Code
library(tidyverse)
library(Hmisc)
library(psych)
::opts_chunk$set(echo = TRUE, warning=FALSE, message=FALSE) knitr
Akhilesh Kumar Meghwal
August 21, 2022
Today’s challenge is to
read in a dataset, and
describe the dataset using both words and any supporting information (e.g., tables, etc)
Read in one (or more) of the following data sets, using the correct R package and command.
Find the _data
folder, located inside the posts
folder. Then you can read in the data, using either one of the readr
standard tidy read commands, or a specialized package such as readxl
.
Add any comments or documentation as needed. More challenging data sets may require additional code chunks and documentation.
Using a combination of words and results of R commands, can you provide a high level description of the data? Describe as efficiently as possible where/how the data was (likely) gathered, indicate the cases and variables (both the interpretation and any details you deem useful to the reader to fully understand your chosen data).
state county total_employees
1 AE APO 2
2 AK ANCHORAGE 7
3 AK FAIRBANKS NORTH STAR 2
4 AK JUNEAU 3
5 AK MATANUSKA-SUSITNA 2
6 AK SITKA 1
[1] 2930 3
#Dataset Description
# "state" column contains name of different states from United States of America in upper case, abbreviated format
# "county" column contains names of different counties, for the states in 'state' column, in upper case format
# "total_employees" column contains state-county wise number of railroad employees.
# struture of railroad dataset
str(railroad)
'data.frame': 2930 obs. of 3 variables:
$ state : Factor w/ 53 levels "AE","AK","AL",..: 1 2 2 2 2 2 2 3 3 3 ...
$ county : Factor w/ 1709 levels "ABBEVILLE","ACADIA",..: 44 33 524 794 963 1415 1417 78 85 95 ...
$ total_employees: int 2 7 2 3 2 1 88 102 143 1 ...
# Output
# 'data.frame': 2930 obs. of 3 variables:
# $ state : Factor w/ 53 levels "AE","AK","AL",..: 1 2 2 2 2 2 2 3 3 3 ...
# $ county : Factor w/ 1709 levels "ABBEVILLE","ACADIA",..: 44 33 524 794 963 1415 1417 78 85 95 ...
# $ total_employees: int 2 7 2 3 2 1 88 102 143 1 ...
#summary
# railroad dataset has 2930 rows and 3 columns
# State column is a factor class; as converted from character class during file read command read.csv() and it has 53 levels.
# county column has 1709 levels
# Missing Values, check NA value
sum(is.na(railroad))
[1] 0
[1] 0
[1] 0
[1] 0
[1] 0
[1] 0
[1] 0
[1] 0
[1] "state" "county" "total_employees"
[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10"
[11] "11" "12" "13" "14" "15" "16" "17" "18" "19" "20"
[21] "21" "22" "23" "24" "25" "26" "27" "28" "29" "30"
[31] "31" "32" "33" "34" "35" "36" "37" "38" "39" "40"
[41] "41" "42" "43" "44" "45" "46" "47" "48" "49" "50"
[51] "51" "52" "53" "54" "55" "56" "57" "58" "59" "60"
[61] "61" "62" "63" "64" "65" "66" "67" "68" "69" "70"
[71] "71" "72" "73" "74" "75" "76" "77" "78" "79" "80"
[81] "81" "82" "83" "84" "85" "86" "87" "88" "89" "90"
[91] "91" "92" "93" "94" "95" "96" "97" "98" "99" "100"
[101] "101" "102" "103" "104" "105" "106" "107" "108" "109" "110"
[111] "111" "112" "113" "114" "115" "116" "117" "118" "119" "120"
[121] "121" "122" "123" "124" "125" "126" "127" "128" "129" "130"
[131] "131" "132" "133" "134" "135" "136" "137" "138" "139" "140"
[141] "141" "142" "143" "144" "145" "146" "147" "148" "149" "150"
[151] "151" "152" "153" "154" "155" "156" "157" "158" "159" "160"
[161] "161" "162" "163" "164" "165" "166" "167" "168" "169" "170"
[171] "171" "172" "173" "174" "175" "176" "177" "178" "179" "180"
[181] "181" "182" "183" "184" "185" "186" "187" "188" "189" "190"
[191] "191" "192" "193" "194" "195" "196" "197" "198" "199" "200"
[201] "201" "202" "203" "204" "205" "206" "207" "208" "209" "210"
[211] "211" "212" "213" "214" "215" "216" "217" "218" "219" "220"
[221] "221" "222" "223" "224" "225" "226" "227" "228" "229" "230"
[231] "231" "232" "233" "234" "235" "236" "237" "238" "239" "240"
[241] "241" "242" "243" "244" "245" "246" "247" "248" "249" "250"
[251] "251" "252" "253" "254" "255" "256" "257" "258" "259" "260"
[261] "261" "262" "263" "264" "265" "266" "267" "268" "269" "270"
[271] "271" "272" "273" "274" "275" "276" "277" "278" "279" "280"
[281] "281" "282" "283" "284" "285" "286" "287" "288" "289" "290"
[291] "291" "292" "293" "294" "295" "296" "297" "298" "299" "300"
[301] "301" "302" "303" "304" "305" "306" "307" "308" "309" "310"
[311] "311" "312" "313" "314" "315" "316" "317" "318" "319" "320"
[321] "321" "322" "323" "324" "325" "326" "327" "328" "329" "330"
[331] "331" "332" "333" "334" "335" "336" "337" "338" "339" "340"
[341] "341" "342" "343" "344" "345" "346" "347" "348" "349" "350"
[351] "351" "352" "353" "354" "355" "356" "357" "358" "359" "360"
[361] "361" "362" "363" "364" "365" "366" "367" "368" "369" "370"
[371] "371" "372" "373" "374" "375" "376" "377" "378" "379" "380"
[381] "381" "382" "383" "384" "385" "386" "387" "388" "389" "390"
[391] "391" "392" "393" "394" "395" "396" "397" "398" "399" "400"
[401] "401" "402" "403" "404" "405" "406" "407" "408" "409" "410"
[411] "411" "412" "413" "414" "415" "416" "417" "418" "419" "420"
[421] "421" "422" "423" "424" "425" "426" "427" "428" "429" "430"
[431] "431" "432" "433" "434" "435" "436" "437" "438" "439" "440"
[441] "441" "442" "443" "444" "445" "446" "447" "448" "449" "450"
[451] "451" "452" "453" "454" "455" "456" "457" "458" "459" "460"
[461] "461" "462" "463" "464" "465" "466" "467" "468" "469" "470"
[471] "471" "472" "473" "474" "475" "476" "477" "478" "479" "480"
[481] "481" "482" "483" "484" "485" "486" "487" "488" "489" "490"
[491] "491" "492" "493" "494" "495" "496" "497" "498" "499" "500"
[501] "501" "502" "503" "504" "505" "506" "507" "508" "509" "510"
[511] "511" "512" "513" "514" "515" "516" "517" "518" "519" "520"
[521] "521" "522" "523" "524" "525" "526" "527" "528" "529" "530"
[531] "531" "532" "533" "534" "535" "536" "537" "538" "539" "540"
[541] "541" "542" "543" "544" "545" "546" "547" "548" "549" "550"
[551] "551" "552" "553" "554" "555" "556" "557" "558" "559" "560"
[561] "561" "562" "563" "564" "565" "566" "567" "568" "569" "570"
[571] "571" "572" "573" "574" "575" "576" "577" "578" "579" "580"
[581] "581" "582" "583" "584" "585" "586" "587" "588" "589" "590"
[591] "591" "592" "593" "594" "595" "596" "597" "598" "599" "600"
[601] "601" "602" "603" "604" "605" "606" "607" "608" "609" "610"
[611] "611" "612" "613" "614" "615" "616" "617" "618" "619" "620"
[621] "621" "622" "623" "624" "625" "626" "627" "628" "629" "630"
[631] "631" "632" "633" "634" "635" "636" "637" "638" "639" "640"
[641] "641" "642" "643" "644" "645" "646" "647" "648" "649" "650"
[651] "651" "652" "653" "654" "655" "656" "657" "658" "659" "660"
[661] "661" "662" "663" "664" "665" "666" "667" "668" "669" "670"
[671] "671" "672" "673" "674" "675" "676" "677" "678" "679" "680"
[681] "681" "682" "683" "684" "685" "686" "687" "688" "689" "690"
[691] "691" "692" "693" "694" "695" "696" "697" "698" "699" "700"
[701] "701" "702" "703" "704" "705" "706" "707" "708" "709" "710"
[711] "711" "712" "713" "714" "715" "716" "717" "718" "719" "720"
[721] "721" "722" "723" "724" "725" "726" "727" "728" "729" "730"
[731] "731" "732" "733" "734" "735" "736" "737" "738" "739" "740"
[741] "741" "742" "743" "744" "745" "746" "747" "748" "749" "750"
[751] "751" "752" "753" "754" "755" "756" "757" "758" "759" "760"
[761] "761" "762" "763" "764" "765" "766" "767" "768" "769" "770"
[771] "771" "772" "773" "774" "775" "776" "777" "778" "779" "780"
[781] "781" "782" "783" "784" "785" "786" "787" "788" "789" "790"
[791] "791" "792" "793" "794" "795" "796" "797" "798" "799" "800"
[801] "801" "802" "803" "804" "805" "806" "807" "808" "809" "810"
[811] "811" "812" "813" "814" "815" "816" "817" "818" "819" "820"
[821] "821" "822" "823" "824" "825" "826" "827" "828" "829" "830"
[831] "831" "832" "833" "834" "835" "836" "837" "838" "839" "840"
[841] "841" "842" "843" "844" "845" "846" "847" "848" "849" "850"
[851] "851" "852" "853" "854" "855" "856" "857" "858" "859" "860"
[861] "861" "862" "863" "864" "865" "866" "867" "868" "869" "870"
[871] "871" "872" "873" "874" "875" "876" "877" "878" "879" "880"
[881] "881" "882" "883" "884" "885" "886" "887" "888" "889" "890"
[891] "891" "892" "893" "894" "895" "896" "897" "898" "899" "900"
[901] "901" "902" "903" "904" "905" "906" "907" "908" "909" "910"
[911] "911" "912" "913" "914" "915" "916" "917" "918" "919" "920"
[921] "921" "922" "923" "924" "925" "926" "927" "928" "929" "930"
[931] "931" "932" "933" "934" "935" "936" "937" "938" "939" "940"
[941] "941" "942" "943" "944" "945" "946" "947" "948" "949" "950"
[951] "951" "952" "953" "954" "955" "956" "957" "958" "959" "960"
[961] "961" "962" "963" "964" "965" "966" "967" "968" "969" "970"
[971] "971" "972" "973" "974" "975" "976" "977" "978" "979" "980"
[981] "981" "982" "983" "984" "985" "986" "987" "988" "989" "990"
[991] "991" "992" "993" "994" "995" "996" "997" "998" "999" "1000"
[1001] "1001" "1002" "1003" "1004" "1005" "1006" "1007" "1008" "1009" "1010"
[1011] "1011" "1012" "1013" "1014" "1015" "1016" "1017" "1018" "1019" "1020"
[1021] "1021" "1022" "1023" "1024" "1025" "1026" "1027" "1028" "1029" "1030"
[1031] "1031" "1032" "1033" "1034" "1035" "1036" "1037" "1038" "1039" "1040"
[1041] "1041" "1042" "1043" "1044" "1045" "1046" "1047" "1048" "1049" "1050"
[1051] "1051" "1052" "1053" "1054" "1055" "1056" "1057" "1058" "1059" "1060"
[1061] "1061" "1062" "1063" "1064" "1065" "1066" "1067" "1068" "1069" "1070"
[1071] "1071" "1072" "1073" "1074" "1075" "1076" "1077" "1078" "1079" "1080"
[1081] "1081" "1082" "1083" "1084" "1085" "1086" "1087" "1088" "1089" "1090"
[1091] "1091" "1092" "1093" "1094" "1095" "1096" "1097" "1098" "1099" "1100"
[1101] "1101" "1102" "1103" "1104" "1105" "1106" "1107" "1108" "1109" "1110"
[1111] "1111" "1112" "1113" "1114" "1115" "1116" "1117" "1118" "1119" "1120"
[1121] "1121" "1122" "1123" "1124" "1125" "1126" "1127" "1128" "1129" "1130"
[1131] "1131" "1132" "1133" "1134" "1135" "1136" "1137" "1138" "1139" "1140"
[1141] "1141" "1142" "1143" "1144" "1145" "1146" "1147" "1148" "1149" "1150"
[1151] "1151" "1152" "1153" "1154" "1155" "1156" "1157" "1158" "1159" "1160"
[1161] "1161" "1162" "1163" "1164" "1165" "1166" "1167" "1168" "1169" "1170"
[1171] "1171" "1172" "1173" "1174" "1175" "1176" "1177" "1178" "1179" "1180"
[1181] "1181" "1182" "1183" "1184" "1185" "1186" "1187" "1188" "1189" "1190"
[1191] "1191" "1192" "1193" "1194" "1195" "1196" "1197" "1198" "1199" "1200"
[1201] "1201" "1202" "1203" "1204" "1205" "1206" "1207" "1208" "1209" "1210"
[1211] "1211" "1212" "1213" "1214" "1215" "1216" "1217" "1218" "1219" "1220"
[1221] "1221" "1222" "1223" "1224" "1225" "1226" "1227" "1228" "1229" "1230"
[1231] "1231" "1232" "1233" "1234" "1235" "1236" "1237" "1238" "1239" "1240"
[1241] "1241" "1242" "1243" "1244" "1245" "1246" "1247" "1248" "1249" "1250"
[1251] "1251" "1252" "1253" "1254" "1255" "1256" "1257" "1258" "1259" "1260"
[1261] "1261" "1262" "1263" "1264" "1265" "1266" "1267" "1268" "1269" "1270"
[1271] "1271" "1272" "1273" "1274" "1275" "1276" "1277" "1278" "1279" "1280"
[1281] "1281" "1282" "1283" "1284" "1285" "1286" "1287" "1288" "1289" "1290"
[1291] "1291" "1292" "1293" "1294" "1295" "1296" "1297" "1298" "1299" "1300"
[1301] "1301" "1302" "1303" "1304" "1305" "1306" "1307" "1308" "1309" "1310"
[1311] "1311" "1312" "1313" "1314" "1315" "1316" "1317" "1318" "1319" "1320"
[1321] "1321" "1322" "1323" "1324" "1325" "1326" "1327" "1328" "1329" "1330"
[1331] "1331" "1332" "1333" "1334" "1335" "1336" "1337" "1338" "1339" "1340"
[1341] "1341" "1342" "1343" "1344" "1345" "1346" "1347" "1348" "1349" "1350"
[1351] "1351" "1352" "1353" "1354" "1355" "1356" "1357" "1358" "1359" "1360"
[1361] "1361" "1362" "1363" "1364" "1365" "1366" "1367" "1368" "1369" "1370"
[1371] "1371" "1372" "1373" "1374" "1375" "1376" "1377" "1378" "1379" "1380"
[1381] "1381" "1382" "1383" "1384" "1385" "1386" "1387" "1388" "1389" "1390"
[1391] "1391" "1392" "1393" "1394" "1395" "1396" "1397" "1398" "1399" "1400"
[1401] "1401" "1402" "1403" "1404" "1405" "1406" "1407" "1408" "1409" "1410"
[1411] "1411" "1412" "1413" "1414" "1415" "1416" "1417" "1418" "1419" "1420"
[1421] "1421" "1422" "1423" "1424" "1425" "1426" "1427" "1428" "1429" "1430"
[1431] "1431" "1432" "1433" "1434" "1435" "1436" "1437" "1438" "1439" "1440"
[1441] "1441" "1442" "1443" "1444" "1445" "1446" "1447" "1448" "1449" "1450"
[1451] "1451" "1452" "1453" "1454" "1455" "1456" "1457" "1458" "1459" "1460"
[1461] "1461" "1462" "1463" "1464" "1465" "1466" "1467" "1468" "1469" "1470"
[1471] "1471" "1472" "1473" "1474" "1475" "1476" "1477" "1478" "1479" "1480"
[1481] "1481" "1482" "1483" "1484" "1485" "1486" "1487" "1488" "1489" "1490"
[1491] "1491" "1492" "1493" "1494" "1495" "1496" "1497" "1498" "1499" "1500"
[1501] "1501" "1502" "1503" "1504" "1505" "1506" "1507" "1508" "1509" "1510"
[1511] "1511" "1512" "1513" "1514" "1515" "1516" "1517" "1518" "1519" "1520"
[1521] "1521" "1522" "1523" "1524" "1525" "1526" "1527" "1528" "1529" "1530"
[1531] "1531" "1532" "1533" "1534" "1535" "1536" "1537" "1538" "1539" "1540"
[1541] "1541" "1542" "1543" "1544" "1545" "1546" "1547" "1548" "1549" "1550"
[1551] "1551" "1552" "1553" "1554" "1555" "1556" "1557" "1558" "1559" "1560"
[1561] "1561" "1562" "1563" "1564" "1565" "1566" "1567" "1568" "1569" "1570"
[1571] "1571" "1572" "1573" "1574" "1575" "1576" "1577" "1578" "1579" "1580"
[1581] "1581" "1582" "1583" "1584" "1585" "1586" "1587" "1588" "1589" "1590"
[1591] "1591" "1592" "1593" "1594" "1595" "1596" "1597" "1598" "1599" "1600"
[1601] "1601" "1602" "1603" "1604" "1605" "1606" "1607" "1608" "1609" "1610"
[1611] "1611" "1612" "1613" "1614" "1615" "1616" "1617" "1618" "1619" "1620"
[1621] "1621" "1622" "1623" "1624" "1625" "1626" "1627" "1628" "1629" "1630"
[1631] "1631" "1632" "1633" "1634" "1635" "1636" "1637" "1638" "1639" "1640"
[1641] "1641" "1642" "1643" "1644" "1645" "1646" "1647" "1648" "1649" "1650"
[1651] "1651" "1652" "1653" "1654" "1655" "1656" "1657" "1658" "1659" "1660"
[1661] "1661" "1662" "1663" "1664" "1665" "1666" "1667" "1668" "1669" "1670"
[1671] "1671" "1672" "1673" "1674" "1675" "1676" "1677" "1678" "1679" "1680"
[1681] "1681" "1682" "1683" "1684" "1685" "1686" "1687" "1688" "1689" "1690"
[1691] "1691" "1692" "1693" "1694" "1695" "1696" "1697" "1698" "1699" "1700"
[1701] "1701" "1702" "1703" "1704" "1705" "1706" "1707" "1708" "1709" "1710"
[1711] "1711" "1712" "1713" "1714" "1715" "1716" "1717" "1718" "1719" "1720"
[1721] "1721" "1722" "1723" "1724" "1725" "1726" "1727" "1728" "1729" "1730"
[1731] "1731" "1732" "1733" "1734" "1735" "1736" "1737" "1738" "1739" "1740"
[1741] "1741" "1742" "1743" "1744" "1745" "1746" "1747" "1748" "1749" "1750"
[1751] "1751" "1752" "1753" "1754" "1755" "1756" "1757" "1758" "1759" "1760"
[1761] "1761" "1762" "1763" "1764" "1765" "1766" "1767" "1768" "1769" "1770"
[1771] "1771" "1772" "1773" "1774" "1775" "1776" "1777" "1778" "1779" "1780"
[1781] "1781" "1782" "1783" "1784" "1785" "1786" "1787" "1788" "1789" "1790"
[1791] "1791" "1792" "1793" "1794" "1795" "1796" "1797" "1798" "1799" "1800"
[1801] "1801" "1802" "1803" "1804" "1805" "1806" "1807" "1808" "1809" "1810"
[1811] "1811" "1812" "1813" "1814" "1815" "1816" "1817" "1818" "1819" "1820"
[1821] "1821" "1822" "1823" "1824" "1825" "1826" "1827" "1828" "1829" "1830"
[1831] "1831" "1832" "1833" "1834" "1835" "1836" "1837" "1838" "1839" "1840"
[1841] "1841" "1842" "1843" "1844" "1845" "1846" "1847" "1848" "1849" "1850"
[1851] "1851" "1852" "1853" "1854" "1855" "1856" "1857" "1858" "1859" "1860"
[1861] "1861" "1862" "1863" "1864" "1865" "1866" "1867" "1868" "1869" "1870"
[1871] "1871" "1872" "1873" "1874" "1875" "1876" "1877" "1878" "1879" "1880"
[1881] "1881" "1882" "1883" "1884" "1885" "1886" "1887" "1888" "1889" "1890"
[1891] "1891" "1892" "1893" "1894" "1895" "1896" "1897" "1898" "1899" "1900"
[1901] "1901" "1902" "1903" "1904" "1905" "1906" "1907" "1908" "1909" "1910"
[1911] "1911" "1912" "1913" "1914" "1915" "1916" "1917" "1918" "1919" "1920"
[1921] "1921" "1922" "1923" "1924" "1925" "1926" "1927" "1928" "1929" "1930"
[1931] "1931" "1932" "1933" "1934" "1935" "1936" "1937" "1938" "1939" "1940"
[1941] "1941" "1942" "1943" "1944" "1945" "1946" "1947" "1948" "1949" "1950"
[1951] "1951" "1952" "1953" "1954" "1955" "1956" "1957" "1958" "1959" "1960"
[1961] "1961" "1962" "1963" "1964" "1965" "1966" "1967" "1968" "1969" "1970"
[1971] "1971" "1972" "1973" "1974" "1975" "1976" "1977" "1978" "1979" "1980"
[1981] "1981" "1982" "1983" "1984" "1985" "1986" "1987" "1988" "1989" "1990"
[1991] "1991" "1992" "1993" "1994" "1995" "1996" "1997" "1998" "1999" "2000"
[2001] "2001" "2002" "2003" "2004" "2005" "2006" "2007" "2008" "2009" "2010"
[2011] "2011" "2012" "2013" "2014" "2015" "2016" "2017" "2018" "2019" "2020"
[2021] "2021" "2022" "2023" "2024" "2025" "2026" "2027" "2028" "2029" "2030"
[2031] "2031" "2032" "2033" "2034" "2035" "2036" "2037" "2038" "2039" "2040"
[2041] "2041" "2042" "2043" "2044" "2045" "2046" "2047" "2048" "2049" "2050"
[2051] "2051" "2052" "2053" "2054" "2055" "2056" "2057" "2058" "2059" "2060"
[2061] "2061" "2062" "2063" "2064" "2065" "2066" "2067" "2068" "2069" "2070"
[2071] "2071" "2072" "2073" "2074" "2075" "2076" "2077" "2078" "2079" "2080"
[2081] "2081" "2082" "2083" "2084" "2085" "2086" "2087" "2088" "2089" "2090"
[2091] "2091" "2092" "2093" "2094" "2095" "2096" "2097" "2098" "2099" "2100"
[2101] "2101" "2102" "2103" "2104" "2105" "2106" "2107" "2108" "2109" "2110"
[2111] "2111" "2112" "2113" "2114" "2115" "2116" "2117" "2118" "2119" "2120"
[2121] "2121" "2122" "2123" "2124" "2125" "2126" "2127" "2128" "2129" "2130"
[2131] "2131" "2132" "2133" "2134" "2135" "2136" "2137" "2138" "2139" "2140"
[2141] "2141" "2142" "2143" "2144" "2145" "2146" "2147" "2148" "2149" "2150"
[2151] "2151" "2152" "2153" "2154" "2155" "2156" "2157" "2158" "2159" "2160"
[2161] "2161" "2162" "2163" "2164" "2165" "2166" "2167" "2168" "2169" "2170"
[2171] "2171" "2172" "2173" "2174" "2175" "2176" "2177" "2178" "2179" "2180"
[2181] "2181" "2182" "2183" "2184" "2185" "2186" "2187" "2188" "2189" "2190"
[2191] "2191" "2192" "2193" "2194" "2195" "2196" "2197" "2198" "2199" "2200"
[2201] "2201" "2202" "2203" "2204" "2205" "2206" "2207" "2208" "2209" "2210"
[2211] "2211" "2212" "2213" "2214" "2215" "2216" "2217" "2218" "2219" "2220"
[2221] "2221" "2222" "2223" "2224" "2225" "2226" "2227" "2228" "2229" "2230"
[2231] "2231" "2232" "2233" "2234" "2235" "2236" "2237" "2238" "2239" "2240"
[2241] "2241" "2242" "2243" "2244" "2245" "2246" "2247" "2248" "2249" "2250"
[2251] "2251" "2252" "2253" "2254" "2255" "2256" "2257" "2258" "2259" "2260"
[2261] "2261" "2262" "2263" "2264" "2265" "2266" "2267" "2268" "2269" "2270"
[2271] "2271" "2272" "2273" "2274" "2275" "2276" "2277" "2278" "2279" "2280"
[2281] "2281" "2282" "2283" "2284" "2285" "2286" "2287" "2288" "2289" "2290"
[2291] "2291" "2292" "2293" "2294" "2295" "2296" "2297" "2298" "2299" "2300"
[2301] "2301" "2302" "2303" "2304" "2305" "2306" "2307" "2308" "2309" "2310"
[2311] "2311" "2312" "2313" "2314" "2315" "2316" "2317" "2318" "2319" "2320"
[2321] "2321" "2322" "2323" "2324" "2325" "2326" "2327" "2328" "2329" "2330"
[2331] "2331" "2332" "2333" "2334" "2335" "2336" "2337" "2338" "2339" "2340"
[2341] "2341" "2342" "2343" "2344" "2345" "2346" "2347" "2348" "2349" "2350"
[2351] "2351" "2352" "2353" "2354" "2355" "2356" "2357" "2358" "2359" "2360"
[2361] "2361" "2362" "2363" "2364" "2365" "2366" "2367" "2368" "2369" "2370"
[2371] "2371" "2372" "2373" "2374" "2375" "2376" "2377" "2378" "2379" "2380"
[2381] "2381" "2382" "2383" "2384" "2385" "2386" "2387" "2388" "2389" "2390"
[2391] "2391" "2392" "2393" "2394" "2395" "2396" "2397" "2398" "2399" "2400"
[2401] "2401" "2402" "2403" "2404" "2405" "2406" "2407" "2408" "2409" "2410"
[2411] "2411" "2412" "2413" "2414" "2415" "2416" "2417" "2418" "2419" "2420"
[2421] "2421" "2422" "2423" "2424" "2425" "2426" "2427" "2428" "2429" "2430"
[2431] "2431" "2432" "2433" "2434" "2435" "2436" "2437" "2438" "2439" "2440"
[2441] "2441" "2442" "2443" "2444" "2445" "2446" "2447" "2448" "2449" "2450"
[2451] "2451" "2452" "2453" "2454" "2455" "2456" "2457" "2458" "2459" "2460"
[2461] "2461" "2462" "2463" "2464" "2465" "2466" "2467" "2468" "2469" "2470"
[2471] "2471" "2472" "2473" "2474" "2475" "2476" "2477" "2478" "2479" "2480"
[2481] "2481" "2482" "2483" "2484" "2485" "2486" "2487" "2488" "2489" "2490"
[2491] "2491" "2492" "2493" "2494" "2495" "2496" "2497" "2498" "2499" "2500"
[2501] "2501" "2502" "2503" "2504" "2505" "2506" "2507" "2508" "2509" "2510"
[2511] "2511" "2512" "2513" "2514" "2515" "2516" "2517" "2518" "2519" "2520"
[2521] "2521" "2522" "2523" "2524" "2525" "2526" "2527" "2528" "2529" "2530"
[2531] "2531" "2532" "2533" "2534" "2535" "2536" "2537" "2538" "2539" "2540"
[2541] "2541" "2542" "2543" "2544" "2545" "2546" "2547" "2548" "2549" "2550"
[2551] "2551" "2552" "2553" "2554" "2555" "2556" "2557" "2558" "2559" "2560"
[2561] "2561" "2562" "2563" "2564" "2565" "2566" "2567" "2568" "2569" "2570"
[2571] "2571" "2572" "2573" "2574" "2575" "2576" "2577" "2578" "2579" "2580"
[2581] "2581" "2582" "2583" "2584" "2585" "2586" "2587" "2588" "2589" "2590"
[2591] "2591" "2592" "2593" "2594" "2595" "2596" "2597" "2598" "2599" "2600"
[2601] "2601" "2602" "2603" "2604" "2605" "2606" "2607" "2608" "2609" "2610"
[2611] "2611" "2612" "2613" "2614" "2615" "2616" "2617" "2618" "2619" "2620"
[2621] "2621" "2622" "2623" "2624" "2625" "2626" "2627" "2628" "2629" "2630"
[2631] "2631" "2632" "2633" "2634" "2635" "2636" "2637" "2638" "2639" "2640"
[2641] "2641" "2642" "2643" "2644" "2645" "2646" "2647" "2648" "2649" "2650"
[2651] "2651" "2652" "2653" "2654" "2655" "2656" "2657" "2658" "2659" "2660"
[2661] "2661" "2662" "2663" "2664" "2665" "2666" "2667" "2668" "2669" "2670"
[2671] "2671" "2672" "2673" "2674" "2675" "2676" "2677" "2678" "2679" "2680"
[2681] "2681" "2682" "2683" "2684" "2685" "2686" "2687" "2688" "2689" "2690"
[2691] "2691" "2692" "2693" "2694" "2695" "2696" "2697" "2698" "2699" "2700"
[2701] "2701" "2702" "2703" "2704" "2705" "2706" "2707" "2708" "2709" "2710"
[2711] "2711" "2712" "2713" "2714" "2715" "2716" "2717" "2718" "2719" "2720"
[2721] "2721" "2722" "2723" "2724" "2725" "2726" "2727" "2728" "2729" "2730"
[2731] "2731" "2732" "2733" "2734" "2735" "2736" "2737" "2738" "2739" "2740"
[2741] "2741" "2742" "2743" "2744" "2745" "2746" "2747" "2748" "2749" "2750"
[2751] "2751" "2752" "2753" "2754" "2755" "2756" "2757" "2758" "2759" "2760"
[2761] "2761" "2762" "2763" "2764" "2765" "2766" "2767" "2768" "2769" "2770"
[2771] "2771" "2772" "2773" "2774" "2775" "2776" "2777" "2778" "2779" "2780"
[2781] "2781" "2782" "2783" "2784" "2785" "2786" "2787" "2788" "2789" "2790"
[2791] "2791" "2792" "2793" "2794" "2795" "2796" "2797" "2798" "2799" "2800"
[2801] "2801" "2802" "2803" "2804" "2805" "2806" "2807" "2808" "2809" "2810"
[2811] "2811" "2812" "2813" "2814" "2815" "2816" "2817" "2818" "2819" "2820"
[2821] "2821" "2822" "2823" "2824" "2825" "2826" "2827" "2828" "2829" "2830"
[2831] "2831" "2832" "2833" "2834" "2835" "2836" "2837" "2838" "2839" "2840"
[2841] "2841" "2842" "2843" "2844" "2845" "2846" "2847" "2848" "2849" "2850"
[2851] "2851" "2852" "2853" "2854" "2855" "2856" "2857" "2858" "2859" "2860"
[2861] "2861" "2862" "2863" "2864" "2865" "2866" "2867" "2868" "2869" "2870"
[2871] "2871" "2872" "2873" "2874" "2875" "2876" "2877" "2878" "2879" "2880"
[2881] "2881" "2882" "2883" "2884" "2885" "2886" "2887" "2888" "2889" "2890"
[2891] "2891" "2892" "2893" "2894" "2895" "2896" "2897" "2898" "2899" "2900"
[2901] "2901" "2902" "2903" "2904" "2905" "2906" "2907" "2908" "2909" "2910"
[2911] "2911" "2912" "2913" "2914" "2915" "2916" "2917" "2918" "2919" "2920"
[2921] "2921" "2922" "2923" "2924" "2925" "2926" "2927" "2928" "2929" "2930"
[1] 2930 3
[1] 2930
[1] 3
railroad
3 Variables 2930 Observations
--------------------------------------------------------------------------------
state
n missing distinct
2930 0 53
lowest : AE AK AL AP AR, highest: VT WA WI WV WY
--------------------------------------------------------------------------------
county
n missing distinct
2930 0 1709
lowest : ABBEVILLE ACADIA ACCOMACK ADA ADAIR
highest: YOUNG YUBA YUMA ZAPATA ZAVALA
--------------------------------------------------------------------------------
total_employees
n missing distinct Info Mean Gmd .05 .10
2930 0 404 0.999 87.18 133.1 2.0 3.0
.25 .50 .75 .90 .95
7.0 21.0 65.0 193.0 357.5
lowest : 1 2 3 4 5, highest: 3249 3685 3797 4235 8207
--------------------------------------------------------------------------------
vars n mean sd median trimmed mad min max range
state* 1 2930 28.72 14.03 28.0 28.91 17.79 1 53 52
county* 2 2930 859.58 478.85 858.5 857.74 592.30 1 1709 1708
total_employees 3 2930 87.18 283.64 21.0 37.41 25.20 1 8207 8206
skew kurtosis se
state* 0.00 -1.15 0.26
county* 0.03 -1.11 8.85
total_employees 13.42 283.73 5.24
state county total_employees
TX : 221 WASHINGTON: 31 Min. : 1.00
GA : 152 JEFFERSON : 26 1st Qu.: 7.00
KY : 119 FRANKLIN : 24 Median : 21.00
MO : 115 LINCOLN : 24 Mean : 87.18
IL : 103 JACKSON : 22 3rd Qu.: 65.00
IA : 99 MADISON : 19 Max. :8207.00
(Other):2121 (Other) :2784
---
title: "Challenge 1"
author: "Akhilesh Kumar Meghwal"
desription: "Reading in data and creating a post"
date: "08/21/2022"
format:
html:
toc: true
code-fold: true
code-copy: true
code-tools: true
categories:
- challenge_1
---
```{r}
#| label: setup
#| warning: false
#| message: false
library(tidyverse)
library(Hmisc)
library(psych)
knitr::opts_chunk$set(echo = TRUE, warning=FALSE, message=FALSE)
```
## Challenge Overview
Today's challenge is to
1) read in a dataset, and
2) describe the dataset using both words and any supporting information (e.g., tables, etc)
## Read in the Data
Read in one (or more) of the following data sets, using the correct R package and command.
- railroad_2012_clean_county.csv ⭐
- birds.csv ⭐⭐
- FAOstat\*.csv ⭐⭐
- wild_bird_data.xlsx ⭐⭐⭐
- StateCounty2012.xlsx ⭐⭐⭐⭐
Find the `_data` folder, located inside the `posts` folder. Then you can read in the data, using either one of the `readr` standard tidy read commands, or a specialized package such as `readxl`.
```{r}
#
railroad <- read.csv('_data/railroad_2012_clean_county.csv', stringsAsFactors = TRUE, header = TRUE)
```
Add any comments or documentation as needed. More challenging data sets may require additional code chunks and documentation.
## Describe the data
Using a combination of words and results of R commands, can you provide a high level description of the data? Describe as efficiently as possible where/how the data was (likely) gathered, indicate the cases and variables (both the interpretation and any details you deem useful to the reader to fully understand your chosen data).
```{r}
#| label: summary
# check first 6 rows in the dataset, to get primary understading of the dataset structure
# check first 6 rows in the dataset, to get primary understanding of the dataframe structure
head(railroad)
View(railroad)
dim(railroad) # numbers of rows. columns
#Dataset Description
# "state" column contains name of different states from United States of America in upper case, abbreviated format
# "county" column contains names of different counties, for the states in 'state' column, in upper case format
# "total_employees" column contains state-county wise number of railroad employees.
# struture of railroad dataset
str(railroad)
# Output
# 'data.frame': 2930 obs. of 3 variables:
# $ state : Factor w/ 53 levels "AE","AK","AL",..: 1 2 2 2 2 2 2 3 3 3 ...
# $ county : Factor w/ 1709 levels "ABBEVILLE","ACADIA",..: 44 33 524 794 963 1415 1417 78 85 95 ...
# $ total_employees: int 2 7 2 3 2 1 88 102 143 1 ...
#summary
# railroad dataset has 2930 rows and 3 columns
# State column is a factor class; as converted from character class during file read command read.csv() and it has 53 levels.
# county column has 1709 levels
# Missing Values, check NA value
sum(is.na(railroad))
# check column wise NA values
sum(is.na(railroad$state))
sum(is.na(railroad$county))
sum(is.na(railroad$total_employees))
# Missing Value, check NULL value
sum(is.null(railroad))
# check column wise NULL values
sum(is.null(railroad$state))
sum(is.null(railroad$county))
sum(is.null(railroad$total_employees))
# column, row names of the dataset
colnames(railroad)
row.names(railroad)
# dimension of dataset
dim(railroad) # 2930 observations & 3 columns
# number of rows, number of columns
nrow(railroad)
ncol(railroad)
# Describe & Summary for descriptive analysis
#describe from Hmisc Package
Hmisc::describe(railroad)
#describe from psych Pakcage
psych::describe(railroad)
# summary
summary(railroad)
```