Fourth Assignment
shp_IA_TMC<-st_read(
'G:/My Drive/School/UMASS/DACSS/DACSS_601/assignment4/Data/Iowa_2018_TMC_shapefile/Iowa.shp',
as_tibble=TRUE) %>%
select(
'Tmc','RoadName','County','Miles','ThruLanes','Route_Numb','Route_Sign','AltRteName','AADT','AADT_Singl','AADT_Combi')
Reading layer `Iowa' from data source
`G:\My Drive\School\UMASS\DACSS\DACSS_601\assignment4\Data\Iowa_2018_TMC_shapefile\Iowa.shp'
using driver `ESRI Shapefile'
Simple feature collection with 4862 features and 36 fields
Geometry type: MULTILINESTRING
Dimension: XY
Bounding box: xmin: -96.61288 ymin: 40.38535 xmax: -90.17986 ymax: 43.50076
Geodetic CRS: WGS 84
gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 1271717 68.0 2196184 117.3 2196184 117.3
Vcells 240395763 1834.1 305104959 2327.8 241413257 1841.9
tmc_Bottleneck_IA_1HR
gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 1301632 69.6 2196184 117.3 2196184 117.3
Vcells 787234687 6006.2 2232934109 17036.0 2098627066 16011.3
tmc_Bottleneck_IA_1HR_Bneck %>%
group_by('Tmc')%>%
count(measurement_tstamp, name = 'HRS')%>%
arrange(0-HRS)
# A tibble: 8,754 x 3
# Groups: "Tmc" [1]
`"Tmc"` measurement_tstamp HRS
<chr> <dttm> <int>
1 Tmc 2018-02-05 15:00:00 265
2 Tmc 2018-02-05 16:00:00 260
3 Tmc 2018-02-05 14:00:00 228
4 Tmc 2018-02-05 17:00:00 219
5 Tmc 2018-02-05 18:00:00 163
6 Tmc 2018-02-06 08:00:00 163
7 Tmc 2018-03-24 10:00:00 156
8 Tmc 2018-03-24 09:00:00 152
9 Tmc 2018-03-24 08:00:00 150
10 Tmc 2018-03-24 07:00:00 148
# ... with 8,744 more rows
tmc_Bottleneck_IA_1HR_Bneck%>%
select(Route_Sign,speed) %>%
group_by(Route_Sign)%>%
summarise_all(list(mean="mean", median="median", sd="sd"))%>%
mutate(order= case_when(
Route_Sign=='Interstate'~ 1,
Route_Sign=='US Route'~ 2,
Route_Sign=='IA Route'~ 3)) %>%
arrange(order)%>%
select(-order)
# A tibble: 3 x 4
Route_Sign mean median sd
<chr> <dbl> <dbl> <dbl>
1 Interstate 24.0 24.7 7.88
2 US Route 19.2 17.4 8.77
3 IA Route 17.3 15.8 8.22
tmc_Bottleneck_IA_1HR_Bneck%>%
select(Route_Sign,reference_speed) %>%
group_by(Route_Sign)%>%
summarize_all(list(mean="mean", median="median", sd="sd"))%>%
mutate(order= case_when(
Route_Sign=='Interstate'~ 1,
Route_Sign=='US Route'~ 2,
Route_Sign=='IA Route'~ 3))%>%
arrange(order)%>%
select(-order)
# A tibble: 3 x 4
Route_Sign mean median sd
<chr> <dbl> <dbl> <dbl>
1 Interstate 50.6 49 12.1
2 US Route 40.8 37 14.9
3 IA Route 36.8 33 14.5
tmc_Bottleneck_IA_1HR_Bneck %>%
select(Tmc) %>%
group_by(Tmc)%>%
count(Tmc, name = 'CNT')%>%
arrange(0-CNT)
# A tibble: 4,248 x 2
# Groups: Tmc [4,248]
Tmc CNT
<chr> <int>
1 118+10758 3041
2 118P07144 2698
3 118N07371 2435
4 118P07114 2305
5 118P07371 2298
6 118N07464 2203
7 118P09542 2034
8 118N09543 1908
9 118-07410 1783
10 118N09258 1771
# ... with 4,238 more rows
TMC_118_10758 <- tmc_Bottleneck_IA_1HR_Bneck %>%
filter( Tmc== '118+10758')%>%
mutate(DATE = format(measurement_tstamp,'%HH'))%>%
group_by(DATE)%>%
count(name='HRS_BOTTLENECK')%>%
arrange(DATE)
ggplot(data=TMC_118_10758,aes(x= DATE, y =HRS_BOTTLENECK)) +
geom_col() +
xlab('Time-of-day') +
ylab('Hours Bottlenecked') +
ggtitle('TMC 118+10758 (2018)')
TMC_118_10758 <- tmc_Bottleneck_IA_1HR_Bneck %>%
filter( Tmc== '118+10758')%>%
mutate(DATE = format(measurement_tstamp,'%WW'))%>%
group_by(DATE)%>%
count(name='HRS_BOTTLENECK')%>%
arrange(DATE)
ggplot(data=TMC_118_10758,aes(x= DATE, y =HRS_BOTTLENECK)) +
geom_col() +
xlab('WEEK') +
ylab('Hours Bottlenecked') +
ggtitle('TMC 118+10758 (2018)')
tmc_Bottleneck_IA_1HR_Bneck
# A tibble: 371,264 x 19
Tmc measurement_tstamp speed average_speed reference_speed
<chr> <dttm> <dbl> <dbl> <dbl>
1 118+11506 2018-01-01 07:00:00 32.9 57 58
2 118+11509 2018-01-01 14:00:00 34.0 60 59
3 118+11508 2018-01-01 16:00:00 31.6 54 54
4 118+11505 2018-01-01 10:00:00 27.8 57 57
5 118+07488 2018-01-01 11:00:00 5 35 30
6 118N06941 2018-01-01 01:00:00 8 18 18
7 118N06941 2018-01-01 02:00:00 8 18 18
8 118N06941 2018-01-01 04:00:00 10.7 18 18
9 118+11512 2018-01-01 11:00:00 30 58 59
10 118+07453 2018-01-01 21:00:00 27.9 55 58
# ... with 371,254 more rows, and 14 more variables:
# travel_time_minutes <dbl>, confidence_score <dbl>, cvalue <dbl>,
# RoadName <chr>, County <chr>, Miles <dbl>, ThruLanes <dbl>,
# Route_Numb <dbl>, Route_Sign <chr>, AltRteName <chr>, AADT <dbl>,
# AADT_Singl <dbl>, AADT_Combi <dbl>,
# geometry <MULTILINESTRING [°]>
tmc_Week_RSign <-
tmc_Bottleneck_IA_1HR_Bneck %>%
mutate(DATE = format(measurement_tstamp,'%WW'))%>%
group_by(Route_Sign,DATE)%>%
count(name = 'HRS')%>%
mutate(order= case_when(
Route_Sign=='Interstate'~ 1,
Route_Sign=='US Route'~ 2,
Route_Sign=='IA Route'~ 3))%>%
arrange(DATE,order)
tmc_Week_RSign
# A tibble: 159 x 4
# Groups: Route_Sign, DATE [159]
Route_Sign DATE HRS order
<chr> <chr> <int> <dbl>
1 Interstate 01W 982 1
2 US Route 01W 4867 2
3 IA Route 01W 2327 3
4 Interstate 02W 1228 1
5 US Route 02W 5422 2
6 IA Route 02W 2538 3
7 Interstate 03W 1106 1
8 US Route 03W 5172 2
9 IA Route 03W 2467 3
10 Interstate 04W 1093 1
# ... with 149 more rows
[1] "Interstate" "US Route" "IA Route"
ggplot(tmc_Week_RSign, aes( y=HRS, x=DATE, fill=Route_Sign)) +
geom_bar(stat='identity',position = 'stack') +
xlab('Week') +
ylab("Hours 'Bottlenecked'")
Text and figures are licensed under Creative Commons Attribution CC BY-NC 4.0. The figures that have been reused from other sources don't fall under this license and can be recognized by a note in their caption: "Figure from ...".
For attribution, please cite this work as
Meade (2022, March 12). Data Analytics and Computational Social Science: Justin Meade Homework 4. Retrieved from https://github.com/DACSS/dacss_course_website/posts/httpsrpubscommeade68875038/
BibTeX citation
@misc{meade2022justin, author = {Meade, Justin}, title = {Data Analytics and Computational Social Science: Justin Meade Homework 4}, url = {https://github.com/DACSS/dacss_course_website/posts/httpsrpubscommeade68875038/}, year = {2022} }