DACSS 601 Spring 2022
Initial Setup:
######### CASE DATA
# Read in data set
# I skipped the first 10 rows which were notes and titles
HIV.State <- read_csv("HIV.by.State.CSV", skip = 10)
# Select rows that are relevant: Geography, Year, Cases, and Rate per 100k
HIV.State <- select(HIV.State, 2,3,5,6)
# Here I rename two columns: Geography to State, and Rate per 100k to Rate
HIV.State <- rename(HIV.State, State=2, Rate =4)
# rate is chr data, so I change it to numeric
HIV.State$Rate = as.numeric(HIV.State$Rate)
######### RATE DATA
# We have case data for 2008-2021, we only have rate data for 2008-2019. I don't have access to where they pull their state population data to calculate rate for 2020 and 2021.
# Here I create a new variable to remove 2020 and 2021 for rate data.
HIV.Rate.By.State <- filter(HIV.State, Year < 2020)
HIV.Rate.By.State <- group_by(HIV.Rate.By.State, State)
head(HIV.Rate.By.State)
# A tibble: 6 × 4
# Groups: State [1]
Year State Cases Rate
<dbl> <chr> <dbl> <dbl>
1 2019 Alabama 638 15.5
2 2018 Alabama 607 14.8
3 2017 Alabama 650 15.9
4 2016 Alabama 653 16
5 2015 Alabama 663 16.3
6 2014 Alabama 664 16.4
The following variables are found in this table:
Year : This double data which is the year of each observation.
State : This is character data which is the a U.S state..
Cases : This is double data which is the number of new hiv cases.
Rate : This is the rate per 100,000 people.
##pivot wider to see year over year change for each state
HIV.State.Wide.Year <- HIV.State%>%
select(1:3)%>%
pivot_wider(
names_from = Year,
values_from = Cases
)
## Here I use pivot wider to see year over year RATE change for each state
Rate.By.State.Wide.Year <- HIV.Rate.By.State%>%
select(1,2,4)%>%
pivot_wider(
names_from = Year,
values_from = Rate
)
###Table.1a
knitr::kable(HIV.State.Wide.Year,caption = "HIV Incidence by State 2008-2021" )%>%
kable_styling("striped", full_width = F) %>%
scroll_box(width = "1000px", height = "400px")
State | 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Alabama | 314 | 586 | 638 | 607 | 650 | 653 | 663 | 664 | 630 | 663 | 676 | 682 | 689 | 703 |
Alaska | 13 | 29 | 27 | 23 | 29 | 37 | 25 | 38 | 23 | 28 | 23 | 37 | 21 | 39 |
Arizona | 505 | 668 | 761 | 753 | 727 | 714 | 689 | 742 | 685 | 620 | 564 | 615 | 641 | 681 |
Arkansas | 264 | 244 | 287 | 278 | 287 | 315 | 271 | 311 | 262 | 247 | 237 | 230 | 279 | 234 |
California | 2308 | 3636 | 4354 | 4715 | 4806 | 5067 | 5029 | 5113 | 4673 | 5032 | 5027 | 5270 | 5417 | 5713 |
Colorado | 256 | 326 | 461 | 402 | 435 | 421 | 377 | 377 | 309 | 370 | 360 | 420 | 370 | 445 |
Connecticut | 136 | 171 | 213 | 259 | 274 | 256 | 276 | 296 | 326 | 288 | 349 | 387 | 343 | 347 |
Delaware | 55 | 95 | 93 | 91 | 126 | 111 | 104 | 115 | 110 | 137 | 114 | 124 | 149 | 153 |
District of Columbia | 64 | 198 | 255 | 281 | 316 | 351 | 365 | 413 | 490 | 570 | 632 | 788 | 822 | 1035 |
Florida | 3463 | 3424 | 4378 | 4530 | 4557 | 4651 | 4595 | 4483 | 4295 | 4383 | 4575 | 4639 | 5041 | 5770 |
Georgia | 1218 | 1833 | 2439 | 2482 | 2596 | 2526 | 2627 | 2383 | 2331 | 2596 | 2628 | 2612 | 2915 | 3162 |
Hawaii | 41 | 50 | 65 | 72 | 77 | 77 | 117 | 98 | 96 | 82 | 78 | 101 | 84 | 82 |
Idaho | 24 | 32 | 28 | 37 | 46 | 46 | 40 | 22 | 25 | 36 | 35 | 45 | 48 | 49 |
Illinois | 533 | 1055 | 1252 | 1374 | 1367 | 1483 | 1547 | 1536 | 1581 | 1645 | 1612 | 1650 | 1728 | 1798 |
Indiana | 329 | 434 | 486 | 509 | 515 | 489 | 632 | 465 | 474 | 486 | 468 | 485 | 461 | 462 |
Iowa | 81 | 100 | 100 | 116 | 125 | 132 | 124 | 94 | 119 | 117 | 113 | 114 | 124 | 95 |
Kansas | 112 | 138 | 131 | 157 | 119 | 147 | 155 | 130 | 147 | 151 | 136 | 135 | 153 | 138 |
Kentucky | 269 | 301 | 326 | 378 | 365 | 338 | 340 | 341 | 355 | 360 | 306 | 330 | 343 | 354 |
Louisiana | 663 | 725 | 881 | 961 | 996 | 1108 | 1095 | 1199 | 1123 | 1018 | 1188 | 1111 | 1171 | 1063 |
Maine | 25 | 16 | 30 | 30 | 29 | 53 | 47 | 59 | 35 | 49 | 50 | 55 | 56 | 45 |
Maryland | 506 | 708 | 918 | 991 | 1020 | 1097 | 1168 | 1230 | 1294 | 1311 | 1412 | 1717 | 1668 | 2011 |
Massachusetts | 157 | 431 | 535 | 649 | 608 | 640 | 598 | 648 | 671 | 706 | 674 | 702 | 683 | 742 |
Michigan | 460 | 521 | 674 | 715 | 773 | 746 | 723 | 781 | 751 | 784 | 773 | 764 | 801 | 773 |
Minnesota | 203 | 226 | 274 | 288 | 277 | 297 | 296 | 311 | 306 | 315 | 294 | 334 | 380 | 330 |
Mississippi | 275 | 401 | 477 | 476 | 428 | 427 | 502 | 473 | 470 | 440 | 523 | 454 | 491 | 513 |
Missouri | 367 | 359 | 488 | 449 | 502 | 512 | 463 | 465 | 462 | 532 | 523 | 567 | 521 | 542 |
Montana | 9 | 15 | 25 | 23 | 32 | 20 | 19 | 14 | 22 | 20 | 21 | 20 | 31 | 22 |
Nebraska | 62 | 73 | 81 | 79 | 88 | 75 | 78 | 87 | 80 | 81 | 78 | 116 | 108 | 96 |
Nevada | 359 | 391 | 512 | 501 | 494 | 509 | 477 | 429 | 431 | 364 | 381 | 371 | 360 | 390 |
New Hampshire | 22 | 29 | 31 | 38 | 32 | 39 | 25 | 41 | 36 | 48 | 40 | 50 | 38 | 43 |
New Jersey | 601 | 763 | 1057 | 1021 | 1123 | 1188 | 1192 | 1237 | 1209 | 1277 | 1166 | 1352 | 1388 | 1429 |
New Mexico | 93 | 123 | 156 | 135 | 141 | 146 | 137 | 135 | 140 | 115 | 137 | 148 | 160 | 152 |
New York | 1243 | 1958 | 2330 | 2449 | 2729 | 2820 | 3051 | 3307 | 3231 | 3517 | 3773 | 3904 | 4157 | 4560 |
North Carolina | 966 | 1077 | 1365 | 1186 | 1295 | 1388 | 1328 | 1306 | 1275 | 1228 | 1430 | 1436 | 1570 | 1695 |
North Dakota | 15 | 36 | 40 | 36 | 38 | 46 | 20 | 20 | 19 | 9 | 13 | 14 | 13 | 12 |
Ohio | 484 | 885 | 980 | 973 | 983 | 955 | 925 | 945 | 1037 | 1015 | 1043 | 981 | 1042 | 1054 |
Oklahoma | 163 | 235 | 320 | 278 | 299 | 294 | 314 | 303 | 331 | 283 | 309 | 286 | 293 | 285 |
Oregon | 130 | 181 | 199 | 230 | 203 | 228 | 223 | 238 | 229 | 270 | 239 | 238 | 248 | 286 |
Pennsylvania | 661 | 773 | 989 | 1023 | 1100 | 1131 | 1173 | 1195 | 1286 | 1411 | 1370 | 1472 | 1645 | 1767 |
Rhode Island | 33 | 53 | 72 | 75 | 85 | 71 | 64 | 89 | 76 | 79 | 98 | 115 | 118 | 123 |
South Carolina | 446 | 679 | 680 | 712 | 706 | 747 | 670 | 761 | 705 | 695 | 738 | 762 | 750 | 701 |
South Dakota | 16 | 34 | 33 | 29 | 39 | 43 | 24 | 30 | 32 | 25 | 19 | 32 | 24 | 28 |
Tennessee | 560 | 642 | 773 | 746 | 721 | 716 | 736 | 757 | 769 | 853 | 839 | 850 | 926 | 998 |
Texas | 2539 | 3553 | 4302 | 4422 | 4356 | 4527 | 4529 | 4419 | 4336 | 4322 | 4267 | 4445 | 4347 | 4165 |
Utah | 85 | 129 | 135 | 121 | 113 | 139 | 123 | 113 | 109 | 120 | 107 | 83 | 122 | 131 |
Vermont | 4 | 9 | 11 | 18 | 20 | 5 | 14 | 17 | 13 | 14 | 13 | 20 | 17 | 18 |
Virginia | 563 | 625 | 822 | 861 | 863 | 903 | 953 | 899 | 943 | 933 | 892 | 993 | 975 | 1057 |
Washington | 335 | 421 | 483 | 500 | 432 | 425 | 447 | 441 | 442 | 494 | 477 | 540 | 520 | 521 |
West Virginia | 91 | 129 | 146 | 84 | 77 | 68 | 71 | 84 | 74 | 79 | 85 | 72 | 73 | 81 |
Wisconsin | 160 | 210 | 211 | 207 | 260 | 229 | 225 | 216 | 243 | 217 | 240 | 251 | 277 | 237 |
Wyoming | 3 | 14 | 13 | 12 | 10 | 21 | 17 | 10 | 16 | 7 | 15 | 19 | 20 | 22 |
Case Mean | Case Median | RATE Mean | RATE Median |
---|---|---|---|
754.1821 | 352.5 | 13.02386 | 9.6 |
HIV.Statistics.by.State <- HIV.State%>%
group_by(State)%>%
summarise(
"Mean Cases by State" = mean(Cases),
"Median Cases by State" = median(Cases),
"Mean Rate by State" = mean(Rate, na.rm = TRUE),
"Median Rate by State"= median(Rate, na.rm = TRUE)
)
knitr::kable(HIV.Statistics.by.State,
caption = "Statistics by State" )%>%
kable_styling("striped", full_width = F) %>%
scroll_box(width = "1000px", height = "400px")
State | Mean Cases by State | Median Cases by State | Mean Rate by State | Median Rate by State |
---|---|---|---|---|
Alabama | 629.85714 | 658.0 | 16.408333 | 16.35 |
Alaska | 28.00000 | 27.5 | 4.933333 | 4.60 |
Arizona | 668.92857 | 683.0 | 12.241667 | 12.40 |
Arkansas | 267.57143 | 267.5 | 11.016667 | 11.05 |
California | 4725.71429 | 5028.0 | 15.841667 | 15.75 |
Colorado | 380.64286 | 377.0 | 8.941667 | 8.80 |
Connecticut | 280.07143 | 282.0 | 9.958333 | 9.60 |
Delaware | 112.64286 | 112.5 | 15.325000 | 14.80 |
District of Columbia | 470.00000 | 389.0 | 96.191667 | 79.50 |
Florida | 4484.57143 | 4543.5 | 27.700000 | 26.50 |
Georgia | 2453.42857 | 2561.0 | 31.608333 | 30.70 |
Hawaii | 80.00000 | 80.0 | 7.358333 | 7.30 |
Idaho | 36.64286 | 36.5 | 2.908333 | 2.90 |
Illinois | 1440.07143 | 1541.5 | 14.475000 | 14.55 |
Indiana | 478.21429 | 479.5 | 9.083333 | 8.85 |
Iowa | 111.00000 | 115.0 | 4.450000 | 4.55 |
Kansas | 139.21429 | 138.0 | 5.983333 | 6.05 |
Kentucky | 336.14286 | 340.5 | 9.400000 | 9.45 |
Louisiana | 1021.57143 | 1079.0 | 28.333333 | 28.85 |
Maine | 41.35714 | 46.0 | 3.925000 | 4.20 |
Maryland | 1217.92857 | 1199.0 | 26.875000 | 25.35 |
Massachusetts | 603.14286 | 648.5 | 11.416667 | 11.45 |
Michigan | 717.07143 | 757.5 | 9.033333 | 9.25 |
Minnesota | 295.07143 | 296.5 | 6.858333 | 6.70 |
Mississippi | 453.57143 | 471.5 | 19.308333 | 19.20 |
Missouri | 482.28571 | 495.0 | 9.966667 | 9.95 |
Montana | 20.92857 | 20.5 | 2.625000 | 2.55 |
Nebraska | 84.42857 | 80.5 | 5.725000 | 5.25 |
Nevada | 426.35714 | 410.0 | 18.525000 | 18.55 |
New Hampshire | 36.57143 | 38.0 | 3.366667 | 3.40 |
New Jersey | 1143.07143 | 1190.0 | 16.483333 | 16.15 |
New Mexico | 137.00000 | 138.5 | 8.300000 | 8.10 |
New York | 3073.50000 | 3141.0 | 20.100000 | 19.70 |
North Carolina | 1324.64286 | 1317.0 | 16.766667 | 15.75 |
North Dakota | 23.64286 | 19.5 | 3.858333 | 3.20 |
Ohio | 950.14286 | 980.5 | 10.233333 | 10.10 |
Oklahoma | 285.21429 | 293.5 | 9.500000 | 9.50 |
Oregon | 224.42857 | 229.5 | 7.066667 | 7.00 |
Pennsylvania | 1214.00000 | 1184.0 | 11.991667 | 11.40 |
Rhode Island | 82.21429 | 77.5 | 9.825000 | 9.05 |
South Carolina | 696.57143 | 705.5 | 17.875000 | 17.80 |
South Dakota | 29.14286 | 29.5 | 4.291667 | 4.25 |
Tennessee | 777.57143 | 763.0 | 14.841667 | 14.00 |
Texas | 4180.64286 | 4341.5 | 20.350000 | 20.35 |
Utah | 116.42857 | 120.5 | 5.200000 | 5.15 |
Vermont | 13.78571 | 14.0 | 2.775000 | 2.85 |
Virginia | 877.28571 | 901.0 | 13.433333 | 13.40 |
Washington | 462.71429 | 462.0 | 8.125000 | 7.75 |
West Virginia | 86.71429 | 80.0 | 5.308333 | 5.00 |
Wisconsin | 227.35714 | 227.0 | 4.866667 | 4.85 |
Wyoming | 14.21429 | 14.5 | 3.241667 | 3.25 |
HIV.Statistics.by.Year <- HIV.State%>%
group_by(Year)%>%
summarise(
"Mean Cases by Year" = mean(Cases),
"Median Cases by Year"= median(Cases),
"Mean Rate by Year" = mean(Rate, na.rm = TRUE),
"Median Rate by Year" = median(Rate, na.rm = TRUE)
)
knitr::kable(HIV.Statistics.by.Year,
caption = "Statistics by Year" )%>%
kable_styling("striped", full_width = F) %>%
scroll_box(width = "1000px", height = "400px")
Year | Mean Cases by Year | Median Cases by Year | Mean Rate by Year | Median Rate by Year |
---|---|---|---|---|
2008 | 924.5490 | 390 | 17.17647 | 11.0 |
2009 | 874.9216 | 370 | 15.69804 | 10.5 |
2010 | 841.9216 | 387 | 14.96078 | 10.1 |
2011 | 807.0588 | 360 | 13.60980 | 10.0 |
2012 | 792.9804 | 364 | 13.03922 | 9.5 |
2013 | 767.1961 | 355 | 12.50196 | 9.7 |
2014 | 781.9608 | 377 | 12.34902 | 9.5 |
2015 | 778.4902 | 365 | 11.94706 | 9.5 |
2016 | 773.0784 | 351 | 11.92157 | 9.1 |
2017 | 750.7647 | 365 | 11.45882 | 9.3 |
2018 | 732.9804 | 378 | 10.94902 | 8.7 |
2019 | 712.4902 | 326 | 10.67451 | 9.0 |
2020 | 583.2157 | 301 | NaN | NA |
2021 | 436.9412 | 256 | NaN | NA |
The tables above have a lot of data. One thing that would help is to see change over time.
##### Lag HIV CASE #####
Lag.HIV.Case <- HIV.State %>%
group_by(State)%>%
arrange(State,Year)%>%
mutate(Case.Diff = Cases - lag(Cases),
Case.Diff.Percent = ((Cases - lag(Cases))/Cases)*100,
Increase.Case = Case.Diff > 0,
Increase.Case.Percent = Case.Diff.Percent >0,
)
# Lag.HIV.Case$Increase.Case = as.character(Lag.HIV.Case$Increase.Case)
# Lag.HIV.Case$Increase.Case.Percent = as.character(Lag.HIV.Case$Increase.Case.Percent)
Lag.HIV.Case.WIDE <- Lag.HIV.Case%>%
select(1,2,5)%>%
pivot_wider(
names_from = Year,
values_from = Case.Diff
)
Table.Lag.HIV.Case.WIDE<- Lag.HIV.Case.WIDE%>%
kbl("html",caption = "Year over Year Difference in HIV Cases by State")%>%
kable_styling()%>%
column_spec(3,color = if_else( Lag.HIV.Case.WIDE$`2009`>0, "red", "black", "black"))%>%
column_spec(4,color = if_else( Lag.HIV.Case.WIDE$`2010`>0, "red", "black", "black"))%>%
column_spec(5,color = if_else( Lag.HIV.Case.WIDE$`2011`>0, "red", "black", "black"))%>%
column_spec(6,color = if_else( Lag.HIV.Case.WIDE$`2012`>0, "red", "black", "black"))%>%
column_spec(7,color = if_else( Lag.HIV.Case.WIDE$`2013`>0, "red", "black", "black"))%>%
column_spec(8,color = if_else( Lag.HIV.Case.WIDE$`2014`>0, "red", "black", "black"))%>%
column_spec(9,color = if_else( Lag.HIV.Case.WIDE$`2015`> 0, "red", "black", "black"))%>%
column_spec(10,color = if_else( Lag.HIV.Case.WIDE$`2016`>0, "red", "black", "black"))%>%
column_spec(11,color = if_else( Lag.HIV.Case.WIDE$`2017`>0, "red", "black", "black"))%>%
column_spec(12,color = if_else( Lag.HIV.Case.WIDE$`2018`>0, "red", "black", "black"))%>%
column_spec(13,color = if_else( Lag.HIV.Case.WIDE$`2019`>0, "red", "black", "black"))%>%
column_spec(14,color = if_else( Lag.HIV.Case.WIDE$`2020`>0, "red", "black", "black"))%>%
column_spec(15,color = if_else( Lag.HIV.Case.WIDE$`2021`>0, "red", "black", "black"))%>%
kable_styling("striped", full_width = F) %>%
scroll_box(width = "1000px", height = "400px")
Table.Lag.HIV.Case.WIDE
State | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Alabama | NA | -14 | -7 | -6 | -13 | -33 | 34 | -1 | -10 | -3 | -43 | 31 | -52 | -272 |
Alaska | NA | -18 | 16 | -14 | 5 | -5 | 15 | -13 | 12 | -8 | -6 | 4 | 2 | -16 |
Arizona | NA | -40 | -26 | -51 | 56 | 65 | 57 | -53 | 25 | 13 | 26 | 8 | -93 | -163 |
Arkansas | NA | 45 | -49 | 7 | 10 | 15 | 49 | -40 | 44 | -28 | -9 | 9 | -43 | 20 |
California | NA | -296 | -147 | -243 | 5 | -359 | 440 | -84 | 38 | -261 | -91 | -361 | -718 | -1328 |
Colorado | NA | -75 | 50 | -60 | 10 | -61 | 68 | 0 | 44 | 14 | -33 | 59 | -135 | -70 |
Connecticut | NA | -4 | 44 | -38 | -61 | 38 | -30 | -20 | -20 | 18 | -15 | -46 | -42 | -35 |
Delaware | NA | -4 | -25 | -10 | 23 | -27 | 5 | -11 | 7 | 15 | -35 | 2 | 2 | -40 |
District of Columbia | NA | -213 | -34 | -156 | -62 | -80 | -77 | -48 | -14 | -35 | -35 | -26 | -57 | -134 |
Florida | NA | -729 | -402 | -64 | -192 | -88 | 188 | 112 | 56 | -94 | -27 | -152 | -954 | 39 |
Georgia | NA | -247 | -303 | 16 | -32 | -265 | 52 | 244 | -101 | 70 | -114 | -43 | -606 | -615 |
Hawaii | NA | 2 | 17 | -23 | 4 | 14 | 2 | 19 | -40 | 0 | -5 | -7 | -15 | -9 |
Idaho | NA | -1 | -3 | -10 | 1 | -11 | -3 | 18 | 6 | 0 | -9 | -9 | 4 | -8 |
Illinois | NA | -70 | -78 | -38 | 33 | -64 | -45 | 11 | -64 | -116 | 7 | -122 | -197 | -522 |
Indiana | NA | -1 | 24 | -17 | 18 | -12 | -9 | 167 | -143 | 26 | -6 | -23 | -52 | -105 |
Iowa | NA | 29 | -10 | -1 | 4 | 2 | -25 | 30 | 8 | -7 | -9 | -16 | 0 | -19 |
Kansas | NA | 15 | -18 | 1 | 15 | -4 | -17 | 25 | -8 | -28 | 38 | -26 | 7 | -26 |
Kentucky | NA | -11 | -13 | -24 | 54 | -5 | -14 | -1 | -2 | 27 | 13 | -52 | -25 | -32 |
Louisiana | NA | 108 | -60 | 77 | -170 | 105 | 76 | -104 | 13 | -112 | -35 | -80 | -156 | -62 |
Maine | NA | 11 | -1 | -5 | -1 | -14 | 24 | -12 | 6 | -24 | 1 | 0 | -14 | 9 |
Maryland | NA | -343 | 49 | -305 | -101 | -17 | -64 | -62 | -71 | -77 | -29 | -73 | -210 | -202 |
Massachusetts | NA | -59 | 19 | -28 | 32 | -35 | -23 | -50 | 42 | -32 | 41 | -114 | -104 | -274 |
Michigan | NA | 28 | -37 | 9 | 11 | -33 | 30 | -58 | 23 | 27 | -58 | -41 | -153 | -61 |
Minnesota | NA | 50 | -46 | -40 | 21 | -9 | 5 | -15 | 1 | -20 | 11 | -14 | -48 | -23 |
Mississippi | NA | -22 | -37 | 69 | -83 | 30 | 3 | 29 | -75 | 1 | 48 | 1 | -76 | -126 |
Missouri | NA | -21 | 46 | -44 | 9 | -70 | 3 | -2 | 49 | -10 | -53 | 39 | -129 | 8 |
Montana | NA | 9 | -11 | 1 | -1 | 2 | -8 | 5 | 1 | 12 | -9 | 2 | -10 | -6 |
Nebraska | NA | 12 | 8 | -38 | 3 | -1 | 7 | -9 | -3 | 13 | -9 | 2 | -8 | -11 |
Nevada | NA | -30 | 11 | 10 | -17 | 67 | -2 | 48 | 32 | -15 | 7 | 11 | -121 | -32 |
New Hampshire | NA | -5 | 12 | -10 | 8 | -12 | 5 | -16 | 14 | -7 | 6 | -7 | -2 | -7 |
New Jersey | NA | -41 | -36 | -186 | 111 | -68 | 28 | -45 | -4 | -65 | -102 | 36 | -294 | -162 |
New Mexico | NA | 8 | -12 | -11 | -22 | 25 | -5 | 2 | 9 | -5 | -6 | 21 | -33 | -30 |
New York | NA | -403 | -253 | -131 | -256 | -286 | 76 | -256 | -231 | -91 | -280 | -119 | -372 | -715 |
North Carolina | NA | -125 | -134 | -6 | -202 | 47 | 31 | 22 | 60 | -93 | -109 | 179 | -288 | -111 |
North Dakota | NA | 1 | 1 | -1 | -4 | 10 | 1 | 0 | 26 | -8 | -2 | 4 | -4 | -21 |
Ohio | NA | -12 | -61 | 62 | -28 | 22 | -92 | -20 | 30 | 28 | -10 | 7 | -95 | -401 |
Oklahoma | NA | 8 | -7 | 23 | -26 | 48 | -28 | 11 | -20 | 5 | -21 | 42 | -85 | -72 |
Oregon | NA | -38 | -10 | 1 | 31 | -41 | 9 | -15 | 5 | -25 | 27 | -31 | -18 | -51 |
Pennsylvania | NA | -122 | -173 | -102 | 41 | -125 | -91 | -22 | -42 | -31 | -77 | -34 | -216 | -112 |
Rhode Island | NA | -5 | -3 | -17 | -19 | -3 | 13 | -25 | 7 | 14 | -10 | -3 | -19 | -20 |
South Carolina | NA | 49 | 12 | -24 | -43 | 10 | 56 | -91 | 77 | -41 | 6 | -32 | -1 | -233 |
South Dakota | NA | -4 | 8 | -13 | 6 | 7 | -2 | -6 | 19 | -4 | -10 | 4 | 1 | -18 |
Tennessee | NA | -72 | -76 | -11 | 14 | -84 | -12 | -21 | -20 | 5 | 25 | 27 | -131 | -82 |
Texas | NA | 182 | 98 | -178 | 55 | 14 | 83 | 110 | -2 | -171 | 66 | -120 | -749 | -1014 |
Utah | NA | -9 | -39 | 24 | 13 | -11 | 4 | 10 | 16 | -26 | 8 | 14 | -6 | -44 |
Vermont | NA | -1 | 3 | -7 | 1 | -1 | 4 | -3 | -9 | 15 | -2 | -7 | -2 | -5 |
Virginia | NA | -82 | 18 | -101 | 41 | 10 | -44 | 54 | -50 | -40 | -2 | -39 | -197 | -62 |
Washington | NA | -1 | 20 | -63 | 17 | -52 | -1 | 6 | -22 | 7 | 68 | -17 | -62 | -86 |
West Virginia | NA | -8 | -1 | 13 | -6 | -5 | 10 | -13 | -3 | 9 | 7 | 62 | -17 | -38 |
Wisconsin | NA | 40 | -26 | -11 | -23 | 26 | -27 | 9 | 4 | 31 | -53 | 4 | -1 | -50 |
Wyoming | NA | -2 | -1 | -4 | -8 | 9 | -6 | 7 | 4 | -11 | 2 | 1 | 1 | -11 |
# knitr::kable(Table.Lag.HIV.Case.WIDE,
# caption = "Table 2a: Difference in cases by Year")
Lag.HIV.Case.WIDE.Percent <- Lag.HIV.Case%>%
select(1,2,6)%>%
pivot_wider(
names_from = Year,
values_from = Case.Diff.Percent
)
###HENRY YOU NEED TO CHANGE OUTPUT DECIMAL PLACES###
Table.Lag.HIV.Case.WIDE.Percent<- Lag.HIV.Case.WIDE.Percent%>%
kbl("html",caption = "Year Over Year % Difference in HIV Cases by State" )%>%
kable_styling()%>%
column_spec(3,color = if_else( Lag.HIV.Case.WIDE$`2009`>0, "red", "black", "black"))%>%
column_spec(4,color = if_else( Lag.HIV.Case.WIDE$`2010`>0, "red", "black", "black"))%>%
column_spec(5,color = if_else( Lag.HIV.Case.WIDE$`2011`>0, "red", "black", "black"))%>%
column_spec(6,color = if_else( Lag.HIV.Case.WIDE$`2012`>0, "red", "black", "black"))%>%
column_spec(7,color = if_else( Lag.HIV.Case.WIDE$`2013`>0, "red", "black", "black"))%>%
column_spec(8,color = if_else( Lag.HIV.Case.WIDE$`2014`>0, "red", "black", "black"))%>%
column_spec(9,color = if_else( Lag.HIV.Case.WIDE$`2015`> 0, "red", "black", "black"))%>%
column_spec(10,color = if_else( Lag.HIV.Case.WIDE$`2016`>0, "red", "black", "black"))%>%
column_spec(11,color = if_else( Lag.HIV.Case.WIDE$`2017`>0, "red", "black", "black"))%>%
column_spec(12,color = if_else( Lag.HIV.Case.WIDE$`2018`>0, "red", "black", "black"))%>%
column_spec(13,color = if_else( Lag.HIV.Case.WIDE$`2019`>0, "red", "black", "black"))%>%
column_spec(14,color = if_else( Lag.HIV.Case.WIDE$`2020`>0, "red", "black", "black"))%>%
column_spec(15,color = if_else( Lag.HIV.Case.WIDE$`2021`>0, "red", "black", "black"))%>%
kable_styling("striped", full_width = F) %>%
scroll_box(width = "1000px", height = "400px")
Table.Lag.HIV.Case.WIDE.Percent
State | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Alabama | NA | -2.0319303 | -1.026393 | -0.8875740 | -1.9607843 | -5.2380952 | 5.1204819 | -0.1508296 | -1.5313936 | -0.4615385 | -7.0840198 | 4.8589342 | -8.8737201 | -86.624204 |
Alaska | NA | -85.7142857 | 43.243243 | -60.8695652 | 17.8571429 | -21.7391304 | 39.4736842 | -52.0000000 | 32.4324324 | -27.5862069 | -26.0869565 | 14.8148148 | 6.8965517 | -123.076923 |
Arizona | NA | -6.2402496 | -4.227642 | -9.0425532 | 9.0322581 | 9.4890511 | 7.6819407 | -7.6923077 | 3.5014006 | 1.7881706 | 3.4528552 | 1.0512484 | -13.9221557 | -32.277228 |
Arkansas | NA | 16.1290323 | -21.304348 | 2.9535865 | 4.0485830 | 5.7251908 | 15.7556270 | -14.7601476 | 13.9682540 | -9.7560976 | -3.2374101 | 3.1358885 | -17.6229508 | 7.575758 |
California | NA | -5.4642791 | -2.789374 | -4.8338970 | 0.0993641 | -7.6824310 | 8.6055154 | -1.6703122 | 0.7499507 | -5.4307116 | -1.9300106 | -8.2912265 | -19.7469747 | -57.538995 |
Colorado | NA | -20.2702703 | 11.904762 | -16.6666667 | 2.7027027 | -19.7411003 | 18.0371353 | 0.0000000 | 10.4513064 | 3.2183908 | -8.2089552 | 12.7982646 | -41.4110429 | -27.343750 |
Connecticut | NA | -1.1661808 | 11.369509 | -10.8882521 | -21.1805556 | 11.6564417 | -10.1351351 | -7.2463768 | -7.8125000 | 6.5693431 | -5.7915058 | -21.5962441 | -24.5614035 | -25.735294 |
Delaware | NA | -2.6845638 | -20.161290 | -8.7719298 | 16.7883212 | -24.5454545 | 4.3478261 | -10.5769231 | 6.3063063 | 11.9047619 | -38.4615385 | 2.1505376 | 2.1052632 | -72.727273 |
District of Columbia | NA | -25.9124088 | -4.314721 | -24.6835443 | -10.8771930 | -16.3265306 | -18.6440678 | -13.1506849 | -3.9886040 | -11.0759494 | -12.4555160 | -10.1960784 | -28.7878788 | -209.375000 |
Florida | NA | -14.4614164 | -8.665661 | -1.3989071 | -4.3805613 | -2.0488941 | 4.1936203 | 2.4374320 | 1.2040421 | -2.0627606 | -0.5960265 | -3.4719050 | -27.8621495 | 1.126191 |
Georgia | NA | -8.4734134 | -11.600306 | 0.6088280 | -1.2326656 | -11.3685114 | 2.1821234 | 9.2881614 | -3.9984165 | 2.6964561 | -4.5930701 | -1.7630176 | -33.0605565 | -50.492611 |
Hawaii | NA | 2.3809524 | 16.831683 | -29.4871795 | 4.8780488 | 14.5833333 | 2.0408163 | 16.2393162 | -51.9480519 | 0.0000000 | -6.9444444 | -10.7692308 | -30.0000000 | -21.951220 |
Idaho | NA | -2.0833333 | -6.666667 | -28.5714286 | 2.7777778 | -44.0000000 | -13.6363636 | 45.0000000 | 13.0434783 | 0.0000000 | -24.3243243 | -32.1428571 | 12.5000000 | -33.333333 |
Illinois | NA | -4.0509259 | -4.727273 | -2.3573201 | 2.0060790 | -4.0480708 | -2.9296875 | 0.7110537 | -4.3155765 | -8.4857352 | 0.5094614 | -9.7444089 | -18.6729858 | -97.936210 |
Indiana | NA | -0.2169197 | 4.948454 | -3.6324786 | 3.7037037 | -2.5316456 | -1.9354839 | 26.4240506 | -29.2433538 | 5.0485437 | -1.1787819 | -4.7325103 | -11.9815668 | -31.914894 |
Iowa | NA | 23.3870968 | -8.771930 | -0.8849558 | 3.4188034 | 1.6806723 | -26.5957447 | 24.1935484 | 6.0606061 | -5.6000000 | -7.7586207 | -16.0000000 | 0.0000000 | -23.456790 |
Kansas | NA | 9.8039216 | -13.333333 | 0.7352941 | 9.9337748 | -2.7210884 | -13.0769231 | 16.1290323 | -5.4421769 | -23.5294118 | 24.2038217 | -19.8473282 | 5.0724638 | -23.214286 |
Kentucky | NA | -3.2069971 | -3.939394 | -7.8431373 | 15.0000000 | -1.4084507 | -4.1055718 | -0.2941176 | -0.5917160 | 7.3972603 | 3.4391534 | -15.9509202 | -8.3056478 | -11.895911 |
Louisiana | NA | 9.2228864 | -5.400540 | 6.4814815 | -16.6994106 | 9.3499555 | 6.3386155 | -9.4977169 | 1.1732852 | -11.2449799 | -3.6420395 | -9.0805902 | -21.5172414 | -9.351433 |
Maine | NA | 19.6428571 | -1.818182 | -10.0000000 | -2.0408163 | -40.0000000 | 40.6779661 | -25.5319149 | 11.3207547 | -82.7586207 | 3.3333333 | 0.0000000 | -87.5000000 | 36.000000 |
Maryland | NA | -20.5635492 | 2.853815 | -21.6005666 | -7.7040427 | -1.3137558 | -5.2032520 | -5.3082192 | -6.4721969 | -7.5490196 | -2.9263370 | -7.9520697 | -29.6610169 | -39.920949 |
Massachusetts | NA | -8.6383602 | 2.706553 | -4.1543027 | 4.5325779 | -5.2160954 | -3.5493827 | -8.3612040 | 6.5625000 | -5.2631579 | 6.3174114 | -21.3084112 | -24.1299304 | -174.522293 |
Michigan | NA | 3.4956305 | -4.842932 | 1.1642950 | 1.4030612 | -4.3941411 | 3.8412292 | -8.0221300 | 3.0831099 | 3.4928849 | -8.1118881 | -6.0830861 | -29.3666027 | -13.260870 |
Minnesota | NA | 13.1578947 | -13.772455 | -13.6054422 | 6.6666667 | -2.9411765 | 1.6077170 | -5.0675676 | 0.3367003 | -7.2202166 | 3.8194444 | -5.1094891 | -21.2389381 | -11.330049 |
Mississippi | NA | -4.4806517 | -8.149780 | 13.1931166 | -18.8636364 | 6.3829787 | 0.6342495 | 5.7768924 | -17.5644028 | 0.2336449 | 10.0840336 | 0.2096436 | -18.9526185 | -45.818182 |
Missouri | NA | -4.0307102 | 8.112875 | -8.4130019 | 1.6917293 | -15.1515152 | 0.6451613 | -0.4319654 | 9.5703125 | -1.9920319 | -11.8040089 | 7.9918033 | -35.9331476 | 2.179836 |
Montana | NA | 29.0322581 | -55.000000 | 4.7619048 | -5.0000000 | 9.0909091 | -57.1428571 | 26.3157895 | 5.0000000 | 37.5000000 | -39.1304348 | 8.0000000 | -66.6666667 | -66.666667 |
Nebraska | NA | 11.1111111 | 6.896552 | -48.7179487 | 3.7037037 | -1.2500000 | 8.0459770 | -11.5384615 | -4.0000000 | 14.7727273 | -11.3924051 | 2.4691358 | -10.9589041 | -17.741936 |
Nevada | NA | -8.3333333 | 2.964960 | 2.6246719 | -4.6703297 | 15.5452436 | -0.4662005 | 10.0628931 | 6.2868369 | -3.0364372 | 1.3972056 | 2.1484375 | -30.9462916 | -8.913649 |
New Hampshire | NA | -13.1578947 | 24.000000 | -25.0000000 | 16.6666667 | -33.3333333 | 12.1951220 | -64.0000000 | 35.8974359 | -21.8750000 | 15.7894737 | -22.5806452 | -6.8965517 | -31.818182 |
New Jersey | NA | -2.9538905 | -2.662722 | -15.9519726 | 8.6922475 | -5.6244830 | 2.2635408 | -3.7751678 | -0.3367003 | -5.7880677 | -9.9902057 | 3.4058657 | -38.5321101 | -26.955075 |
New Mexico | NA | 5.0000000 | -8.108108 | -8.0291971 | -19.1304348 | 17.8571429 | -3.7037037 | 1.4598540 | 6.1643836 | -3.5460993 | -4.4444444 | 13.4615385 | -26.8292683 | -32.258065 |
New York | NA | -9.6944912 | -6.480533 | -3.4720382 | -7.2789309 | -8.8517487 | 2.2981554 | -8.3906916 | -8.1914894 | -3.3345548 | -11.4332381 | -5.1072961 | -18.9989785 | -57.522124 |
North Carolina | NA | -7.9617834 | -9.331476 | -0.4195804 | -16.4495114 | 3.6862745 | 2.3736600 | 1.6566265 | 4.3227666 | -7.1814672 | -9.1905565 | 13.1135531 | -26.7409471 | -11.490683 |
North Dakota | NA | 7.6923077 | 7.142857 | -7.6923077 | -44.4444444 | 52.6315789 | 5.0000000 | 0.0000000 | 56.5217391 | -21.0526316 | -5.5555556 | 10.0000000 | -11.1111111 | -140.000000 |
Ohio | NA | -1.1516315 | -6.218145 | 5.9443912 | -2.7586207 | 2.1215043 | -9.7354497 | -2.1621622 | 3.1413613 | 2.8484232 | -1.0277492 | 0.7142857 | -10.7344633 | -82.851240 |
Oklahoma | NA | 2.7303754 | -2.447552 | 7.4433657 | -9.1872792 | 14.5015106 | -9.2409241 | 3.5031847 | -6.8027211 | 1.6722408 | -7.5539568 | 13.1250000 | -36.1702128 | -44.171779 |
Oregon | NA | -15.3225806 | -4.201681 | 0.4184100 | 11.4814815 | -17.9039301 | 3.7815126 | -6.7264574 | 2.1929825 | -12.3152709 | 11.7391304 | -15.5778894 | -9.9447514 | -39.230769 |
Pennsylvania | NA | -7.4164134 | -11.752717 | -7.4452555 | 2.9057406 | -9.7200622 | -7.6150628 | -1.8755328 | -3.7135279 | -2.8181818 | -7.5268817 | -3.4378160 | -27.9430789 | -16.944024 |
Rhode Island | NA | -4.2372881 | -2.608696 | -17.3469388 | -24.0506329 | -3.9473684 | 14.6067416 | -39.0625000 | 9.8591549 | 16.4705882 | -13.3333333 | -4.1666667 | -35.8490566 | -60.606061 |
South Carolina | NA | 6.5333333 | 1.574803 | -3.2520325 | -6.1870504 | 1.4184397 | 7.3587385 | -13.5820896 | 10.3078983 | -5.8073654 | 0.8426966 | -4.7058824 | -0.1472754 | -52.242153 |
South Dakota | NA | -16.6666667 | 25.000000 | -68.4210526 | 24.0000000 | 21.8750000 | -6.6666667 | -25.0000000 | 44.1860465 | -10.2564103 | -34.4827586 | 12.1212121 | 2.9411765 | -112.500000 |
Tennessee | NA | -7.7753780 | -8.941176 | -1.3110846 | 1.6412661 | -10.9232770 | -1.5852048 | -2.8532609 | -2.7932961 | 0.6934813 | 3.3512064 | 3.4928849 | -20.4049844 | -14.642857 |
Texas | NA | 4.1867955 | 2.204724 | -4.1715491 | 1.2725590 | 0.3228782 | 1.8782530 | 2.4287922 | -0.0441794 | -3.9256198 | 1.4925373 | -2.7894003 | -21.0807768 | -39.936983 |
Utah | NA | -7.3770492 | -46.987952 | 22.4299065 | 10.8333333 | -10.0917431 | 3.5398230 | 8.1300813 | 11.5107914 | -23.0088496 | 6.6115702 | 10.3703704 | -4.6511628 | -51.764706 |
Vermont | NA | -5.8823529 | 15.000000 | -53.8461538 | 7.1428571 | -7.6923077 | 23.5294118 | -21.4285714 | -180.0000000 | 75.0000000 | -11.1111111 | -63.6363636 | -22.2222222 | -125.000000 |
Virginia | NA | -8.4102564 | 1.812689 | -11.3228700 | 4.3944266 | 1.0604454 | -4.8943270 | 5.6663169 | -5.5370986 | -4.6349942 | -0.2322880 | -4.7445255 | -31.5200000 | -11.012433 |
Washington | NA | -0.1923077 | 3.703704 | -13.2075472 | 3.4412955 | -11.7647059 | -0.2267574 | 1.3422819 | -5.1764706 | 1.6203704 | 13.6000000 | -3.5196687 | -14.7268409 | -25.671642 |
West Virginia | NA | -10.9589041 | -1.388889 | 15.2941176 | -7.5949367 | -6.7567568 | 11.9047619 | -18.3098592 | -4.4117647 | 11.6883117 | 8.3333333 | 42.4657534 | -13.1782946 | -41.758242 |
Wisconsin | NA | 14.4404332 | -10.358566 | -4.5833333 | -10.5990783 | 10.6995885 | -12.5000000 | 4.0000000 | 1.7467249 | 11.9230769 | -25.6038647 | 1.8957346 | -0.4761905 | -31.250000 |
Wyoming | NA | -10.0000000 | -5.263158 | -26.6666667 | -114.2857143 | 56.2500000 | -60.0000000 | 41.1764706 | 19.0476190 | -110.0000000 | 16.6666667 | 7.6923077 | 7.1428571 | -366.666667 |
# knitr::kable(Table.Lag.HIV.Case.WIDE.Percent,
# caption = "Table 2b: Difference in Case Percentage Year Over Year by State")
###### LAG HIV RATE ######
lag.HIV.Rate <- HIV.State%>%
group_by(State)%>%
filter(Year < 2020)%>%
arrange(State,Year)%>%
mutate(Rate.Diff = Rate - lag(Rate),
Rate.Diff.Percent = (Rate - lag(Rate))/Rate*100,
Increase.Rate = Rate.Diff >0,
Increase.Rate.Percent = Rate.Diff.Percent >0)
#kable()%>%
#column_spec(3, color = if_else(lag.HIV.Rate$Rate.Diff<0, "black", "red"))
Lag.HIV.Rate.WIDE <- lag.HIV.Rate%>%
select(1,2,5)%>%
pivot_wider(
names_from = Year,
values_from = Rate.Diff
)
# print(Lag.HIV.Rate.WIDE, n= 51)
# Table.Lag.HIV.Rate<- lag.HIV.Rate%>%
# kbl()%>%
# kable_styling()%>%
# column_spec(3,color = spec_color(lag.HIV.Rate$Rate.Diff[1:612]))
#
Table.Lag.HIV.Rate.WIDE<- Lag.HIV.Rate.WIDE%>%
kbl("html",caption = "Year Over Year Difference in HIV Rates by State" )%>%
kable_styling()%>%
column_spec(3,color = if_else( Lag.HIV.Rate.WIDE$`2009`>0, "red", "black", "black"))%>%
column_spec(4,color = if_else( Lag.HIV.Rate.WIDE$`2010`>0, "red", "black", "black"))%>%
column_spec(5,color = if_else( Lag.HIV.Rate.WIDE$`2011`>0, "red", "black", "black"))%>%
column_spec(6,color = if_else( Lag.HIV.Rate.WIDE$`2012`>0, "red", "black", "black"))%>%
column_spec(7,color = if_else( Lag.HIV.Rate.WIDE$`2013`>0, "red", "black", "black"))%>%
column_spec(8,color = if_else( Lag.HIV.Rate.WIDE$`2014`>0, "red", "black", "black"))%>%
column_spec(9,color = if_else( Lag.HIV.Rate.WIDE$`2015`> 0, "red", "black", "black"))%>%
column_spec(10,color = if_else( Lag.HIV.Rate.WIDE$`2016`>0, "red", "black", "black"))%>%
column_spec(11,color = if_else( Lag.HIV.Rate.WIDE$`2017`>0, "red", "black", "black"))%>%
column_spec(12,color = if_else( Lag.HIV.Rate.WIDE$`2018`>0, "red", "black", "black"))%>%
column_spec(13,color = if_else( Lag.HIV.Rate.WIDE$`2019`>0, "red", "black", "black"))%>%
kable_styling("striped", full_width = F) %>%
scroll_box(width = "1000px", height = "400px")
Table.Lag.HIV.Rate.WIDE
State | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Alabama | NA | -0.5 | -0.6 | -0.2 | -0.4 | -0.9 | 0.8 | -0.1 | -0.3 | -0.1 | -1.1 | 0.7 |
Alaska | NA | -3.3 | 2.7 | -2.5 | 0.8 | -0.9 | 2.5 | -2.1 | 1.9 | -1.3 | -1.0 | 0.7 |
Arizona | NA | -0.9 | -0.3 | -1.2 | 0.9 | 1.0 | 0.8 | -1.1 | 0.2 | 0.0 | 0.2 | -0.1 |
Arkansas | NA | 1.9 | -2.2 | 0.2 | 0.3 | 0.6 | 1.9 | -1.6 | 1.7 | -1.2 | -0.4 | 0.3 |
California | NA | -1.1 | -0.9 | -0.9 | -0.2 | -1.3 | 1.3 | -0.5 | 0.0 | -0.9 | -0.3 | -1.2 |
Colorado | NA | -2.0 | 1.1 | -1.6 | 0.1 | -1.5 | 1.4 | -0.2 | 0.8 | 0.1 | -0.8 | 1.1 |
Connecticut | NA | -0.2 | 1.2 | -1.3 | -2.0 | 1.2 | -1.0 | -0.7 | -0.6 | 0.6 | -0.5 | -1.5 |
Delaware | NA | -0.8 | -3.7 | -1.5 | 2.8 | -3.7 | 0.5 | -1.5 | 0.7 | 1.7 | -4.4 | 0.1 |
District of Columbia | NA | -44.4 | -10.9 | -31.8 | -13.5 | -16.2 | -14.8 | -9.4 | -3.2 | -6.5 | -6.2 | -4.6 |
Florida | NA | -4.9 | -3.3 | -0.8 | -1.6 | -0.9 | 0.7 | 0.2 | -0.2 | -1.0 | -0.5 | -1.2 |
Georgia | NA | -3.7 | -3.7 | -0.2 | -0.8 | -3.5 | 0.3 | 2.5 | -1.6 | 0.4 | -1.7 | -0.8 |
Hawaii | NA | 0.2 | 1.0 | -2.1 | 0.3 | 1.1 | 0.2 | 1.5 | -3.4 | 0.0 | -0.4 | -0.6 |
Idaho | NA | -0.1 | -0.3 | -0.8 | 0.0 | -0.9 | -0.2 | 1.3 | 0.4 | -0.1 | -0.7 | -0.7 |
Illinois | NA | -0.7 | -0.8 | -0.4 | 0.3 | -0.7 | -0.4 | 0.1 | -0.6 | -1.1 | 0.1 | -1.1 |
Indiana | NA | -0.1 | 0.4 | -0.4 | 0.3 | -0.3 | -0.2 | 3.0 | -2.6 | 0.4 | -0.2 | -0.4 |
Iowa | NA | 1.2 | -0.5 | -0.1 | 0.2 | 0.0 | -1.0 | 1.2 | 0.3 | -0.3 | -0.4 | -0.6 |
Kansas | NA | 0.6 | -0.8 | 0.0 | 0.6 | -0.2 | -0.7 | 1.0 | -0.4 | -1.1 | 1.5 | -1.1 |
Kentucky | NA | -0.3 | -0.5 | -0.7 | 1.5 | -0.2 | -0.4 | -0.1 | -0.1 | 0.7 | 0.3 | -1.4 |
Louisiana | NA | 2.7 | -2.1 | 1.8 | -4.7 | 2.6 | 1.8 | -2.8 | 0.2 | -2.8 | -0.9 | -2.1 |
Maine | NA | 1.0 | -0.2 | -0.4 | -0.1 | -1.2 | 2.0 | -1.0 | 0.5 | -2.1 | 0.1 | 0.0 |
Maryland | NA | -7.6 | 0.3 | -6.6 | -2.3 | -0.5 | -1.5 | -1.3 | -1.5 | -1.6 | -0.7 | -1.5 |
Massachusetts | NA | -1.2 | 0.4 | -0.6 | 0.4 | -0.7 | -0.5 | -0.9 | 0.6 | -0.6 | 0.7 | -2.0 |
Michigan | NA | 0.3 | -0.3 | 0.0 | 0.1 | -0.4 | 0.3 | -0.7 | 0.3 | 0.3 | -0.7 | -0.5 |
Minnesota | NA | 1.1 | -1.1 | -1.0 | 0.5 | -0.3 | 0.1 | -0.4 | 0.0 | -0.5 | 0.2 | -0.4 |
Mississippi | NA | -1.0 | -1.8 | 2.7 | -3.4 | 1.1 | 0.1 | 1.1 | -3.0 | 0.0 | 1.9 | 0.0 |
Missouri | NA | -0.5 | 0.9 | -0.9 | 0.1 | -1.4 | 0.0 | -0.1 | 1.0 | -0.3 | -1.1 | 0.8 |
Montana | NA | 1.1 | -1.4 | 0.1 | -0.1 | 0.2 | -1.0 | 0.6 | 0.1 | 1.3 | -1.0 | 0.2 |
Nebraska | NA | 0.8 | 0.4 | -2.6 | 0.1 | -0.1 | 0.5 | -0.7 | -0.2 | 0.8 | -0.6 | 0.1 |
Nevada | NA | -1.6 | -0.1 | 0.3 | -1.0 | 2.7 | -0.4 | 1.7 | 0.9 | -1.0 | -0.1 | 0.0 |
New Hampshire | NA | -0.4 | 1.1 | -0.9 | 0.6 | -1.0 | 0.4 | -1.4 | 1.2 | -0.7 | 0.5 | -0.6 |
New Jersey | NA | -0.7 | -0.7 | -2.6 | 1.4 | -0.9 | 0.3 | -0.6 | -0.1 | -0.9 | -1.4 | 0.5 |
New Mexico | NA | 0.4 | -1.0 | -0.8 | -1.3 | 1.4 | -0.3 | 0.1 | 0.5 | -0.3 | -0.4 | 1.2 |
New York | NA | -2.6 | -1.4 | -1.0 | -1.6 | -1.8 | 0.4 | -1.6 | -1.4 | -0.5 | -1.6 | -0.7 |
North Carolina | NA | -1.9 | -2.3 | -0.2 | -2.7 | 0.3 | 0.2 | 0.1 | 0.5 | -1.3 | -1.4 | 1.8 |
North Dakota | NA | 0.2 | 0.1 | -0.2 | -0.8 | 1.7 | 0.1 | -0.1 | 4.2 | -1.3 | -0.3 | 0.6 |
Ohio | NA | -0.2 | -0.6 | 0.6 | -0.3 | 0.2 | -1.0 | -0.2 | 0.3 | 0.2 | -0.1 | 0.0 |
Oklahoma | NA | 0.2 | -0.4 | 0.7 | -1.0 | 1.5 | -1.0 | 0.3 | -0.7 | 0.1 | -0.6 | 1.2 |
Oregon | NA | -1.3 | -0.4 | -0.1 | 0.9 | -1.3 | 0.2 | -0.5 | 0.0 | -0.8 | 0.7 | -1.0 |
Pennsylvania | NA | -1.2 | -1.7 | -1.0 | 0.3 | -1.2 | -0.8 | -0.2 | -0.4 | -0.3 | -0.7 | -0.4 |
Rhode Island | NA | -0.6 | -0.4 | -1.9 | -2.1 | -0.4 | 1.4 | -2.8 | 0.8 | 1.5 | -1.1 | -0.3 |
South Carolina | NA | 1.0 | 0.0 | -0.9 | -1.3 | 0.1 | 1.1 | -2.5 | 1.6 | -1.2 | -0.1 | -1.0 |
South Dakota | NA | -0.6 | 1.2 | -2.0 | 0.9 | 0.9 | -0.3 | -0.9 | 2.7 | -0.6 | -1.5 | 0.5 |
Tennessee | NA | -1.6 | -1.6 | -0.4 | 0.1 | -1.6 | -0.4 | -0.5 | -0.4 | -0.1 | 0.3 | 0.3 |
Texas | NA | 0.5 | -0.1 | -1.3 | -0.1 | -0.3 | 0.0 | 0.1 | -0.4 | -1.0 | 0.0 | -0.8 |
Utah | NA | -0.6 | -1.8 | 1.1 | 0.5 | -0.6 | 0.1 | 0.3 | 0.6 | -1.2 | 0.2 | 0.4 |
Vermont | NA | -0.2 | 0.5 | -1.3 | 0.2 | -0.2 | 0.7 | -0.5 | -1.7 | 2.8 | -0.4 | -1.3 |
Virginia | NA | -1.4 | -0.1 | -1.6 | 0.4 | 0.0 | -0.7 | 0.7 | -0.8 | -0.7 | -0.1 | -0.6 |
Washington | NA | -0.2 | 0.2 | -1.2 | 0.2 | -1.0 | -0.1 | 0.0 | -0.5 | -0.1 | 1.0 | -0.4 |
West Virginia | NA | -0.6 | -0.1 | 0.8 | -0.4 | -0.3 | 0.6 | -0.8 | -0.2 | 0.7 | 0.4 | 4.1 |
Wisconsin | NA | 0.9 | -0.6 | -0.3 | -0.5 | 0.6 | -0.6 | 0.1 | 0.1 | 0.6 | -1.1 | 0.1 |
Wyoming | NA | -0.5 | -0.4 | -0.9 | -1.7 | 1.8 | -1.2 | 1.4 | 0.9 | -2.3 | 0.4 | 0.2 |
# knitr::kable(Table.Lag.HIV.Rate.WIDE,
# caption = "Table 2c: Difference in Case Rate Year Over Year by State")
Lag.HIV.Rate.WIDE.Percent <- lag.HIV.Rate%>%
select(1,2,6)%>%
pivot_wider(
names_from = Year,
values_from = Rate.Diff.Percent
)
#### Henry you need to change output DECIMAL PLACES
Table.Lag.HIV.Rate.WIDE.Percent<- Lag.HIV.Rate.WIDE.Percent%>%
kbl("html",caption = "Year Over Year % Difference in HIV Rates by State" )%>%
kable_styling()%>%
column_spec(3,color = if_else( Lag.HIV.Rate.WIDE$`2009`>0, "red", "black", "black"))%>%
column_spec(4,color = if_else( Lag.HIV.Rate.WIDE$`2010`>0, "red", "black", "black"))%>%
column_spec(5,color = if_else( Lag.HIV.Rate.WIDE$`2011`>0, "red", "black", "black"))%>%
column_spec(6,color = if_else( Lag.HIV.Rate.WIDE$`2012`>0, "red", "black", "black"))%>%
column_spec(7,color = if_else( Lag.HIV.Rate.WIDE$`2013`>0, "red", "black", "black"))%>%
column_spec(8,color = if_else( Lag.HIV.Rate.WIDE$`2014`>0, "red", "black", "black"))%>%
column_spec(9,color = if_else( Lag.HIV.Rate.WIDE$`2015`> 0, "red", "black", "black"))%>%
column_spec(10,color = if_else( Lag.HIV.Rate.WIDE$`2016`>0, "red", "black", "black"))%>%
column_spec(11,color = if_else( Lag.HIV.Rate.WIDE$`2017`>0, "red", "black", "black"))%>%
column_spec(12,color = if_else( Lag.HIV.Rate.WIDE$`2018`>0, "red", "black", "black"))%>%
column_spec(13,color = if_else( Lag.HIV.Rate.WIDE$`2019`>0, "red", "black", "black"))%>%
kable_styling("striped", full_width = F) %>%
scroll_box(width = "1000px", height = "400px")
Table.Lag.HIV.Rate.WIDE.Percent
State | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Alabama | NA | -2.824859 | -3.5087719 | -1.1834320 | -2.4242424 | -5.7692308 | 4.8780488 | -0.6134969 | -1.8750000 | -0.6289308 | -7.4324324 | 4.5161290 |
Alaska | NA | -89.189189 | 42.1875000 | -64.1025641 | 17.0212766 | -23.6842105 | 39.6825397 | -50.0000000 | 31.1475410 | -27.0833333 | -26.3157895 | 15.5555556 |
Arizona | NA | -7.438016 | -2.5423729 | -11.3207547 | 7.8260870 | 8.0000000 | 6.0150376 | -9.0163934 | 1.6129032 | 0.0000000 | 1.5873016 | -0.8000000 |
Arkansas | NA | 16.101695 | -22.9166667 | 2.0408163 | 2.9702970 | 5.6074766 | 15.0793651 | -14.5454545 | 13.3858268 | -10.4347826 | -3.6036036 | 2.6315789 |
California | NA | -6.111111 | -5.2631579 | -5.5555556 | -1.2500000 | -8.8435374 | 8.1250000 | -3.2258065 | 0.0000000 | -6.1643836 | -2.0979021 | -9.1603053 |
Colorado | NA | -22.222222 | 10.8910891 | -18.8235294 | 1.1627907 | -21.1267606 | 16.4705882 | -2.4096386 | 8.7912088 | 1.0869565 | -9.5238095 | 11.5789474 |
Connecticut | NA | -1.724138 | 9.3750000 | -11.3043478 | -21.0526316 | 11.2149533 | -10.3092784 | -7.7777778 | -7.1428571 | 6.6666667 | -5.8823529 | -21.4285714 |
Delaware | NA | -3.960396 | -22.4242424 | -10.0000000 | 15.7303371 | -26.2411348 | 3.4246575 | -11.4503817 | 5.0724638 | 10.9677419 | -39.6396396 | 0.8928571 |
District of Columbia | NA | -27.871940 | -7.3450135 | -27.2727273 | -13.0940834 | -18.6421174 | -20.5270458 | -14.9920255 | -5.3781513 | -12.2641509 | -13.2478632 | -10.9004739 |
Florida | NA | -15.170279 | -11.3793103 | -2.8368794 | -6.0150376 | -3.5019455 | 2.6515152 | 0.7518797 | -0.7575758 | -3.9370079 | -2.0080321 | -5.0632911 |
Georgia | NA | -10.081744 | -11.2121212 | -0.6097561 | -2.5000000 | -12.2807018 | 1.0416667 | 7.9872204 | -5.3872054 | 1.3289037 | -5.9859155 | -2.8985507 |
Hawaii | NA | 2.564103 | 11.3636364 | -31.3432836 | 4.2857143 | 13.5802469 | 2.4096386 | 15.3061224 | -53.1250000 | 0.0000000 | -6.6666667 | -11.1111111 |
Idaho | NA | -2.564103 | -8.3333333 | -28.5714286 | 0.0000000 | -47.3684211 | -11.7647059 | 43.3333333 | 11.7647059 | -3.0303030 | -26.9230769 | -36.8421053 |
Illinois | NA | -4.294479 | -5.1612903 | -2.6490066 | 1.9480519 | -4.7619048 | -2.7972028 | 0.6944444 | -4.3478261 | -8.6614173 | 0.7812500 | -9.4017094 |
Indiana | NA | -1.149425 | 4.3956044 | -4.5977011 | 3.3333333 | -3.4482759 | -2.3529412 | 26.0869565 | -29.2134831 | 4.3010753 | -2.1978022 | -4.5977011 |
Iowa | NA | 24.000000 | -11.1111111 | -2.2727273 | 4.3478261 | 0.0000000 | -27.7777778 | 25.0000000 | 5.8823529 | -6.2500000 | -9.0909091 | -15.7894737 |
Kansas | NA | 9.090909 | -13.7931034 | 0.0000000 | 9.3750000 | -3.2258065 | -12.7272727 | 15.3846154 | -6.5573770 | -22.0000000 | 23.0769231 | -20.3703704 |
Kentucky | NA | -3.125000 | -5.4945055 | -8.3333333 | 15.1515152 | -2.0618557 | -4.3010753 | -1.0869565 | -1.0989011 | 7.1428571 | 2.9702970 | -16.0919540 |
Louisiana | NA | 8.490566 | -7.0707071 | 5.7142857 | -17.5373134 | 8.8435374 | 5.7692308 | -9.8591549 | 0.6993007 | -10.8527132 | -3.6144578 | -9.2105263 |
Maine | NA | 20.000000 | -4.1666667 | -9.0909091 | -2.3255814 | -38.7096774 | 39.2156863 | -24.3902439 | 10.8695652 | -84.0000000 | 3.8461538 | 0.0000000 |
Maryland | NA | -21.590909 | 0.8450704 | -22.8373702 | -8.6466165 | -1.9157088 | -6.0975610 | -5.5793991 | -6.8807339 | -7.9207921 | -3.5897436 | -8.3333333 |
Massachusetts | NA | -9.836066 | 3.1746032 | -5.0000000 | 3.2258065 | -5.9829060 | -4.4642857 | -8.7378641 | 5.5045872 | -5.8252427 | 6.3636364 | -22.2222222 |
Michigan | NA | 3.125000 | -3.2258065 | 0.0000000 | 1.0638298 | -4.4444444 | 3.2258065 | -8.1395349 | 3.3707865 | 3.2608696 | -8.2352941 | -6.2500000 |
Minnesota | NA | 12.643678 | -14.4736842 | -15.1515152 | 7.0422535 | -4.4117647 | 1.4492754 | -6.1538462 | 0.0000000 | -8.3333333 | 3.2258065 | -6.8965517 |
Mississippi | NA | -4.878049 | -9.6256684 | 12.6168224 | -18.8888889 | 5.7591623 | 0.5208333 | 5.4187192 | -17.3410405 | 0.0000000 | 9.8958333 | 0.0000000 |
Missouri | NA | -4.761905 | 7.8947368 | -8.5714286 | 0.9433962 | -15.2173913 | 0.0000000 | -1.0989011 | 9.9009901 | -3.0612245 | -12.6436782 | 8.4210526 |
Montana | NA | 28.947368 | -58.3333333 | 4.0000000 | -4.1666667 | 7.6923077 | -62.5000000 | 27.2727273 | 4.3478261 | 36.1111111 | -38.4615385 | 7.1428571 |
Nebraska | NA | 10.810811 | 5.1282051 | -50.0000000 | 1.8867925 | -1.9230769 | 8.7719298 | -14.0000000 | -4.1666667 | 14.2857143 | -12.0000000 | 1.9607843 |
Nevada | NA | -9.523810 | -0.5988024 | 1.7647059 | -6.2500000 | 14.4385027 | -2.1857923 | 8.5000000 | 4.3062201 | -5.0251256 | -0.5050505 | 0.0000000 |
New Hampshire | NA | -11.764706 | 24.4444444 | -25.0000000 | 14.2857143 | -31.2500000 | 11.1111111 | -63.6363636 | 35.2941176 | -25.9259259 | 15.6250000 | -23.0769231 |
New Jersey | NA | -3.664922 | -3.8043478 | -16.4556962 | 8.1395349 | -5.5214724 | 1.8072289 | -3.7500000 | -0.6289308 | -6.0000000 | -10.2941176 | 3.5460993 |
New Mexico | NA | 4.081633 | -11.3636364 | -10.0000000 | -19.4029851 | 17.2839506 | -3.8461538 | 1.2658228 | 5.9523810 | -3.7037037 | -5.1948052 | 13.4831461 |
New York | NA | -10.276680 | -5.8577406 | -4.3668122 | -7.5117371 | -9.2307692 | 2.0100503 | -8.7431694 | -8.2840237 | -3.0487805 | -10.8108108 | -4.9645390 |
North Carolina | NA | -9.313726 | -12.7071823 | -1.1173184 | -17.7631579 | 1.9354839 | 1.2738854 | 0.6329114 | 3.0674847 | -8.6666667 | -10.2941176 | 11.6883117 |
North Dakota | NA | 8.333333 | 4.0000000 | -8.6956522 | -53.3333333 | 53.1250000 | 3.0303030 | -3.1250000 | 56.7567568 | -21.3114754 | -5.1724138 | 9.3750000 |
Ohio | NA | -1.851852 | -5.8823529 | 5.5555556 | -2.8571429 | 1.8691589 | -10.3092784 | -2.1052632 | 3.0612245 | 2.0000000 | -1.0101010 | 0.0000000 |
Oklahoma | NA | 2.061856 | -4.3010753 | 7.0000000 | -11.1111111 | 14.2857143 | -10.5263158 | 3.0612245 | -7.6923077 | 1.0869565 | -6.9767442 | 12.2448980 |
Oregon | NA | -16.666667 | -5.4054054 | -1.3698630 | 10.9756098 | -18.8405797 | 2.8169014 | -7.5757576 | 0.0000000 | -13.7931034 | 10.7692308 | -18.1818182 |
Pennsylvania | NA | -7.792208 | -12.4087591 | -7.8740157 | 2.3076923 | -10.1694915 | -7.2727273 | -1.8518519 | -3.8461538 | -2.9702970 | -7.4468085 | -4.4444444 |
Rhode Island | NA | -4.545454 | -3.1250000 | -17.4311927 | -23.8636364 | -4.7619048 | 14.2857143 | -40.0000000 | 10.2564103 | 16.1290323 | -13.4146341 | -3.7974684 |
South Carolina | NA | 5.050505 | 0.0000000 | -4.7619048 | -7.3863636 | 0.5649718 | 5.8510638 | -15.3374233 | 8.9385475 | -7.1856287 | -0.6024096 | -6.4102564 |
South Dakota | NA | -16.666667 | 25.0000000 | -71.4285714 | 24.3243243 | 19.5652174 | -6.9767442 | -26.4705882 | 44.2622951 | -10.9090909 | -37.5000000 | 11.1111111 |
Tennessee | NA | -9.039548 | -9.9378882 | -2.5477707 | 0.6329114 | -11.2676056 | -2.8985507 | -3.7593985 | -3.1007752 | -0.7812500 | 2.2900763 | 2.2388060 |
Texas | NA | 2.262443 | -0.4545455 | -6.2801932 | -0.4854369 | -1.4778325 | 0.0000000 | 0.4901961 | -2.0000000 | -5.2631579 | 0.0000000 | -4.3956044 |
Utah | NA | -10.526316 | -46.1538462 | 22.0000000 | 9.0909091 | -12.2448980 | 2.0000000 | 5.6603774 | 10.1694915 | -25.5319149 | 4.0816327 | 7.5471698 |
Vermont | NA | -6.250000 | 13.5135135 | -54.1666667 | 7.6923077 | -8.3333333 | 22.5806452 | -19.2307692 | -188.8888889 | 75.6756757 | -12.1212121 | -65.0000000 |
Virginia | NA | -9.395973 | -0.6756757 | -12.1212121 | 2.9411765 | 0.0000000 | -5.4263566 | 5.1470588 | -6.2500000 | -5.7851240 | -0.8333333 | -5.2631579 |
Washington | NA | -2.127660 | 2.0833333 | -14.2857143 | 2.3255814 | -13.1578947 | -1.3333333 | 0.0000000 | -7.1428571 | -1.4492754 | 12.6582278 | -5.3333333 |
West Virginia | NA | -12.765957 | -2.1739130 | 14.8148148 | -8.0000000 | -6.3829787 | 11.3207547 | -17.7777778 | -4.6511628 | 14.0000000 | 7.4074074 | 43.1578947 |
Wisconsin | NA | 15.254237 | -11.3207547 | -6.0000000 | -11.1111111 | 11.7647059 | -13.3333333 | 2.1739130 | 2.1276596 | 11.3207547 | -26.1904762 | 2.3255814 |
Wyoming | NA | -11.111111 | -9.7560976 | -28.1250000 | -113.3333333 | 54.5454545 | -57.1428571 | 40.0000000 | 20.4545455 | -109.5238095 | 16.0000000 | 7.4074074 |
# knitr::kable(Table.Lag.HIV.Rate.WIDE.Percent,
# caption = "Table 2d: Difference in Case Rate Percentage Year Over Year by State")
# tile <- Lag.HIV.Rate%>%
# ggplot(data=Lag.HIV.r, mapping=aes(x=1,y=3))+
# geom_tile(fill="white", color="white")+
# geom_text(aes(label=value, color=value>0))+
# scale_color_manual(guide=FALSE, values=c("red","black"))
# Looking at the visualizations, it's hard to see the rate, case change year over year given their are so many observations. To visualize where cases/rates increased, I look to create a new column true = increase in cases/rate year over year.
# Logical.data.Case <- Lag.HIV.Case%>%
# mutate(
# Increase.Case = Case.Diff > 0,
# Increase.Case.Percent = Case.Diff.Percent >0
# )
# Logical.data.Rate <- lag.HIV.Rate%>%
# mutate(
# Increase.Rate = Rate.Diff >0,
# Increase.Rate.Percent = Rate.Diff.Percent >0
# )
# visualization of trend in cases by state from 2008-2021
Figure.1a<- HIV.State%>%
ggplot(mapping=aes(Year,Cases))+
geom_point(position = "jitter")+
geom_line(mapping = aes(color= State))+
theme(legend.position = "none")+
labs(y = "Cases",
title = "Figure 1a: HIV Cases by State",
subtitle = "2008 - 2021"
)
Figure.1a
# visualization of trend in rate by state from 2008-2021
Figure.1b<- HIV.State%>%
ggplot(mapping = aes(Year,Rate))+
geom_point(position = "jitter")+
geom_line(mapping = aes(Year,Rate,color = State))+
theme(legend.position = "none")+
labs(y = "Rate per 100k",
title = "Figure 1b: HIV Incidence Rate by State",
subtitle = "2008-2019")
Figure.1b
Figure.2a<- Lag.HIV.Case%>%
group_by(Year)%>%
ggplot(mapping = aes(Year,Case.Diff))+
geom_point(aes(color = Case.Diff>0), position = "jitter")+
facet_wrap(~State, scales = "free")+
labs(y= " Lagging Cases",
title = " Figure 2a: State HIV Case Difference by Lagging Year")+
guides(x = guide_axis(angle = 90))
Figure.2b <- lag.HIV.Rate%>%
group_by(Year)%>%
ggplot(mapping = aes(Year,Rate.Diff))+
geom_point(aes(color = Rate.Diff>0), position = "jitter")+
facet_wrap(~State,scales = "free")+
labs(y= "Lagging Rate",
title = "Figure 2b: State HIV Incidence Rate difference by Lagging Year")+
guides(x = guide_axis(angle = 90))
Text and figures are licensed under Creative Commons Attribution CC BY-NC 4.0. The figures that have been reused from other sources don't fall under this license and can be recognized by a note in their caption: "Figure from ...".
For attribution, please cite this work as
Nguyen (2022, May 19). Data Analytics and Computational Social Science: Homework 5: Henry Nguyen. Retrieved from https://github.com/DACSS/dacss_course_website/posts/httpsrpubscomhenryfnp902317/
BibTeX citation
@misc{nguyen2022homework, author = {Nguyen, Henry}, title = {Data Analytics and Computational Social Science: Homework 5: Henry Nguyen}, url = {https://github.com/DACSS/dacss_course_website/posts/httpsrpubscomhenryfnp902317/}, year = {2022} }