library(tidyverse)
library(ggplot2)
library(summarytools)
::opts_chunk$set(echo = TRUE, warning=FALSE, message=FALSE) knitr
Challenge 5 - Adithya Parupudi
challenge_5
ggplot
australian_marriage
Introduction to Visualization
Read in data
We are choosing the australian marriages dataset
<- read_csv('_data/australian_marriage_tidy.csv') australia
Briefly describe the data
Tidy Data (as needed)
Dataset is already tidy
head(australia)
# A tibble: 6 × 4
territory resp count percent
<chr> <chr> <dbl> <dbl>
1 New South Wales yes 2374362 57.8
2 New South Wales no 1736838 42.2
3 Victoria yes 2145629 64.9
4 Victoria no 1161098 35.1
5 Queensland yes 1487060 60.7
6 Queensland no 961015 39.3
Univariate Visualizations
This is plotted against count vs percent, which is grouped by territory
%>%
australia group_by(territory) %>%
ggplot(aes(count,percent, color=resp)) +
geom_point(size=2,alpha=0.5) +
geom_line(color='black') +
facet_wrap(~resp, nrow=1) +
labs(title='Australian Marriages') +
theme_bw()
Bivariate Visualization(s)
NA