DEC 98.81 NA NA NA NA NA NA NA NA NA

Cleaning the Temperature column

# Rename in the temperature column and then mutating to change from C to F and then rearranged in the order i want while removed the Na values.

Final_Temperature <- Para_split %>%
  rename(Temperature = T2M) %>%
  mutate(Temperature_F = Temperature * 9/5 + 32) %>%
  mutate(Annual_Temperature = ANN * 9/5 + 32) %>%
  select(YEAR, MONTH, Temperature_F, Annual_Temperature) %>%
  na.omit(Temperature_F)

Final_Temperature %>%
  slice(1:12) %>%
  knitr::kable(caption = "Temperature", digits = 2) %>%
  kableExtra::kable_styling(bootstrap_options = "striped", full_width = TRUE)
Table 2: Temperature
YEAR MONTH Temperature_F Annual_Temperature
1981 NOV 53.24 64.45
1981 JAN 42.19 64.45
1981 FEB 47.93 64.45
1981 MAR 55.02 64.45
1981 APR 69.01 64.45
1981 MAY 70.27 64.45
1981 JUN 79.36 64.45
1981 JUL 86.67 64.45
1981 AUG 85.33 64.45
1981 SEP 76.17 64.45
1981 OCT 64.42 64.45
1981 DEC 42.94 64.45
# When was Temperature the highest (Jul of 2011)

Final_Temperature %>%
  select(YEAR, MONTH, Temperature_F, Annual_Temperature) %>%
  arrange(desc(Temperature_F)) %>%
  slice(1:12) %>%
  knitr::kable(caption = "Highest Temerpature", digits = 2) %>%
  kableExtra::kable_styling(bootstrap_options = "striped", full_width = TRUE)
Table 2: Highest Temerpature
YEAR MONTH Temperature_F Annual_Temperature
2011 JUL 94.23 67.51
2011 AUG 94.17 67.51
1998 JUL 93.24 67.17
1999 AUG 92.17 66.83
2000 AUG 91.87 65.71
1985 AUG 90.95 64.00
2006 AUG 90.34 67.37
2018 JUL 90.21 65.03
2001 JUL 90.05 64.78
1988 AUG 89.56 64.27
1993 AUG 89.56 63.05
2010 AUG 89.51 64.40
# When was Temperature the lowest (Dec of 1983)

Final_Temperature %>%
  select(YEAR, MONTH, Temperature_F, Annual_Temperature) %>%
  arrange(Temperature_F) %>%
  na.omit(Temperature_F) %>%
  slice(1:12) %>%
  knitr::kable(caption = "Lowest Temperature", digits = 2) %>%
  kableExtra::kable_styling(bootstrap_options = "striped", full_width = TRUE)
Table 2: Lowest Temperature
YEAR MONTH Temperature_F Annual_Temperature
1983 DEC 33.49 62.73
1985 JAN 34.29 64.00
1989 DEC 35.56 62.24
2000 DEC 35.69 65.71
1984 JAN 36.12 64.80
1988 JAN 37.26 64.27
2007 JAN 38.26 63.75
2009 DEC 38.68 64.51
1991 JAN 38.75 63.90
2010 FEB 39.04 64.40
2011 JAN 39.15 67.51
2001 JAN 39.22 64.78
Final_Temperature %>%
  select(YEAR, MONTH, Temperature_F, Annual_Temperature) %>%
  filter(YEAR < 1982) %>%
  mutate(Mean = mean(Temperature_F)) %>%
  mutate(Standard_Deviation = sd(Temperature_F)) %>%
  mutate(Median = median(Temperature_F)) %>%
  slice(1:12) %>%
  knitr::kable(caption = "Temperature stats data", digits = 2) %>%
  kableExtra::kable_styling(bootstrap_options = "striped", full_width = TRUE)
Table 2: Temperature stats data
YEAR MONTH Temperature_F Annual_Temperature Mean Standard_Deviation Median
1981 NOV 53.24 64.45 64.38 15.92 66.71
1981 JAN 42.19 64.45 64.38 15.92 66.71
1981 FEB 47.93 64.45 64.38 15.92 66.71
1981 MAR 55.02 64.45 64.38 15.92 66.71
1981 APR 69.01 64.45 64.38 15.92 66.71
1981 MAY 70.27 64.45 64.38 15.92 66.71
1981 JUN 79.36 64.45 64.38 15.92 66.71
1981 JUL 86.67 64.45 64.38 15.92 66.71
1981 AUG 85.33 64.45 64.38 15.92 66.71
1981 SEP 76.17 64.45 64.38 15.92 66.71
1981 OCT 64.42 64.45 64.38 15.92 66.71
1981 DEC 42.94 64.45 64.38 15.92 66.71
Temperature_DEC <- Final_Temperature %>%
  select(YEAR, MONTH, Temperature_F, Annual_Temperature) %>%
  filter(MONTH == "DEC") 

Temperature_July <- Final_Temperature %>%
  select(YEAR, MONTH, Temperature_F, Annual_Temperature) %>%
  filter(MONTH == "JUL") 

 




Final_Precipitation <- Para_split %>%
  rename(Precipitation = PRECTOTCORR_SUM) %>%
  mutate(Precipitation_annual = ANN / 25.4) %>%
  mutate(Precipitation_Monthly = Precipitation / 25.4) %>%
  select(YEAR, MONTH, Precipitation_Monthly, Precipitation_annual) %>%
  na.omit(Precipitation_Monthly)

Combined_data <- merge(Final_Temperature, Final_Precipitation, by ="YEAR") 


Temp_combine <- Final_Temperature %>%
  select(Temperature_F, Annual_Temperature)

Combined_data <- cbind(Final_Precipitation, Temp_combine)

Combined_data %>%
  select(YEAR, MONTH, Temperature_F,Annual_Temperature, Precipitation_Monthly, Precipitation_annual) %>%
  filter(Temperature_F < 39, Precipitation_Monthly > .1) %>%
  slice(1:12) %>%
  knitr::kable(caption = "Potential Months with Snow days", digits = 2) %>%
  kableExtra::kable_styling(bootstrap_options = "striped", full_width = TRUE)
Table 2: Potential Months with Snow days
YEAR MONTH Temperature_F Annual_Temperature Precipitation_Monthly Precipitation_annual
1983 DEC 33.49 62.73 0.66 26.99
1984 JAN 36.12 64.80 0.90 32.34
1985 JAN 34.29 64.00 0.71 32.93
1988 JAN 37.26 64.27 0.51 25.78
1989 DEC 35.56 62.24 0.31 43.01
1991 JAN 38.75 63.90 2.88 47.55
2000 DEC 35.69 65.71 2.58 32.05
2007 JAN 38.26 63.75 2.81 44.77
2009 DEC 38.68 64.51 1.75 38.44

Graphing Temperature

Final_Temperature %>%
ggplot(aes(x = Annual_Temperature)) +
geom_density(aes(fill = "blue"),
show.legend = F,
alpha = .5) +
labs(title = "Density plot",
x = "Annual temperature [f]",
y = "Probability")
Final_Temperature %>%
filter(Annual_Temperature > 50) %>%
ggplot(aes(x= YEAR,
y = Annual_Temperature,
size = Annual_Temperature,
color = YEAR)) +
geom_point() +
  geom_smooth() +
labs(title = "Temperature change over 40 years",
x = "Year",
y = "Annual Temperature")
Temperature_DEC %>%
ggplot(aes(x= YEAR,
y = Temperature_F,
size = Temperature_F,
color = YEAR)) +
geom_point() +
  geom_smooth() +
labs(title = "December Temperature change over 40 years",
x = "Year",
y = "December Temperature")
Temperature_July %>%
ggplot(aes(x= YEAR,
y = Temperature_F,
size = Temperature_F,
color = YEAR)) +
geom_point() +
  geom_smooth() +
labs(title = "July Temperature change over 40 years",
x = "Year",
y = "July Temperature")
Final_Temperature %>%
drop_na(Temperature_F) %>%
filter(Temperature_F > 50) %>%
ggplot(aes(Temperature_F, fill = MONTH)) +
geom_density(alpha = 0.5) +
facet_wrap(~MONTH) +
labs(title = "Density plot of a temperature greater than 50",
subtitle = "Decemeber does not show due to not reaching 50",
x = "Temperature",
y = "Probability") +
theme(legend.position = "none")
Final_Temperature %>%
drop_na(Temperature_F) %>%
filter(Temperature_F < 49) %>%
ggplot(aes(Temperature_F, fill = MONTH)) +
geom_density(alpha = 0.5) +
facet_wrap(~MONTH) +
labs(title = "Density plot of a temperature less than 49",
subtitle = "Only these months are below 49",
x = "Temperature",
y = "Probability") +
theme(legend.position = "none")
Final_Temperature %>%
ggplot(mapping = aes(x = Temperature_F , y = MONTH, fill = ..x..)) +
geom_density_ridges_gradient(scale = 3, rel_min_height = 0.01,
alpha = 5) +
scale_fill_viridis(name = "Temp. [F]", option = "C") +
labs(title = 'Temperatures in Fort Worth') +
theme_bw() +
theme(legend.position="none",
  panel.spacing = unit(0.1, "lines"),
  strip.text.x = element_text(size = 8))

Insights

I will start with temperature and I will need the columns YEAR, MONTH, ANN, and T2m. This will show the year that it occurred and the month. The t2m will show the temperature at 2meters above the surface level and will display it per month. The Ann will show the average for the year and this is good to use when looking at each year to get a comparison. The temperature column has NA values and is in C format so we need to rename the column and remove the Na values while switching it to F format.

Confirming the annual column to ensure it is the mean. We notice a slight difference between the annual column and the mean. This number falls in between the mean and the median and the sd is 16.5 showing a high range of variance in the values. This is a large range however, I believe this is due to the fact that we are comparing separate months with increasing and decreasing values of temperature. Naturally, the SD would be wide to accompany the wide range of temperatures.

Cleaning Humidty

# renaming the columns
Final_Humidity <- Para_split %>%
  rename(Humidity = RH2M) %>%
  rename(Annual_Humidity_percent = ANN) %>%
  select(YEAR, MONTH, Humidity, Annual_Humidity_percent) %>%
  na.omit(Humidity)

Final_Humidity %>%
  slice(1:12) %>%
  knitr::kable(caption = "Humidity", digits = 2) %>%
  kableExtra::kable_styling(bootstrap_options = "striped", full_width = TRUE)
Table 3: Humidity
YEAR MONTH Humidity Annual_Humidity_percent
1981 NOV 80.19 68.81
1981 JAN 69.38 68.81
1981 FEB 67.19 68.81
1981 MAR 67.38 68.81
1981 APR 66.19 68.81
1981 MAY 71.12 68.81
1981 JUN 75.50 68.81
1981 JUL 57.81 68.81
1981 AUG 50.06 68.81
1981 SEP 63.50 68.81
1981 OCT 79.62 68.81
1981 DEC 78.31 68.81
# When was humidity the highest (Jan of 1998)

Final_Humidity %>%
  select(YEAR, MONTH, Humidity, Annual_Humidity_percent) %>%
  arrange(desc(Humidity)) %>%
  slice(1:12) %>%
  knitr::kable(caption = "Highest Humidty", digits = 2) %>%
  kableExtra::kable_styling(bootstrap_options = "striped", full_width = TRUE)
Table 3: Highest Humidty
YEAR MONTH Humidity Annual_Humidity_percent
1998 JAN 86.56 66.31
1991 DEC 86.50 71.12
1994 DEC 85.69 70.50
1984 DEC 85.62 62.44
2015 MAY 84.88 71.38
1992 JAN 84.75 72.75
2018 OCT 84.69 68.62
1986 DEC 83.62 69.62
1993 JAN 83.56 69.56
2001 JAN 83.38 69.50
2001 FEB 83.38 69.50
1992 FEB 83.25 72.75
# When was humidity the lowest (Aug of 2000)

Final_Humidity %>%
  select(YEAR, MONTH, Humidity, Annual_Humidity_percent) %>%
  arrange(Humidity) %>%
  na.omit(Humidity) %>%
  slice(1:12) %>%
  knitr::kable(caption = "Lowest Humidity", digits = 2) %>%
  kableExtra::kable_styling(bootstrap_options = "striped", full_width = TRUE)
Table 3: Lowest Humidity
YEAR MONTH Humidity Annual_Humidity_percent
2000 AUG 34.88 63.00
1999 AUG 35.81 61.38
2011 JUL 36.19 56.44
2011 AUG 37.31 56.44
1985 AUG 37.62 68.12
2000 SEP 40.44 63.00
2011 SEP 41.06 56.44
1998 JUL 41.25 66.31
1984 JUL 41.31 62.44
1988 AUG 44.06 61.31
2011 JUN 44.81 56.44
1993 AUG 45.00 69.56
Final_Humidity %>%
  select(YEAR, MONTH, Humidity, Annual_Humidity_percent) %>%
  filter(YEAR < 1983, YEAR > 1981) %>%
  mutate(Mean = mean(Humidity)) %>%
  mutate(Standard_Deviation = sd(Humidity)) %>%
  mutate(Median = median(Humidity)) %>%
  slice(1:12) %>%
  knitr::kable(caption = "Humidty stats data", digits = 2) %>%
  kableExtra::kable_styling(bootstrap_options = "striped", full_width = TRUE)
Table 3: Humidty stats data
YEAR MONTH Humidity Annual_Humidity_percent Mean Standard_Deviation Median
1982 NOV 70.38 67.88 67.97 10.97 70.28
1982 JAN 70.19 67.88 67.97 10.97 70.28
1982 FEB 78.69 67.88 67.97 10.97 70.28
1982 MAR 73.94 67.88 67.97 10.97 70.28
1982 APR 66.81 67.88 67.97 10.97 70.28
1982 MAY 79.69 67.88 67.97 10.97 70.28
1982 JUN 77.81 67.88 67.97 10.97 70.28
1982 JUL 65.75 67.88 67.97 10.97 70.28
1982 AUG 49.00 67.88 67.97 10.97 70.28
1982 SEP 48.31 67.88 67.97 10.97 70.28
1982 OCT 58.19 67.88 67.97 10.97 70.28
1982 DEC 76.88 67.88 67.97 10.97 70.28

Graphing Humidity

# change in humidity over years by each month

ggplot(data = Final_Humidity, mapping = aes(x = YEAR, y = Humidity)) +
  geom_point() +
  geom_smooth(mapping = aes(color = MONTH), se = FALSE)
# Facet wrap of the previous graph to separate them

ggplot(data = Final_Humidity, mapping = aes(x = YEAR, y = Humidity)) + 
  geom_point() +
  geom_smooth(mapping = aes(color = MONTH), se = FALSE) +
  facet_wrap(~ MONTH, nrow = 5)
Final_Humidity %>%
filter(Annual_Humidity_percent > 60) %>%
ggplot(aes(x= YEAR,
y = Annual_Humidity_percent,
size = Annual_Humidity_percent,
color = YEAR)) +
geom_point() +
  geom_smooth() +
labs(title = "Humidity change over 40 years",
x = "Year",
y = "Annual Humidity")

Insights

Here we are doing the same thing that we did to the previous section of temperature. We renamed the RH2m to humidity and then changed the ANN to annual_humidity_percent. Next we removed the na values to focus in on the information that we needed and then graphed it to start drawing conclusions.

Once more testing the mean, median, and sd of one year. Once more we notice a slight difference between the mean and the annual however, the difference is .11 which is not major. The standard deviation is almost 11 which could once again be explained by the rainy seasons that come and the increase in humidity that follows them however, in this one we notice it is a much a smaller gap compared to the temperature.

Cleaning Precipitation

# changing the precipitation from mm to inches and then renaming.
Final_Precipitation <- Para_split %>%
  rename(Precipitation = PRECTOTCORR_SUM) %>%
  mutate(Precipitation_annual = ANN / 25.4) %>%
  mutate(Precipitation_Monthly = Precipitation / 25.4) %>%
  select(YEAR, MONTH, Precipitation_Monthly, Precipitation_annual) %>%
  na.omit(Precipitation_Monthly)

Final_Precipitation %>%
  slice(1:12) %>%
  knitr::kable(caption = "Precipitation (Inches)", digits = 2) %>%
  kableExtra::kable_styling(bootstrap_options = "striped", full_width = TRUE)
Table 4: Precipitation (Inches)
YEAR MONTH Precipitation_Monthly Precipitation_annual
1981 NOV 1.53 42.61
1981 JAN 0.39 42.61
1981 FEB 1.82 42.61
1981 MAR 3.33 42.61
1981 APR 3.04 42.61
1981 MAY 6.08 42.61
1981 JUN 4.05 42.61
1981 JUL 1.42 42.61
1981 AUG 2.12 42.61
1981 SEP 2.98 42.61
1981 OCT 15.63 42.61
1981 DEC 0.21 42.61
# When was precipitation the highest (OCT of 1981)

Final_Precipitation %>%
  select(YEAR, MONTH, Precipitation_Monthly, Precipitation_annual) %>%
  arrange(desc(Precipitation_Monthly)) %>%
  na.omit(Precipitation_Monthly) %>%
  slice(1:12) %>%
  knitr::kable(caption = "Highest Precipitation (Inches)", digits = 2) %>%
  kableExtra::kable_styling(bootstrap_options = "striped", full_width = TRUE)
Table 4: Highest Precipitation (Inches)
YEAR MONTH Precipitation_Monthly Precipitation_annual
1981 OCT 15.63 42.61
2015 MAY 15.24 57.96
1982 MAY 11.28 38.48
1989 MAY 10.61 43.01
2018 OCT 10.43 40.07
2004 JUN 10.23 45.36
2007 JUN 10.17 44.77
1989 JUN 9.64 43.01
1990 APR 9.36 46.70
1991 DEC 8.75 47.55
1991 OCT 8.74 47.55
2009 OCT 8.69 38.44
# When was it the lowest (Jan of 1986)

Final_Precipitation %>%
  select(YEAR, MONTH, Precipitation_Monthly, Precipitation_annual) %>%
  arrange(Precipitation_Monthly) %>%
  na.omit(Precipitation_Monthly) %>%
  slice(1:12) %>%
  knitr::kable(caption = "Lowest Precipitation (Inches)", digits = 2) %>%
  kableExtra::kable_styling(bootstrap_options = "striped", full_width = TRUE)
Table 4: Lowest Precipitation (Inches)
YEAR MONTH Precipitation_Monthly Precipitation_annual
1986 JAN 0.01 39.02
2011 JUL 0.01 22.53
2000 AUG 0.02 32.05
2011 MAR 0.08 22.53
1993 JUL 0.08 36.92
2012 NOV 0.12 28.73
2018 JAN 0.17 40.07
2014 JAN 0.18 23.94
2005 NOV 0.19 18.28
1981 DEC 0.21 42.61
2005 DEC 0.21 18.28
1996 FEB 0.21 33.81
Stats_precipitation <- Final_Precipitation %>%
  select(YEAR, MONTH, Precipitation_Monthly, Precipitation_annual) %>%
  filter(YEAR < 1982) %>%
  mutate(Mean = mean(Precipitation_Monthly)) %>%
  mutate(Standard_Deviation = sd(Precipitation_Monthly)) %>%
  mutate(Median = median(Precipitation_Monthly))

Stats_precipitation %>%
  slice(1:12) %>%
  knitr::kable(caption = "Precipitation stats data (Inches)", digits = 2) %>%
  kableExtra::kable_styling(bootstrap_options = "striped", full_width = TRUE)
Table 4: Precipitation stats data (Inches)
YEAR MONTH Precipitation_Monthly Precipitation_annual Mean Standard_Deviation Median
1981 NOV 1.53 42.61 3.55 4.13 2.55
1981 JAN 0.39 42.61 3.55 4.13 2.55
1981 FEB 1.82 42.61 3.55 4.13 2.55
1981 MAR 3.33 42.61 3.55 4.13 2.55
1981 APR 3.04 42.61 3.55 4.13 2.55
1981 MAY 6.08 42.61 3.55 4.13 2.55
1981 JUN 4.05 42.61 3.55 4.13 2.55
1981 JUL 1.42 42.61 3.55 4.13 2.55
1981 AUG 2.12 42.61 3.55 4.13 2.55
1981 SEP 2.98 42.61 3.55 4.13 2.55
1981 OCT 15.63 42.61 3.55 4.13 2.55
1981 DEC 0.21 42.61 3.55 4.13 2.55

Graphing Precipitation

Final_Precipitation %>%
filter(Precipitation_annual > 20) %>%
ggplot(aes(x= YEAR,
y = Precipitation_annual,
size = Precipitation_annual,
color = YEAR)) +
geom_point() +
  geom_smooth() +
labs(title = "Precipitation change over 40 years",
x = "Year",
y = "Annual Precipitation")
ggplot(data = Final_Precipitation, mapping = aes(x = YEAR, y = Precipitation_Monthly)) +
  geom_smooth(mapping = aes(color = MONTH), se = FALSE)
# Facet grid by month of the precipitation changes over the years

ggplot(data = Final_Precipitation, mapping = aes(x = YEAR, y = Precipitation_Monthly)) + 
  geom_point() +
  geom_smooth(mapping = aes(color = MONTH), se = FALSE) +
  facet_wrap(~ MONTH, nrow = 5) +
  labs(title = "Each month's change in precipitation over 40 years", x = "Year", y = "Precipitation per month in Inches")

Insights

Once more we engaged in a similar process of isolating the information to draw conclusions by renaming and then selecting that information that is important. However, on this one we needed to change the precipitation from mm to inches which required us to divide the ANN and the monthly column by 25.4. During this analysis we aimed towards finding when it was the highest and lowest and learned they were within 5 years of each other.

Here we do not have a mean or average to compare it to since the annual is the combination of the monthly values to show the yearly rainfall however, when dividing that annual combination by 12 we reach the same values which means that number is accurate for annual rain fall. We also notice a much lower sd as the rain seems to be a bit more consistent than the other two values as it is much harder to have a wide range. Texas already does not receive a large amount of rain and that range from 0 to the amount of rain we do get is not very different resulting in this lower sd

Questions

Answers

References/Acknowledgements

(“These data were obtained from the NASA Langley Research Center (LaRC) POWER Project funded through the NASA Earth Science/Applied Science Program.”)

Types of data

Reuse

Text and figures are licensed under Creative Commons Attribution CC BY-NC 4.0. The figures that have been reused from other sources don't fall under this license and can be recognized by a note in their caption: "Figure from ...".

Citation

For attribution, please cite this work as

Campbell (2022, March 23). Data Analytics and Computational Social Science: Ethan Campbell HW5. Retrieved from https://github.com/DACSS/dacss_course_website/posts/httpsrpubscomethancampbell878504/

BibTeX citation

@misc{campbell2022ethan,
  author = {Campbell, Ethan},
  title = {Data Analytics and Computational Social Science: Ethan Campbell HW5},
  url = {https://github.com/DACSS/dacss_course_website/posts/httpsrpubscomethancampbell878504/},
  year = {2022}
}