Homework 4

Week 4 Assignment: Network Status.

Yifan Li (Department of Sociology, UMass Amherst)
2022-02-17
[1] FALSE
[1] TRUE
[1] TRUE

The original dataset is the trade dataset version 4 from the Correlates of War Project. In this subject I only use trade data of year 2014. The format is edgelist. The nodes are countries, and the ties are the trading relations between countries in 2014. The network is directed and weighted.

Let’s look at some basic descriptive facts.

[1] 186
[1] 22451
[1] 241.4086
[1] 0.6524557
    Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
     0.0      0.2      4.9    813.1     78.5 472525.2 

The network in 2014 has 186 nodes, i.e. 186 countries involed in the trading network. There are 22451 egdes. Each country has 241 connected edges on average. On average, one country import 813 million dollars of good from another country each year. 65% of potential ties exit.

Let’s classify all dyads and traids in the network:

$mut
[1] 9933

$asym
[1] 2585

$null
[1] 4687
 [1]  75574  62420  92513  11021   9514  11233  60137  45246   5530
[10]    788 188669  14094   9006  15882 147383 306230
[1] 0.07161783
[1] 0.3484117
[1] 1

There are 9933 mutual bilateral trade relations, 2585 unilateral trade relations, and 4687 pairs of coutries have no trading in 2014.

7% of the triads are empty, and 65% of them are triangle. The network is quite dense.

Let’s look at the distribution of nodes centrality.

The betweenness centrality and reflected centrality are right-skewed as expected. Limited coutries locate at the central bridging positions. But the bonachic-power and closeness show nearly normal distribution, and the eigenvector centrality and deprived centrality are highly left-skewed, which might show a decentralized network. The deprived centrality contribute to largest part of eigenvector centrality. Every country kind of plays as bridge in the network.

                      name short_name ccode closeness betweenness
1                    China        CHN   710 0.9946237    316.8033
2 United States of America        USA     2 0.9788360    306.0056
3              South Korea        ROK   732 0.9840426    304.6967
4                Australia        AUL   900 0.9788360    294.1315
5                    India        IND   750 0.9893048    224.8866
       eigen     bonpow         rc    eigen.rc        dc   eigen.dc
1 0.09697295 -1.2742959 0.18197333 0.017646489 0.8180267 0.07932646
2 0.09703836 -1.0694386 0.19337928 0.018765208 0.8066207 0.07827315
3 0.09650158 -1.1175464 0.07623579 0.007356874 0.9237642 0.08914470
4 0.09535200 -0.8813261 0.04057029 0.003868458 0.9594297 0.09148354
5 0.09695131 -1.1636487 0.02262084 0.002193121 0.9773792 0.09475819
                    name short_name ccode closeness betweenness
1 Bosnia and Herzegovina        BOS   346 0.6271186    2.042703
2           Saudi Arabia        SAU   670 0.8726415   83.004276
3               Zimbabwe        ZIM   552 0.6902985   26.360045
4     Dominican Republic        DOM    42 0.8258929   56.408439
5               Malaysia        MAL   820 0.9487179  199.363801
       eigen    bonpow           rc     eigen.rc        dc   eigen.dc
1 0.05841333 0.6260723 0.0014683688 8.577231e-05 0.9985316 0.05832756
2 0.08701319 0.5455796 0.0317620070 2.763714e-03 0.9682380 0.08424948
3 0.07643869 0.5220134 0.0004566747 3.490762e-05 0.9995433 0.07640378
4 0.07625539 0.4349504 0.0020462397 1.560368e-04 0.9979538 0.07609935
5 0.09645108 0.4242820 0.0301872862 2.911596e-03 0.9698127 0.09353948
            name short_name ccode closeness betweenness      eigen
1          China        CHN   710 0.9946237    316.8033 0.09697295
2 United Kingdom        UKG   200 0.9893048    224.4011 0.09698944
3         France        FRN   220 0.9893048    217.5927 0.09701673
4          India        IND   750 0.9893048    224.8866 0.09695131
5    Netherlands        NTH   210 0.9840426    213.0323 0.09701673
     bonpow         rc    eigen.rc        dc   eigen.dc
1 -1.274296 0.18197333 0.017646489 0.8180267 0.07932646
2 -1.000833 0.03264763 0.003166476 0.9673524 0.09382296
3 -1.371359 0.04966972 0.004818793 0.9503303 0.09219793
4 -1.163649 0.02262084 0.002193121 0.9773792 0.09475819
5 -1.315812 0.10053860 0.009753925 0.8994614 0.08726280
                      name short_name ccode closeness betweenness
1 United States of America        USA     2 0.9788360    306.0056
2              Netherlands        NTH   210 0.9840426    213.0323
3                   France        FRN   220 0.9893048    217.5927
4                  Denmark        DEN   390 0.9536082    186.4211
5                    Spain        SPN   230 0.9536082    187.3443
       eigen     bonpow          rc     eigen.rc        dc   eigen.dc
1 0.09703836 -1.0694386 0.193379284 0.0187652082 0.8066207 0.07827315
2 0.09701673 -1.3158118 0.100538595 0.0097539253 0.8994614 0.08726280
3 0.09701673 -1.3713593 0.049669717 0.0048187933 0.9503303 0.09219793
4 0.09701673 -0.7065288 0.009933439 0.0009637097 0.9900666 0.09605302
5 0.09701673 -0.5716878 0.031197741 0.0030267026 0.9688023 0.09399002
          name short_name ccode closeness betweenness      eigen
1      Finland        FIN   375 0.8809524    141.8394 0.09667270
2      Denmark        DEN   390 0.9536082    186.4211 0.09701673
3       Turkey        TUR   640 0.9840426    208.8803 0.09679966
4       Sweden        SWD   380 0.9788360    205.9708 0.09677237
5 South Africa        SAF   560 0.9736842    200.3019 0.09685164
      bonpow          rc     eigen.rc        dc   eigen.dc
1  0.1099607 0.006087120 0.0005884583 0.9939129 0.09608424
2 -0.7065288 0.009933439 0.0009637097 0.9900666 0.09605302
3 -1.6759857 0.011984440 0.0011600897 0.9880156 0.09563957
4 -1.1753454 0.013861294 0.0013413903 0.9861387 0.09543098
5 -1.2631864 0.017108054 0.0016569431 0.9828919 0.09519470
                      name short_name ccode closeness betweenness
1 United States of America        USA     2 0.9788360    306.0056
2                    China        CHN   710 0.9946237    316.8033
3                   Canada        CAN    20 0.9788360    192.3823
4              Netherlands        NTH   210 0.9840426    213.0323
5                  Germany        GMY   255 0.9840426    219.4348
       eigen     bonpow        rc    eigen.rc        dc   eigen.dc
1 0.09703836 -1.0694386 0.1933793 0.018765208 0.8066207 0.07827315
2 0.09697295 -1.2742959 0.1819733 0.017646489 0.8180267 0.07932646
3 0.09672468 -1.3044404 0.1339702 0.012958227 0.8660298 0.08376646
4 0.09701673 -1.3158118 0.1005386 0.009753925 0.8994614 0.08726280
5 0.09689933 -0.6890218 0.1000104 0.009690938 0.8999896 0.08720839

Among these countries, China has the highest betweenness and closeness centrality. Bosnia and Herzegovina has the highest bonachic-power. The US gets the highest deprived centrality and eigenvector centrality. The Finland has the highest reflected centrality. On the top 5 lits of betweenness, closeness, deprived and eigenvector centrality, all we see are familiar trading powerhouses. But the list of bonachic-power has many unexpected country on the list. I don’t really understand what bonachic-power presents so don’t know how to interpret this outcome.

         term closeness eigen betweenness eigen.dc eigen.rc bonpow
1   closeness             .91         .91      .89      .51   -.02
2       eigen       .91               .79      .99      .41    .01
3 betweenness       .91   .79                  .74      .66   -.04
4    eigen.dc       .89   .99         .74               .31    .02
5    eigen.rc       .51   .41         .66      .31            -.07
6      bonpow      -.02   .01        -.04      .02     -.07       

Closeness, betweeness, eigenvector centrality are highly corralled. They are interchangeable measures of centrality. The reflected centrality is less correlated with those parameters, but it’s a small part compared with the deprived one. Bonachic-power is almost independent with other parameters.

Reuse

Text and figures are licensed under Creative Commons Attribution CC BY-NC 4.0. The figures that have been reused from other sources don't fall under this license and can be recognized by a note in their caption: "Figure from ...".

Citation

For attribution, please cite this work as

Li (2022, Feb. 17). Data Analytics and Computational Social Science: Homework 4. Retrieved from https://github.com/DACSS/dacss_course_website/posts/httpsyli210813githubiosocialnetworkanalysishw4/

BibTeX citation

@misc{li2022homework,
  author = {Li, Yifan},
  title = {Data Analytics and Computational Social Science: Homework 4},
  url = {https://github.com/DACSS/dacss_course_website/posts/httpsyli210813githubiosocialnetworkanalysishw4/},
  year = {2022}
}