Code
library(tidyverse)
::opts_chunk$set(echo = TRUE, warning=FALSE, message=FALSE) knitr
Roy Yoon
August 15, 2022
Add any comments or documentation as needed. More challenging data sets may require additional code chunks and documentation.
# A tibble: 6 × 14
Domai…¹ Domain Area …² Area Eleme…³ Element Item …⁴ Item Year …⁵ Year Unit
<chr> <chr> <dbl> <chr> <dbl> <chr> <dbl> <chr> <dbl> <dbl> <chr>
1 QA Live … 2 Afgh… 5112 Stocks 1057 Chic… 1961 1961 1000…
2 QA Live … 2 Afgh… 5112 Stocks 1057 Chic… 1962 1962 1000…
3 QA Live … 2 Afgh… 5112 Stocks 1057 Chic… 1963 1963 1000…
4 QA Live … 2 Afgh… 5112 Stocks 1057 Chic… 1964 1964 1000…
5 QA Live … 2 Afgh… 5112 Stocks 1057 Chic… 1965 1965 1000…
6 QA Live … 2 Afgh… 5112 Stocks 1057 Chic… 1966 1966 1000…
# … with 3 more variables: Value <dbl>, Flag <chr>, `Flag Description` <chr>,
# and abbreviated variable names ¹`Domain Code`, ²`Area Code`,
# ³`Element Code`, ⁴`Item Code`, ⁵`Year Code`
# ℹ Use `colnames()` to see all variable names
There are 30977 rows and 14 column in the data set
# A tibble: 8,991 × 14
Domain Cod…¹ Domain Area …² Area Eleme…³ Element Item …⁴ Item Year …⁵ Year
<chr> <chr> <dbl> <chr> <dbl> <chr> <dbl> <chr> <dbl> <dbl>
1 QA Live … 2 Afgh… 5112 Stocks 1057 Chic… 2002 2002
2 QA Live … 2 Afgh… 5112 Stocks 1057 Chic… 2003 2003
3 QA Live … 2 Afgh… 5112 Stocks 1057 Chic… 2004 2004
4 QA Live … 2 Afgh… 5112 Stocks 1057 Chic… 2005 2005
5 QA Live … 2 Afgh… 5112 Stocks 1057 Chic… 2006 2006
6 QA Live … 2 Afgh… 5112 Stocks 1057 Chic… 2008 2008
7 QA Live … 2 Afgh… 5112 Stocks 1057 Chic… 2009 2009
8 QA Live … 2 Afgh… 5112 Stocks 1057 Chic… 2010 2010
9 QA Live … 2 Afgh… 5112 Stocks 1057 Chic… 2011 2011
10 QA Live … 2 Afgh… 5112 Stocks 1057 Chic… 2012 2012
# … with 8,981 more rows, 4 more variables: Unit <chr>, Value <dbl>,
# Flag <chr>, `Flag Description` <chr>, and abbreviated variable names
# ¹`Domain Code`, ²`Area Code`, ³`Element Code`, ⁴`Item Code`, ⁵`Year Code`
# ℹ Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names
# A tibble: 8,991 × 14
Domain Cod…¹ Domain Area …² Area Eleme…³ Element Item …⁴ Item Year …⁵ Year
<chr> <chr> <dbl> <chr> <dbl> <chr> <dbl> <chr> <dbl> <dbl>
1 QA Live … 211 Swit… 5112 Stocks 1057 Chic… 2013 2013
2 QA Live … 171 Phil… 5112 Stocks 1068 Ducks 2012 2012
3 QA Live … 138 Mexi… 5112 Stocks 1079 Turk… 1982 1982
4 QA Live … 115 Camb… 5112 Stocks 1057 Chic… 1994 1994
5 QA Live … 222 Tuni… 5112 Stocks 1079 Turk… 2012 2012
6 QA Live … 26 Brun… 5112 Stocks 1057 Chic… 2002 2002
7 QA Live … 49 Cuba 5112 Stocks 1057 Chic… 1965 1965
8 QA Live … 158 Niger 5112 Stocks 1057 Chic… 1990 1990
9 QA Live … 133 Mali 5112 Stocks 1057 Chic… 1961 1961
10 QA Live … 225 Unit… 5112 Stocks 1057 Chic… 1994 1994
# … with 8,981 more rows, 4 more variables: Unit <chr>, Value <dbl>,
# Flag <chr>, `Flag Description` <chr>, and abbreviated variable names
# ¹`Domain Code`, ²`Area Code`, ³`Element Code`, ⁴`Item Code`, ⁵`Year Code`
# ℹ Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names
The data above shows ‘birds’ for if the Value column was greater than 10000. The data is arranged by the ‘Value’ column values.
# A tibble: 54 × 14
Domain Cod…¹ Domain Area …² Area Eleme…³ Element Item …⁴ Item Year …⁵ Year
<chr> <chr> <dbl> <chr> <dbl> <chr> <dbl> <chr> <dbl> <dbl>
1 QA Live … 4 Alge… 5112 Stocks 1057 Chic… 1965 1965
2 QA Live … 4 Alge… 5112 Stocks 1057 Chic… 1966 1966
3 QA Live … 4 Alge… 5112 Stocks 1057 Chic… 1967 1967
4 QA Live … 4 Alge… 5112 Stocks 1057 Chic… 1968 1968
5 QA Live … 4 Alge… 5112 Stocks 1057 Chic… 1969 1969
6 QA Live … 4 Alge… 5112 Stocks 1057 Chic… 1970 1970
7 QA Live … 4 Alge… 5112 Stocks 1057 Chic… 1971 1971
8 QA Live … 4 Alge… 5112 Stocks 1057 Chic… 1972 1972
9 QA Live … 4 Alge… 5112 Stocks 1057 Chic… 1973 1973
10 QA Live … 4 Alge… 5112 Stocks 1057 Chic… 1974 1974
# … with 44 more rows, 4 more variables: Unit <chr>, Value <dbl>, Flag <chr>,
# `Flag Description` <chr>, and abbreviated variable names ¹`Domain Code`,
# ²`Area Code`, ³`Element Code`, ⁴`Item Code`, ⁵`Year Code`
# ℹ Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names
The data above examines the data for Algeria by looking at ‘birds’ data set that haa values greater than 10000.
---
title: "Challenge 1 Roy Yoon"
author: "Roy Yoon"
desription: "Reading in data and creating a post"
date: "08/15/2022"
format:
html:
toc: true
code-fold: true
code-copy: true
code-tools: true
categories:
- challenge_1
- birds.csv
- submission 2
---
```{r}
#| label: setup
#| warning: false
#| message: false
library(tidyverse)
knitr::opts_chunk$set(echo = TRUE, warning=FALSE, message=FALSE)
```
## Reading Data
```{r reading data file}
library(readr)
birds <- read_csv("_data/birds.csv")
```
Add any comments or documentation as needed. More challenging data sets may require additional code chunks and documentation.
## A Quick Look at 'birds'
```{r}
head(birds)
```
## Dimensions
```{r data dimension}
#| label: summary
#understanding the dimensions of data set 'birds'
dim(birds)
```
## Column Names
There are 30977 rows and 14 column in the data set
```{r column names}
#column names in data set 'birds'
colnames(birds)
```
## Cases when 'birds' data 'Value' is greater then 10000
```{r Value greater than 10000}
#looking at 'birds' data set that has 'Value' column value greater than 10000
more_than_10000 <- filter(birds, Value > 10000)
more_than_10000
arrange(more_than_10000, Value)
```
The data above shows 'birds' for if the Value column was greater than 10000. The data is arranged by the 'Value' column values.
## Data for Algeria in 'bird'
```{r Algeria Data}
#looking at 'birds' data set that has 'Value' column value greater than 10000 specifically for Algeria
more_than_10000_ALG <- filter(more_than_10000, Area == "Algeria")
more_than_10000_ALG
```
The data above examines the data for Algeria by looking at 'birds' data set that haa values greater than 10000.