Final Project Network Analysis: Ukraine Russia War Wheat Supply Chain Disruption

Network Analysis: Ukraine Russia War Wheat Supply Chain Disruption
Author

Akhilesh Kumar Meghwal

Published

May 22, 2023

Code
library(scales)
library(igraph)

Attaching package: 'igraph'
The following objects are masked from 'package:stats':

    decompose, spectrum
The following object is masked from 'package:base':

    union
Code
library(tidyr)

Attaching package: 'tidyr'
The following object is masked from 'package:igraph':

    crossing
Code
library(network)
Warning: package 'network' was built under R version 4.2.3

'network' 1.18.1 (2023-01-24), part of the Statnet Project
* 'news(package="network")' for changes since last version
* 'citation("network")' for citation information
* 'https://statnet.org' for help, support, and other information

Attaching package: 'network'
The following objects are masked from 'package:igraph':

    %c%, %s%, add.edges, add.vertices, delete.edges, delete.vertices,
    get.edge.attribute, get.edges, get.vertex.attribute, is.bipartite,
    is.directed, list.edge.attributes, list.vertex.attributes,
    set.edge.attribute, set.vertex.attribute
Code
library(tibble)

Attaching package: 'tibble'
The following object is masked from 'package:igraph':

    as_data_frame
Code
library(ggplot2)
library(ergm)
Warning: package 'ergm' was built under R version 4.2.3

'ergm' 4.4.0 (2023-01-26), part of the Statnet Project
* 'news(package="ergm")' for changes since last version
* 'citation("ergm")' for citation information
* 'https://statnet.org' for help, support, and other information
'ergm' 4 is a major update that introduces some backwards-incompatible
changes. Please type 'news(package="ergm")' for a list of major
changes.
Code
library(ergm.count)
Warning: package 'ergm.count' was built under R version 4.2.3

'ergm.count' 4.1.1 (2022-05-24), part of the Statnet Project
* 'news(package="ergm.count")' for changes since last version
* 'citation("ergm.count")' for citation information
* 'https://statnet.org' for help, support, and other information
Code
library(statnet)
Warning: package 'statnet' was built under R version 4.2.3
Loading required package: tergm
Warning: package 'tergm' was built under R version 4.2.3
Loading required package: networkDynamic
Warning: package 'networkDynamic' was built under R version 4.2.3

'networkDynamic' 0.11.3 (2023-02-15), part of the Statnet Project
* 'news(package="networkDynamic")' for changes since last version
* 'citation("networkDynamic")' for citation information
* 'https://statnet.org' for help, support, and other information
Registered S3 method overwritten by 'tergm':
  method                   from
  simulate_formula.network ergm

'tergm' 4.1.1 (2022-11-07), part of the Statnet Project
* 'news(package="tergm")' for changes since last version
* 'citation("tergm")' for citation information
* 'https://statnet.org' for help, support, and other information

Attaching package: 'tergm'
The following object is masked from 'package:ergm':

    snctrl
Loading required package: sna
Loading required package: statnet.common

Attaching package: 'statnet.common'
The following object is masked from 'package:ergm':

    snctrl
The following objects are masked from 'package:base':

    attr, order
sna: Tools for Social Network Analysis
Version 2.7-1 created on 2023-01-24.
copyright (c) 2005, Carter T. Butts, University of California-Irvine
 For citation information, type citation("sna").
 Type help(package="sna") to get started.

Attaching package: 'sna'
The following objects are masked from 'package:igraph':

    betweenness, bonpow, closeness, components, degree, dyad.census,
    evcent, hierarchy, is.connected, neighborhood, triad.census
Loading required package: tsna
Warning: package 'tsna' was built under R version 4.2.3

'statnet' 2019.6 (2019-06-13), part of the Statnet Project
* 'news(package="statnet")' for changes since last version
* 'citation("statnet")' for citation information
* 'https://statnet.org' for help, support, and other information
unable to reach CRAN
Code
library(dplyr)

Attaching package: 'dplyr'
The following objects are masked from 'package:igraph':

    as_data_frame, groups, union
The following objects are masked from 'package:stats':

    filter, lag
The following objects are masked from 'package:base':

    intersect, setdiff, setequal, union

Introduction

I have conducted an extensive analysis of wheat trade data from 2015 to 2022, focusing on countries involved in wheat trade with Ukraine. The main objective was to examine the trade relationships and dynamics between Ukraine and its trading partners during this specific time period. To achieve this, I created a trade network matrix consisting of 209 countries that have trade relations with countries trading with Ukraine, allowing us to observe changes in international trade.

The International Trade Data I acquired, specifically focusing on the trade of Wheat under the Harmonized System Code (HSCode) 1001, required a laborious and time-consuming data extraction process from a designated website. To ensure a comprehensive analysis, I performed numerous iterations and queries to gather country-specific import and export data for the selected HS Code. With over 250 countries in the dataset, extracting data separately for imports and exports necessitated running the download process over 500 times.

While I also collected trade data for Natural Gas (HS-Code: 2709) and Crude Oil (HS-Code: 2711), due to time constraints, my current analysis is solely dedicated to the trade of Wheat.

The trade data includes all the countries that engaged in wheat import and export activities with the countries trading with Ukraine between 2015 and 2022. This comprehensive dataset enables an in-depth analysis of the trade changes resulting from the ongoing conflict. By examining the trade relationships within this context, we can gain valuable insights into the impact of the war on international trade dynamics.

The analysis focuses on assessing the repercussions of the conflict on the Wheat supply chain, including fluctuations in export volumes, changes in trade patterns, and the potential influence on global wheat prices. By shedding light on these dynamics, the aim is to achieve a comprehensive understanding of the broader implications of the Ukraine and Russia war on the global Wheat market. Additionally, the analysis will identify potential challenges and opportunities that may arise as a result of the conflict.

Through meticulous examination of the data, the objective is to extract valuable insights and conduct a comprehensive analysis of various aspects related to the trade of Wheat. This includes exploring patterns, identifying trends, and investigating country-specific information pertaining to Wheat imports and exports. The aim is to uncover significant findings that will allow for meaningful conclusions and contribute to our understanding of the global Wheat market and its dynamic nature.

The findings contribute to a deeper understanding of Ukraine’s international trade and provide valuable information for policymakers, economists, and businesses interested in the country’s trade dynamics. The analysis emphasizes the importance of considering specific country relationships and time periods when studying trade flows, as it allows for a more targeted and insightful analysis.

Furthermore, there is a particular interest in assessing the impact of the supply chain disruption caused by the ongoing conflict between Ukraine and Russia. Notably, as of the 2022/2023 marketing year, Ukraine ranked as the fifth-largest exporter of wheat worldwide, with total exports surpassing 13.5 million metric tons, accounting for approximately nine percent of the global wheat trade share. Delving deeper into the trade data will evaluate the repercussions of the conflict on the Wheat supply chain, examining fluctuations in export volumes, changes in trade patterns, and the potential influence on global wheat prices. The objective is to gain a comprehensive understanding of the broader implications of the Ukraine and Russia war on the global Wheat market while identifying potential challenges and opportunities that may arise as a result.

The objective is to conduct an in-depth analysis of the trade data to evaluate the specific changes and impacts on trade patterns and volumes resulting from the ongoing conflict between Ukraine and Russia. This analysis will contribute to a comprehensive understanding of the trade dynamics within the global Wheat market during this turbulent period.

Hypothesis

The ongoing Ukraine and Russia conflict has likely disrupted the global wheat supply chain, leading to changes in trade patterns, fluctuations in export volumes, and potential influences on wheat prices.

Load Data, and Identify Trading Countries

Determine the countries that are directly involved in wheat trade with Ukraine (importing from Ukraine). These countries are likely to have been most affected by the conflict.

Identify high, normal, low trade countries primarily based on quantile distribution of consolidated and yearly trade volume

Code
library(tidyr)

# List of years
years <- 2015:2022

# Empty list to store countries where Ukraine exported goods
export_countries <- list()

# Empty data frame to store consolidated export data
consolidated_export <- data.frame(country = character(), export = numeric(), year = integer(), stringsAsFactors = FALSE)

# Loop through each year
for (year in years) {
  # Read the CSV file for the current year
  file_path <- paste0("C:/social network project/project data/1001/Unform Data/Merged/", year, ".csv")
  data <- read.csv(file_path, header = TRUE, row.names = 1)

  # Extract the row corresponding to Ukraine's exports
  ukraine_exports <- data["Ukraine", ]
  current_export <- ukraine_exports %>% 
    pivot_longer(cols = everything(), names_to = "country", values_to = "export")
  current_export <- current_export[current_export$export > 0, ]

  # Add year
  current_export$year <- year
  
  # Append the export data to the consolidated export data frame
  consolidated_export <- rbind(consolidated_export, current_export)

  # Add the export countries for the current year to the list
  export_countries[[as.character(year)]] <- current_export$country
}

# Combine the export countries from all years into a single list
all_export_countries <- unique(unlist(export_countries))

# Print the list of countries where Ukraine exported goods starting from 2015
cat("List of countries where Ukraine exported goods from 2015 to 2022:\n")
List of countries where Ukraine exported goods from 2015 to 2022:
Code
print(all_export_countries)
  [1] "Algeria"                  "Armenia"                 
  [3] "Austria"                  "Azerbaijan"              
  [5] "Bahrain"                  "Bangladesh"              
  [7] "Belarus"                  "British_Virgin_Islands"  
  [9] "Bulgaria"                 "Burundi"                 
 [11] "Canada"                   "Congo_DR"                
 [13] "Czech_Republic"           "Djibouti"                
 [15] "Ecuador"                  "Egypt"                   
 [17] "Estonia"                  "Eswatini"                
 [19] "Ethiopia"                 "France"                  
 [21] "Georgia"                  "Germany"                 
 [23] "Ghana"                    "Greece"                  
 [25] "Hongkong"                 "Hungary"                 
 [27] "India"                    "Indonesia"               
 [29] "Iran"                     "Israel"                  
 [31] "Italy"                    "Japan"                   
 [33] "Jordan"                   "Kenya"                   
 [35] "Lebanon"                  "Libya"                   
 [37] "Lithuania"                "Malawi"                  
 [39] "Malaysia"                 "Malta"                   
 [41] "Marshall_Islands"         "Mauritania"              
 [43] "Mexico"                   "Moldova"                 
 [45] "Morocco"                  "Mozambique"              
 [47] "Myanmar"                  "Namibia"                 
 [49] "Netherlands"              "New_Zealand"             
 [51] "Oman"                     "Pakistan"                
 [53] "Panama"                   "Philippines"             
 [55] "Poland"                   "Romania"                 
 [57] "Russia"                   "Rwanda"                  
 [59] "Singapore"                "South_Africa"            
 [61] "South_Korea"              "Spain"                   
 [63] "Sudan"                    "Switzerland"             
 [65] "Syria"                    "Taipei_Chinese"          
 [67] "Tanzania"                 "Thailand"                
 [69] "Tunisia"                  "Turkey"                  
 [71] "Uganda"                   "United_Arab_Emirates"    
 [73] "United_Kingdom"           "United_States_of_America"
 [75] "Viet_Nam"                 "Yemen"                   
 [77] "Zambia"                   "Zimbabwe"                
 [79] "Albania"                  "Botswana"                
 [81] "Cambodia"                 "Cyprus"                  
 [83] "Kuwait"                   "Mali"                    
 [85] "Nepal"                    "Nigeria"                 
 [87] "North_Korea"              "Norway"                  
 [89] "Qatar"                    "Saudi_Arabia"            
 [91] "Senegal"                  "Somalia"                 
 [93] "Sri_Lanka"                "China"                   
 [95] "Denmark"                  "Haiti"                   
 [97] "Ivory_Coast"              "Kazakhstan"              
 [99] "Latvia"                   "Palestine"               
[101] "Portugal"                 "Slovenia"                
[103] "Burkina_Faso"             "Congo"                   
[105] "Gambia"                   "Guinea"                  
[107] "New_Caledonia"            "Angola"                  
[109] "Eritrea"                  "Iraq"                    
[111] "Ireland"                  "Laos"                    
[113] "Benin"                    "Serbia"                  
[115] "Cameroon"                 "Colombia"                
[117] "Gabon"                    "Madagascar"              
[119] "Belgium"                  "Slovakia"                
Code
# Aggregate the export volumes by country
country_trade <- aggregate(export ~ country, data = consolidated_export, FUN = sum)

# Sort the trade data in descending order
sorted_trade <- country_trade[order(country_trade$export, decreasing = TRUE), ]

# Calculate quartiles for trade intensity
quartiles <- quantile(sorted_trade$export, probs = c(0, 0.25, 0.75, 1))

# Create a new column for trade intensity category
sorted_trade$trade_intensity <- cut(sorted_trade$export, breaks = quartiles, labels = c("Low Intensity Trade", "Normal Intensity Trade", "High Intensity Trade"), include.lowest = TRUE)

# Create an empty list to store the sorted trade data frames for each year
sorted_trade_list <- list()

# Iterate over each year
for (year in years) {
  # Subset the data for the current year
  trade_data <- consolidated_export[consolidated_export$year == year, ]
  trade_data <- trade_data[c("country", "export")]

  # Sort the trade data in descending order
  sorted_trade_year <- trade_data[order(trade_data$export, decreasing = TRUE), ]
  
  # Calculate quartiles for trade intensity
  quartiles <- quantile(sorted_trade_year$export, probs = c(0, 0.25, 0.75, 1))
  
  # Create a new column for trade intensity category
  sorted_trade_year$trade_intensity <- cut(sorted_trade_year$export, breaks = quartiles, labels = c("Low Intensity Trade", "Normal Intensity Trade", "High Intensity Trade"), include.lowest = TRUE)
  
  # Store the sorted trade data frame in the list
  sorted_trade_list[[as.character(year)]] <- sorted_trade_year
}

# Count the number of countries in each cluster
cluster_counts <- table(sorted_trade$trade_intensity)

# Create a data frame from the cluster counts
cluster_counts_df <- data.frame(cluster = names(cluster_counts),
                                count = as.integer(cluster_counts),
                                stringsAsFactors = FALSE)

# Print the sorted and clustered trade data with boundaries


cat("List of Countries (2015-2022) with Consolidated Trade and Trade Intensity\n")
List of Countries (2015-2022) with Consolidated Trade and Trade Intensity
Code
# Iterate over the rows in the sorted_trade data frame
for (i in 1:nrow(sorted_trade)) {
  # Format the country, export, and trade_intensity values
  country <- sprintf("%-20s", sorted_trade$country[i])
  export <- sprintf("%-10s", sorted_trade$export[i])
  intensity <- sprintf("%-15s", sorted_trade$trade_intensity[i])
  
  # Print the formatted values
  cat(country, export, intensity, "\n")
}
Egypt                4114034    High Intensity Trade 
Indonesia            4026037    High Intensity Trade 
Turkey               1882295    High Intensity Trade 
Bangladesh           1816767    High Intensity Trade 
Thailand             1546864    High Intensity Trade 
Morocco              1428930    High Intensity Trade 
Philippines          1372188    High Intensity Trade 
Tunisia              1234391    High Intensity Trade 
Ethiopia             1130371    High Intensity Trade 
South_Korea          1123809    High Intensity Trade 
Spain                1103511    High Intensity Trade 
India                827355     High Intensity Trade 
Pakistan             783178     High Intensity Trade 
Israel               679710     High Intensity Trade 
Lebanon              623856     High Intensity Trade 
Nigeria              617102     High Intensity Trade 
Italy                599523     High Intensity Trade 
Yemen                596393     High Intensity Trade 
Libya                593330     High Intensity Trade 
Kenya                296634     High Intensity Trade 
Mexico               283594     High Intensity Trade 
Malaysia             271527     High Intensity Trade 
Mauritania           255010     High Intensity Trade 
Saudi_Arabia         192361     High Intensity Trade 
Djibouti             189422     High Intensity Trade 
Jordan               168341     High Intensity Trade 
Greece               157630     High Intensity Trade 
Netherlands          152805     High Intensity Trade 
Romania              150400     High Intensity Trade 
Viet_Nam             148458     High Intensity Trade 
Poland               138274     Normal Intensity Trade 
Uganda               137756     Normal Intensity Trade 
South_Africa         130162     Normal Intensity Trade 
Sudan                115005     Normal Intensity Trade 
Algeria              105366     Normal Intensity Trade 
Tanzania             86885      Normal Intensity Trade 
Oman                 82838      Normal Intensity Trade 
Senegal              80349      Normal Intensity Trade 
United_Arab_Emirates 78838      Normal Intensity Trade 
United_Kingdom       72349      Normal Intensity Trade 
Japan                68486      Normal Intensity Trade 
Sri_Lanka            67948      Normal Intensity Trade 
Syria                65381      Normal Intensity Trade 
Mozambique           62892      Normal Intensity Trade 
Hungary              52876      Normal Intensity Trade 
Germany              51071      Normal Intensity Trade 
Iran                 48893      Normal Intensity Trade 
Myanmar              48210      Normal Intensity Trade 
Zimbabwe             39223      Normal Intensity Trade 
Ivory_Coast          34341      Normal Intensity Trade 
Russia               33684      Normal Intensity Trade 
Switzerland          30355      Normal Intensity Trade 
Mali                 26519      Normal Intensity Trade 
Somalia              23251      Normal Intensity Trade 
Congo_DR             21977      Normal Intensity Trade 
Qatar                21783      Normal Intensity Trade 
Ecuador              21760      Normal Intensity Trade 
Slovakia             20340      Normal Intensity Trade 
Azerbaijan           17972      Normal Intensity Trade 
Portugal             16694      Normal Intensity Trade 
Albania              14213      Normal Intensity Trade 
Cyprus               13643      Normal Intensity Trade 
Ghana                13388      Normal Intensity Trade 
Madagascar           13143      Normal Intensity Trade 
Lithuania            12420      Normal Intensity Trade 
Angola               11845      Normal Intensity Trade 
Singapore            11621      Normal Intensity Trade 
Austria              10684      Normal Intensity Trade 
Cameroon             10469      Normal Intensity Trade 
Belarus              10403      Normal Intensity Trade 
Malawi               10021      Normal Intensity Trade 
Malta                9735       Normal Intensity Trade 
Taipei_Chinese       9521       Normal Intensity Trade 
Slovenia             8951       Normal Intensity Trade 
Eritrea              7509       Normal Intensity Trade 
Bulgaria             7443       Normal Intensity Trade 
Zambia               6892       Normal Intensity Trade 
Palestine            6819       Normal Intensity Trade 
Ireland              6762       Normal Intensity Trade 
Denmark              6526       Normal Intensity Trade 
Guinea               6485       Normal Intensity Trade 
Namibia              6286       Normal Intensity Trade 
France               6168       Normal Intensity Trade 
Georgia              5825       Normal Intensity Trade 
Colombia             5688       Normal Intensity Trade 
Gambia               4746       Normal Intensity Trade 
Burkina_Faso         4409       Normal Intensity Trade 
Armenia              4155       Normal Intensity Trade 
China                4118       Normal Intensity Trade 
Latvia               3043       Normal Intensity Trade 
Moldova              2782       Low Intensity Trade 
Nepal                2692       Low Intensity Trade 
Burundi              1814       Low Intensity Trade 
Norway               1774       Low Intensity Trade 
New_Caledonia        1732       Low Intensity Trade 
Botswana             1495       Low Intensity Trade 
Cambodia             1404       Low Intensity Trade 
Czech_Republic       1276       Low Intensity Trade 
Gabon                1059       Low Intensity Trade 
Laos                 996        Low Intensity Trade 
British_Virgin_Islands 581        Low Intensity Trade 
Estonia              577        Low Intensity Trade 
Eswatini             572        Low Intensity Trade 
North_Korea          365        Low Intensity Trade 
Kuwait               364        Low Intensity Trade 
Panama               349        Low Intensity Trade 
Kazakhstan           317        Low Intensity Trade 
Canada               315        Low Intensity Trade 
Hongkong             312        Low Intensity Trade 
New_Zealand          252        Low Intensity Trade 
Congo                233        Low Intensity Trade 
Rwanda               212        Low Intensity Trade 
United_States_of_America 66         Low Intensity Trade 
Bahrain              45         Low Intensity Trade 
Belgium              21         Low Intensity Trade 
Serbia               16         Low Intensity Trade 
Haiti                13         Low Intensity Trade 
Marshall_Islands     10         Low Intensity Trade 
Iraq                 3          Low Intensity Trade 
Benin                1          Low Intensity Trade 
Code
# Print the table of cluster counts

cat("  Consolidated Trade Data Analysis (2015-22)  \n")
  Consolidated Trade Data Analysis (2015-22)  
Code
for (i in 1:nrow(cluster_counts_df)) {
  # Format the cluster and count values
  cluster <- sprintf("%-20s", cluster_counts_df$cluster[i])
  count <- sprintf("%-10s", cluster_counts_df$count[i])
  
  # Print the formatted values
  cat(cluster, count, "\n")
}
Low Intensity Trade  30         
Normal Intensity Trade 60         
High Intensity Trade 30         
Code
# Count the number of countries in each cluster for each year
cluster_counts <- lapply(sorted_trade_list, function(sorted_trade) table(sorted_trade$trade_intensity))

# Print the counts for each year
for (i in 1:length(years)) {
  year <- years[i]
  cluster_counts_year <- cluster_counts[[as.character(year)]]
  

  cat("       Trade Data Analysis - Year", year, "      \n")

  
  for (j in 1:length(cluster_counts_year)) {
    # Format the cluster and count values
    cluster <- sprintf("%-20s", names(cluster_counts_year)[j])
    count <- sprintf("%-10s", cluster_counts_year[j])
  
    # Print the formatted values
    cat(cluster, count, "\n")
  }
}
       Trade Data Analysis - Year 2015       
Low Intensity Trade  20         
Normal Intensity Trade 38         
High Intensity Trade 20         
       Trade Data Analysis - Year 2016       
Low Intensity Trade  19         
Normal Intensity Trade 36         
High Intensity Trade 18         
       Trade Data Analysis - Year 2017       
Low Intensity Trade  19         
Normal Intensity Trade 38         
High Intensity Trade 19         
       Trade Data Analysis - Year 2018       
Low Intensity Trade  19         
Normal Intensity Trade 38         
High Intensity Trade 19         
       Trade Data Analysis - Year 2019       
Low Intensity Trade  19         
Normal Intensity Trade 37         
High Intensity Trade 19         
       Trade Data Analysis - Year 2020       
Low Intensity Trade  17         
Normal Intensity Trade 34         
High Intensity Trade 17         
       Trade Data Analysis - Year 2021       
Low Intensity Trade  19         
Normal Intensity Trade 38         
High Intensity Trade 19         
       Trade Data Analysis - Year 2022       
Low Intensity Trade  9          
Normal Intensity Trade 16         
High Intensity Trade 9          
Code
# year wise variables for sorted_trade_list

sorted_trade_list_2015 <- sorted_trade_list[["2015"]]
sorted_trade_list_2016 <- sorted_trade_list[["2016"]]
sorted_trade_list_2017 <- sorted_trade_list[["2017"]]
sorted_trade_list_2018 <- sorted_trade_list[["2018"]]
sorted_trade_list_2019 <- sorted_trade_list[["2019"]]
sorted_trade_list_2020 <- sorted_trade_list[["2020"]]
sorted_trade_list_2021 <- sorted_trade_list[["2021"]]
sorted_trade_list_2022 <- sorted_trade_list[["2022"]]

Countries for Trade Network

Identify Countries for Wheat Trade Analysis, based on the trade network of countries, as identified in previous step

In the wheat trade analysis, all 209 countries participating in the wheat international trade network will be considered. To analyze the potential supply chain disruption caused by the Ukraine and Russia war, a 209 country network is being analyzed. This analysis will take into account trade relationships among these countries, focusing on the impact on the wheat supply chain. The objective is to provide insights into the potential consequences and risks associated with the ongoing conflict and its effect on global wheat trade.

Code
all_export_countries <- unique(country_trade$country)
countries_alys <- list()

# Loop through each year
for (year in years) {
  # Read the CSV file for the current year
  file_path <- paste0("C:/social network project/project data/1001/Unform Data/Merged/", year, ".csv")
  data <- read.csv(file_path, header = TRUE, row.names = 1)
  for (country in all_export_countries){
    alys_export <-data[country, ]
    alys_import <-data[ ,country]
    
    current_export_countries_alys <- alys_export %>% 
    pivot_longer(cols = everything(), names_to = "country", values_to = "export")
    current_export_countries_alys <- current_export_countries_alys[current_export_countries_alys$export!=0,]
    
    current_import_countries_alys <- alys_export %>% 
    pivot_longer(cols = everything(), names_to = "country", values_to = "import")
    current_import_countries_alys <- current_import_countries_alys[current_import_countries_alys$import!=0,]
    
    # Add the export & countries for the current year to the list
    countries_alys <- unique(c(countries_alys, current_export_countries_alys$country, current_import_countries_alys$country))
  }
}
all_countries_alys <- unlist(countries_alys)
print(all_countries_alys)
  [1] "Macedonia"                        "Canada"                          
  [3] "France"                           "Georgia"                         
  [5] "Iraq"                             "Azerbaijan"                      
  [7] "Belarus"                          "Belgium"                         
  [9] "Bosnia_and_Herzegovina"           "Bulgaria"                        
 [11] "Croatia"                          "Czech_Republic"                  
 [13] "Denmark"                          "Estonia"                         
 [15] "Germany"                          "Greece"                          
 [17] "Hungary"                          "Iran"                            
 [19] "Italy"                            "Latvia"                          
 [21] "Lithuania"                        "Luxembourg"                      
 [23] "Moldova"                          "Montenegro"                      
 [25] "Netherlands"                      "Norway"                          
 [27] "Poland"                           "Portugal"                        
 [29] "Romania"                          "Russia"                          
 [31] "Serbia"                           "Slovakia"                        
 [33] "Slovenia"                         "South_Africa"                    
 [35] "Spain"                            "Sweden"                          
 [37] "Switzerland"                      "Turkey"                          
 [39] "Ukraine"                          "Austria"                         
 [41] "Special_categories"               "Malaysia"                        
 [43] "Egypt"                            "Kazakhstan"                      
 [45] "Brazil"                           "Congo_DR"                        
 [47] "Finland"                          "Iceland"                         
 [49] "Ireland"                          "Morocco"                         
 [51] "Saudi_Arabia"                     "Suriname"                        
 [53] "Taipei_Chinese"                   "Tunisia"                         
 [55] "United_Kingdom"                   "Indonesia"                       
 [57] "Albania"                          "Algeria"                         
 [59] "Australia"                        "Bangladesh"                      
 [61] "Cyprus"                           "Djibouti"                        
 [63] "Ethiopia"                         "Israel"                          
 [65] "Kuwait"                           "Lebanon"                         
 [67] "Libya"                            "South_Korea"                     
 [69] "Syria"                            "United_Arab_Emirates"            
 [71] "Viet_Nam"                         "Yemen"                           
 [73] "Niger"                            "Rwanda"                          
 [75] "Burkina_Faso"                     "Cameroon"                        
 [77] "Chile"                            "China"                           
 [79] "Colombia"                         "Congo"                           
 [81] "Costa_Rica"                       "Cuba"                            
 [83] "Dominican_Republic"               "Ecuador"                         
 [85] "Gabon"                            "Ghana"                           
 [87] "Guatemala"                        "Guinea"                          
 [89] "Guyana"                           "Haiti"                           
 [91] "Hongkong"                         "Ivory_Coast"                     
 [93] "Jamaica"                          "Japan"                           
 [95] "Kenya"                            "Malawi"                          
 [97] "Mali"                             "Mexico"                          
 [99] "Mongolia"                         "Mozambique"                      
[101] "Myanmar"                          "Nicaragua"                       
[103] "Nigeria"                          "Oman"                            
[105] "Pakistan"                         "Peru"                            
[107] "Philippines"                      "Qatar"                           
[109] "Saint_Pierre_and_Miquelon"        "Senegal"                         
[111] "Singapore"                        "Sri_Lanka"                       
[113] "Sudan"                            "Tanzania"                        
[115] "Thailand"                         "Togo"                            
[117] "Uganda"                           "United_States_of_America"        
[119] "Venezuela"                        "Zambia"                          
[121] "Zimbabwe"                         "Brunei_Darussalam"               
[123] "Area_nes"                         "Europe_Othr_nes"                 
[125] "Faroe_Islands"                    "Greenland"                       
[127] "Jordan"                           "Argentina"                       
[129] "Cabo_Verde"                       "French_Polynesia"                
[131] "Gambia"                           "India"                           
[133] "Malta"                            "Mauritania"                      
[135] "Mauritius"                        "New_Caledonia"                   
[137] "Seychelles"                       "Uruguay"                         
[139] "Armenia"                          "Namibia"                         
[141] "Macao_China"                      "Bahrain"                         
[143] "Benin"                            "Equatorial_Guinea"               
[145] "Madagascar"                       "Nepal"                           
[147] "New_Zealand"                      "Somalia"                         
[149] "Afghanistan"                      "Palestine"                       
[151] "Free_Zones"                       "Kyrgyzstan"                      
[153] "Tajikistan"                       "Uzbekistan"                      
[155] "Panama"                           "Botswana"                        
[157] "Ship_stores_and_bunkers"          "Belize"                          
[159] "Bolivia"                          "Bonaire_Sint_Eustatius_and_Saba" 
[161] "Trinidad_and_Tobago"              "Fiji"                            
[163] "Angola"                           "Guinea_Bissau"                   
[165] "Eswatini"                         "North_Korea"                     
[167] "Sierra_Leone"                     "Turkmenistan"                    
[169] "Maldives"                         "Lesotho"                         
[171] "Andorra"                          "Gibraltar"                       
[173] "Laos"                             "Barbados"                        
[175] "Anguilla"                         "Aruba"                           
[177] "Bahamas"                          "Bermuda"                         
[179] "British_Virgin_Islands"           "El_Salvador"                     
[181] "Grenada"                          "Honduras"                        
[183] "Liberia"                          "Saint_Vincent_and_the_Grenadines"
[185] "Cambodia"                         "Burundi"                         
[187] "Papua_New_Guinea"                 "Samoa"                           
[189] "Solomon_Islands"                  "Saint_Lucia"                     
[191] "Eritrea"                          "South_Sudan"                     
[193] "Palau"                            "Bhutan"                          
[195] "Timor_Leste"                      "Curacao"                         
[197] "Comoros"                          "Antigua_and_Barbuda"             
[199] "Central_African_Republic"         "Chad"                            
[201] "Paraguay"                         "Cook_Islands"                    
[203] "Asia_nes"                         "Falkland_Islands_Malvinas"       
[205] "Marshall_Islands"                 "Cayman_Islands"                  
[207] "Sint_Maarten_Dutch_part"          "Kiribati"                        
[209] "Sao_Tome_and_Principe"           

Wheat Trade Network

In this network analysis, we explore the Wheat International Trade Network spanning from 2015 to 2022, encompassing 209 countries. Our analysis focuses on countries directly importing from Ukraine and those engaged in trade with Ukraine’s partners within the wheat international trade. By examining the trade relationships and dynamics within this subset, we aim to gain insights into the patterns and interactions shaping Ukraine’s role in the global wheat trade.

Code
# Create an empty list to store trade data frames for each year
trade_data_frames <- list()

# Loop through each year
for (year in years) {
  # Read the CSV file for the current year
  file_path <- paste0("C:/social network project/project data/1001/Unform Data/Merged/", year, ".csv")
  data <- read.csv(file_path, header = TRUE, row.names = 1)
  
  # Subset the data to include only the required countries
  trade_data <- data[all_countries_alys, all_countries_alys]
  
  # Add the trade data frame for the current year to the list
  trade_data_frames[[as.character(year)]] <- trade_data
}

Year wise Classification

Year wise Grouping of countries, who are trading with Ukriane,into following groups:

Classify countries based on wheat import volume:

  • High trade intensity: The high trade intensity group comprises countries with wheat import volumes from Ukraine falling within the top 25th percentile. These countries demonstrate a strong trade relationship and high dependence on Ukraine as a wheat supplier.

  • Normal Intensity Countries: The high trade intensity group comprises countries with wheat import volumes from Ukraine falling between the 25th and 75th percentiles. They exhibit moderate levels of trade intensity with Ukraine for wheat imports.

  • Low Intensity Countries: This group includes countries with wheat import volumes from Ukraine falling within the bottom 25th percentile. These countries have relatively lower levels of trade intensity with Ukraine in terms of wheat imports.

Code
# High Intensity, Normal Intensity, Low Intensity Trade Countries consolidated from 2015 to 2022 

high_intensity_countries <- sorted_trade$country[sorted_trade$trade_intensity == "High Intensity Trade"]
normal_intensity_countries <- sorted_trade$country[sorted_trade$trade_intensity == "Normal Intensity Trade"]
low_intensity_countries <- sorted_trade$country[sorted_trade$trade_intensity == "Low Intensity Trade"]

# High Intensity, Normal Intensity, Low Intensity Trade Countries year wise from 2015 to 2022 

# Initialize lists to store the results
high_intensity_countries_year <- list()
normal_intensity_countries_year <- list()
low_intensity_countries_year <- list()

# Loop over the years
for (year in 2015:2022) {
  # Get the sorted_trade_list for this year
  sorted_trade_list_year <- get(paste0("sorted_trade_list_", year))

  # Add countries to respective lists
  high_intensity_countries_year[[paste0(year)]] <- sorted_trade_list_year$country[sorted_trade_list_year$trade_intensity == "High Intensity Trade"]
  normal_intensity_countries_year[[paste0(year)]] <- sorted_trade_list_year$country[sorted_trade_list_year$trade_intensity == "Normal Intensity Trade"]
  low_intensity_countries_year[[paste0(year)]] <- sorted_trade_list_year$country[sorted_trade_list_year$trade_intensity == "Low Intensity Trade"]
}
cat(" Year wise HIgh Intensity Trade Countries with Ukraine \n")
 Year wise HIgh Intensity Trade Countries with Ukraine 
Code
# Loop over the years
for (year in 2015:2022) {
  # Print high intensity trade countries for this year
  print(paste("Year: ", year))
  print(high_intensity_countries_year[[as.character(year)]])
}
[1] "Year:  2015"
 [1] "Egypt"        "Thailand"     "South_Korea"  "Indonesia"    "Bangladesh"  
 [6] "Spain"        "Philippines"  "Italy"        "Tunisia"      "Ethiopia"    
[11] "Israel"       "Morocco"      "Mexico"       "Syria"        "Djibouti"    
[16] "Turkey"       "South_Africa" "Lebanon"      "Malaysia"     "Netherlands" 
[1] "Year:  2016"
 [1] "Egypt"       "Indonesia"   "Thailand"    "India"       "Bangladesh" 
 [6] "South_Korea" "Philippines" "Morocco"     "Tunisia"     "Ethiopia"   
[11] "Spain"       "Israel"      "Italy"       "Lebanon"     "Libya"      
[16] "Mexico"      "Algeria"     "Malaysia"   
[1] "Year:  2017"
 [1] "India"       "Egypt"       "Indonesia"   "Bangladesh"  "South_Korea"
 [6] "Thailand"    "Tunisia"     "Philippines" "Morocco"     "Spain"      
[11] "Turkey"      "Italy"       "Israel"      "Lebanon"     "Mauritania" 
[16] "Kenya"       "Libya"       "Mexico"      "Ethiopia"   
[1] "Year:  2018"
 [1] "Indonesia"   "Philippines" "Egypt"       "Morocco"     "Tunisia"    
 [6] "Spain"       "South_Korea" "Bangladesh"  "Israel"      "Libya"      
[11] "Thailand"    "Yemen"       "Mauritania"  "Italy"       "Lebanon"    
[16] "Kenya"       "Turkey"      "Ethiopia"    "Mexico"     
[1] "Year:  2019"
 [1] "Egypt"       "Indonesia"   "Bangladesh"  "Philippines" "Thailand"   
 [6] "Turkey"      "Morocco"     "Tunisia"     "Ethiopia"    "South_Korea"
[11] "Libya"       "Spain"       "Yemen"       "Israel"      "Lebanon"    
[16] "Nigeria"     "Kenya"       "Mexico"      "Malaysia"   
[1] "Year:  2020"
 [1] "Indonesia"   "Egypt"       "Pakistan"    "Bangladesh"  "Tunisia"    
 [6] "Turkey"      "Morocco"     "Yemen"       "Philippines" "Lebanon"    
[11] "Thailand"    "Ethiopia"    "Libya"       "South_Korea" "Malaysia"   
[16] "Spain"       "Viet_Nam"   
[1] "Year:  2021"
 [1] "Indonesia"    "Egypt"        "Nigeria"      "Pakistan"     "Turkey"      
 [6] "Ethiopia"     "Morocco"      "Yemen"        "Bangladesh"   "Tunisia"     
[11] "Lebanon"      "Saudi_Arabia" "Philippines"  "Libya"        "Thailand"    
[16] "Israel"       "South_Korea"  "Viet_Nam"     "Kenya"       
[1] "Year:  2022"
[1] "Turkey"    "Spain"     "Ethiopia"  "Romania"   "Poland"    "Italy"    
[7] "Greece"    "Indonesia" "Hungary"  
Code
# print(paste("Consolidated from Year 2015-2022"))
# print(high_intensity_countries)

Network Objects

Preparing Network Objects for the Wheat trade network of 209 countries from year 2015 to 2022, using Igraph and Network library.

The Wheat International Trade Network captures trade relationships and volumes of wheat exchanged between 209 countries. It utilizes a directed weighted graph representation, allowing for insights into network density, centrality measures, and community structure.

Code
years <- 2015:2022

# Initialize empty list to store igraph objects
igraphs <- list()

# Loop over each file path
for (i in seq_along(years)) {
  # Read the csv file as an adjacency matrix
  trade_data_frames[[as.character(years[i])]]
  
  adjacency_matrix <- as.matrix(trade_data_frames[[as.character(years[i])]])
  
  # Create an igraph object from the adjacency matrix
  igraphs[[i]] <- graph_from_adjacency_matrix(adjacency_matrix, mode = "directed", weighted = TRUE, diag = FALSE)
  
}

# Combine all adjacency matrices
consolidated_adjacency <- Reduce("+", lapply(igraphs, as_adjacency_matrix))

# Create the consolidated graph
consolidated_network <- graph_from_adjacency_matrix(consolidated_adjacency, mode = "directed", weighted = TRUE, diag = FALSE)

network_2015 <- igraphs[[1]]
network_2016 <- igraphs[[2]]
network_2017 <- igraphs[[3]]
network_2018 <- igraphs[[4]]
network_2019 <- igraphs[[5]]
network_2020 <- igraphs[[6]]
network_2021 <- igraphs[[7]]
network_2022 <- igraphs[[8]]

V(network_2015)$in_weight <- igraph::strength(network_2015, mode = "in", weights = E(network_2015)$attribute)
V(network_2015)$out_weight <- igraph::strength(network_2015, mode = "out", weights = E(network_2015)$attribute)
V(network_2016)$in_weight <- igraph::strength(network_2016, mode = "in", weights = E(network_2016)$attribute)
V(network_2016)$out_weight <- igraph::strength(network_2016, mode = "out", weights = E(network_2016)$attribute)
V(network_2017)$in_weight <- igraph::strength(network_2017, mode = "in", weights = E(network_2017)$attribute)
V(network_2017)$out_weight <- igraph::strength(network_2017, mode = "out", weights = E(network_2017)$attribute)
V(network_2018)$in_weight <- igraph::strength(network_2018, mode = "in", weights = E(network_2018)$attribute)
V(network_2018)$out_weight <- igraph::strength(network_2018, mode = "out", weights = E(network_2018)$attribute)
V(network_2019)$in_weight <- igraph::strength(network_2019, mode = "in", weights = E(network_2019)$attribute)
V(network_2019)$out_weight <- igraph::strength(network_2019, mode = "out", weights = E(network_2019)$attribute)
V(network_2020)$in_weight <- igraph::strength(network_2020, mode = "in", weights = E(network_2020)$attribute)
V(network_2020)$out_weight <- igraph::strength(network_2020, mode = "out", weights = E(network_2020)$attribute)
V(network_2021)$in_weight <- igraph::strength(network_2021, mode = "in", weights = E(network_2021)$attribute)
V(network_2021)$out_weight <- igraph::strength(network_2021, mode = "out", weights = E(network_2021)$attribute)
V(network_2022)$in_weight <- igraph::strength(network_2022, mode = "in", weights = E(network_2022)$attribute)
V(network_2022)$out_weight <- igraph::strength(network_2022, mode = "out", weights = E(network_2022)$attribute)

# network_objects for other calculations

wtn_2015_stat <- as.network(as_adjacency_matrix(network_2015, sparse = FALSE), directed = TRUE)
wtn_2016_stat <- as.network(as_adjacency_matrix(network_2016, sparse = FALSE), directed = TRUE)
wtn_2017_stat <- as.network(as_adjacency_matrix(network_2017, sparse = FALSE), directed = TRUE)
wtn_2018_stat <- as.network(as_adjacency_matrix(network_2018, sparse = FALSE), directed = TRUE)
wtn_2019_stat <- as.network(as_adjacency_matrix(network_2019, sparse = FALSE), directed = TRUE)
wtn_2020_stat <- as.network(as_adjacency_matrix(network_2020, sparse = FALSE), directed = TRUE)
wtn_2021_stat <- as.network(as_adjacency_matrix(network_2021, sparse = FALSE), directed = TRUE)
wtn_2022_stat <- as.network(as_adjacency_matrix(network_2022, sparse = FALSE), directed = TRUE)

net_2015 <- graph_from_adjacency_matrix(as_adjacency_matrix(network_2015),mode = "directed",weighted = TRUE,diag = FALSE)
net_2016 <- graph_from_adjacency_matrix(as_adjacency_matrix(network_2016),mode = "directed",weighted = TRUE,diag = FALSE)
net_2017 <- graph_from_adjacency_matrix(as_adjacency_matrix(network_2017),mode = "directed",weighted = TRUE,diag = FALSE)
net_2018 <- graph_from_adjacency_matrix(as_adjacency_matrix(network_2018),mode = "directed",weighted = TRUE,diag = FALSE)
net_2019 <- graph_from_adjacency_matrix(as_adjacency_matrix(network_2019),mode = "directed",weighted = TRUE,diag = FALSE)
net_2020 <- graph_from_adjacency_matrix(as_adjacency_matrix(network_2020),mode = "directed",weighted = TRUE,diag = FALSE)
net_2021 <- graph_from_adjacency_matrix(as_adjacency_matrix(network_2021),mode = "directed",weighted = TRUE,diag = FALSE)
net_2022 <- graph_from_adjacency_matrix(as_adjacency_matrix(network_2022),mode = "directed",weighted = TRUE,diag = FALSE)

Network Graphs

Consolidated Network Graph

Network Graph on consolidated trade from year 2015 to 2022, for the Wheat trade network created for 209 countries , also plotting High Intensity Trade, Normal Intensity Trade and Low Intensity Trade

  • High Trade (Red Color, Large) (0.75-1 quantile)
  • Normal Trade (Yellow Color, Medium) (0.25-0.75 qunatile)
  • Low Trade (Green Color, Small)(0-0.25 quantile)
  • No Trade (Blue, Smallest)
Code
high_intensity_countries <- sorted_trade$country[sorted_trade$trade_intensity == "High Intensity Trade"]
normal_intensity_countries <- sorted_trade$country[sorted_trade$trade_intensity == "Normal Intensity Trade"]
low_intensity_countries <- sorted_trade$country[sorted_trade$trade_intensity == "Low Intensity Trade"]

# Assign vertex labels
vertex_labels <- V(consolidated_network)$name
V(consolidated_network)$label <- vertex_labels

# Set visual attributes for high, normal, and low intensity countries

vertex_color <- ifelse(V(consolidated_network)$name %in% high_intensity_countries, "red",
                      ifelse(V(consolidated_network)$name %in% normal_intensity_countries, "yellow",
                             ifelse(V(consolidated_network)$name %in% low_intensity_countries, "green", "blue")))

vertex_size <- ifelse(V(consolidated_network)$name %in% high_intensity_countries, 5,
                     ifelse(V(consolidated_network)$name %in% normal_intensity_countries, 4,
                            ifelse(V(consolidated_network)$name %in% low_intensity_countries, 3, 1)))

# Set plotting parameters for the subgraph
vertex.label.cex <- 0.5
vertex.label.dist <- 5
vertex.label.color <- "black"
edge.arrow.size <- 0.3
edge.curved <- 0.2
edge_width <- E(consolidated_network)$weight


# Apply a layout algorithm to improve graph visualization
layout <- layout_with_fr(consolidated_network)



# Rescale the layout coordinates
rescaled_layout <- rescale(layout)

# Set plot limits
xlim <- range(rescaled_layout[, 1])
ylim <- range(rescaled_layout[, 2])

par(mar = rep(0, 4))  # Set margin to remove excess white space


# Plot the consolidated graph with modified parameters
plot(consolidated_network, layout = rescaled_layout, vertex.size = vertex_size, vertex.label.cex = vertex.label.cex,vertex.label.dist = vertex.label.dist, vertex.label.color = vertex.label.color,vertex.color=vertex_color, edge.arrow.size = edge.arrow.size, edge.curved = edge.curved, edge.width = edge_width)

Consolidated Network Graph (Top 100 countries)

Network Graph for top 100 countries by consolidated Wheat trade from year 2015 to 2022, for the trade network created for the countries importing wheat from ukraine, also plotting High Intensity Trade, Normal Intensity Trade and Low Intensity Trade

  • High Trade (Red Color, Large) (0.75-1 quantile)
  • Normal Trade (Yellow Color, Medium) (0.25-0.75 qunatile)
  • Low Trade (Green Color, Small)(0-0.25 quantile)
  • No Trade (Blue, Smallest)
Code
# Get the adjacency matrix of the consolidated network
adjacency_matrix <- get.adjacency(consolidated_network, sparse = FALSE)

# Calculate the total trade (sum of export and import) for each country
trade <- rowSums(adjacency_matrix)

# Sort the countries based on total trade
sorted_countries <- names(trade)[order(trade, decreasing = TRUE)]

# Select the top 100 countries
top_100_countries <- sorted_countries[1:100]

subgraph <- induced_subgraph(consolidated_network, top_100_countries)


# Assign vertex labels  attributes to the subgraph
V(subgraph)$label <- vertex_labels[V(subgraph)]

# Set visual attributes for high, normal, and low intensity countries
vertex_color <- ifelse(V(subgraph)$name %in% high_intensity_countries, "red",
                      ifelse(V(subgraph)$name %in% normal_intensity_countries, "yellow",
                             ifelse(V(subgraph)$name %in% low_intensity_countries, "green", "blue")))

vertex_size <- ifelse(V(subgraph)$name %in% high_intensity_countries, 5,
                     ifelse(V(subgraph)$name %in% normal_intensity_countries, 4,
                            ifelse(V(subgraph)$name %in% low_intensity_countries, 3, 1)))

# Set plotting parameters for the subgraph
vertex.label.cex <- 0.5
vertex.label.dist <- 5
vertex.label.color <- "black"
edge.arrow.size <- 0.1
edge.curved <- 0.2
edge.width <- 1

# Apply a layout algorithm to improve graph visualization
layout <- layout_with_fr(subgraph)

# Rescale the layout coordinates
rescaled_layout <- rescale(layout)

# Set plot limits
xlim <- range(rescaled_layout[, 1])
ylim <- range(rescaled_layout[, 2])

par(mar = rep(0, 4))  # Set margin to remove excess white space


# Plot the consolidated graph with modified parameters
plot(subgraph, layout = rescaled_layout, vertex.size = vertex_size, vertex.label.cex = vertex.label.cex,
     vertex.label.dist = vertex.label.dist, vertex.label.color = vertex.label.color, vertex.color=vertex_color,edge.arrow.size = edge.arrow.size, edge.curved = edge.curved, edge.width = edge.width)

Year 2015 Network Graph

Network Graph for Year 2015 for the trade network created for the countries importing wheat from ukraine, also plotting High Intensity Trade, Normal Intensity Trade and Low Intensity Trade

  • High Trade (Red Color, Large) (0.75-1 quantile)
  • Normal Trade (Yellow Color, Medium) (0.25-0.75 qunatile)
  • Low Trade (Green Color, Small)(0-0.25 quantile)
  • No Trade (Blue, Smallest)
Code
# Assign vertex labels
vertex_labels <- V(net_2015)$name
V(net_2015)$label <- vertex_labels

# Set visual attributes for high, normal, and low intensity countries

vertex_color <- ifelse(V(net_2015)$name %in% high_intensity_countries, "red",
                      ifelse(V(net_2015)$name %in% normal_intensity_countries, "yellow",
                             ifelse(V(net_2015)$name %in% low_intensity_countries, "green", "blue")))
vertex_size <- ifelse(V(net_2015)$name %in% high_intensity_countries, 5,
                     ifelse(V(net_2015)$name %in% normal_intensity_countries, 4,
                            ifelse(V(net_2015)$name %in% low_intensity_countries, 3, 1)))


# Set plotting parameters for the subgraph
vertex.label.cex <- 0.5
vertex.label.dist <- 5
vertex.label.color <- "black"
edge.arrow.size <- 0.3
edge.curved <- 0.2
edge_width <- E(net_2015)$weight

# Apply a layout algorithm to improve graph visualization
layout <- layout_with_fr(net_2015)

# Rescale the layout coordinates
rescaled_layout <- rescale(layout)

# Set plot limits
xlim <- range(rescaled_layout[, 1])
ylim <- range(rescaled_layout[, 2])
par(mar = rep(0, 4))  # Set margin to remove excess white space

# Plot the consolidated graph with modified parameters
plot(net_2015, layout = rescaled_layout, vertex.size = vertex_size, vertex.label.cex = vertex.label.cex,vertex.label.dist = vertex.label.dist, vertex.label.color = vertex.label.color,vertex.color=vertex_color, edge.arrow.size = edge.arrow.size, edge.curved = edge.curved, edge.width=edge_width)

Year 2016 Network Graph

Network Graph for Year 2016 for the trade network created for the countries importing wheat from ukraine, also plotting High Intensity Trade, Normal Intensity Trade and Low Intensity Trade

  • High Trade (Red Color, Large) (0.75-1 quantile)
  • Normal Trade (Yellow Color, Medium) (0.25-0.75 qunatile)
  • Low Trade (Green Color, Small)(0-0.25 quantile)
  • No Trade (Blue, Smallest)
Code
# Assign vertex labels
vertex_labels <- V(net_2016)$name
V(net_2016)$label <- vertex_labels

# Set visual attributes for high, normal, and low intensity countries
vertex_color <- ifelse(V(net_2016)$name %in% high_intensity_countries, "red",
                      ifelse(V(net_2016)$name %in% normal_intensity_countries, "yellow",
                             ifelse(V(net_2016)$name %in% low_intensity_countries, "green", "blue")))
vertex_size <- ifelse(V(net_2016)$name %in% high_intensity_countries, 5,
                     ifelse(V(net_2016)$name %in% normal_intensity_countries, 4,
                            ifelse(V(net_2016)$name %in% low_intensity_countries, 3, 1)))


# Set plotting parameters for the subgraph
vertex.label.cex <- 0.5
vertex.label.dist <- 5
vertex.label.color <- "black"
edge.arrow.size <- 0.3
edge.curved <- 0.2
edge_width <- E(subgraph)$weight


# Apply a layout algorithm to improve graph visualization
layout <- layout_with_fr(net_2016)

# Rescale the layout coordinates
rescaled_layout <- rescale(layout)

# Set plot limits
xlim <- range(rescaled_layout[, 1])
ylim <- range(rescaled_layout[, 2])
par(mar = rep(0, 4))  # Set margin to remove excess white space


# Plot the consolidated graph with modified parameters
plot(net_2016, layout = rescaled_layout, vertex.size = vertex_size, vertex.label.cex = vertex.label.cex,
     vertex.label.dist = vertex.label.dist, vertex.label.color = vertex.label.color,vertex.color=vertex_color,
     edge.arrow.size = edge.arrow.size, edge.curved = edge.curved, edge.width = edge.width)

Year 2017 Network Graph

Network Graph for Year 2017 for the trade network created for the countries importing wheat from ukraine, also plotting High Intensity Trade, Normal Intensity Trade and Low Intensity Trade

  • High Trade (Red Color, Large) (0.75-1 quantile)
  • Normal Trade (Yellow Color, Medium) (0.25-0.75 qunatile)
  • Low Trade (Green Color, Small)(0-0.25 quantile)
  • No Trade (Blue, Smallest)
Code
# Assign vertex labels
vertex_labels <- V(net_2017)$name
V(net_2017)$label <- vertex_labels

# Set visual attributes for high, normal, and low intensity countries
vertex_color <- ifelse(V(net_2017)$name %in% high_intensity_countries, "red",
                      ifelse(V(net_2017)$name %in% normal_intensity_countries, "yellow",
                             ifelse(V(net_2017)$name %in% low_intensity_countries, "green", "blue")))
vertex_size <- ifelse(V(net_2017)$name %in% high_intensity_countries, 5,
                     ifelse(V(net_2017)$name %in% normal_intensity_countries, 4,
                            ifelse(V(net_2017)$name %in% low_intensity_countries, 3, 1)))
# Set plotting parameters for the subgraph
vertex.label.cex <- 0.5
vertex.label.dist <- 5
vertex.label.color <- "black"
edge.arrow.size <- 0.3
edge.curved <- 0.2
edge_width <- E(subgraph)$weight


# Apply a layout algorithm to improve graph visualization
layout <- layout_with_fr(net_2017)

# Rescale the layout coordinates
rescaled_layout <- rescale(layout)

# Set plot limits
xlim <- range(rescaled_layout[, 1])
ylim <- range(rescaled_layout[, 2])
par(mar = rep(0, 4))  # Set margin to remove excess white space

# Plot the consolidated graph with modified parameters
plot(net_2017, layout = rescaled_layout, vertex.size = vertex_size, vertex.label.cex = vertex.label.cex,
     vertex.label.dist = vertex.label.dist, vertex.label.color = vertex.label.color,vertex.color=vertex_color,
     edge.arrow.size = edge.arrow.size, edge.curved = edge.curved, edge.width = edge.width)

Year 2018 Network Graph

Network Graph for Year 2018 for the trade net created for the countries importing wheat from ukraine, also plotting High Intensity Trade, Normal Intensity Trade and Low Intensity Trade

  • High Trade (Red Color, Large) (0.75-1 quantile)
  • Normal Trade (Yellow Color, Medium) (0.25-0.75 qunatile)
  • Low Trade (Green Color, Small)(0-0.25 quantile)
  • No Trade (Blue, Smallest)
Code
# Assign vertex labels
vertex_labels <- V(net_2018)$name
V(net_2018)$label <- vertex_labels

# Set visual attributes for high, normal, and low intensity countries
vertex_color <- ifelse(V(net_2018)$name %in% high_intensity_countries, "red",
                      ifelse(V(net_2018)$name %in% normal_intensity_countries, "yellow",
                             ifelse(V(net_2018)$name %in% low_intensity_countries, "green", "blue")))
vertex_size <- ifelse(V(net_2018)$name %in% high_intensity_countries, 5,
                     ifelse(V(net_2018)$name %in% normal_intensity_countries, 4,
                            ifelse(V(net_2018)$name %in% low_intensity_countries, 3, 1)))


# Set plotting parameters for the subgraph
vertex.label.cex <- 0.5
vertex.label.dist <- 5
vertex.label.color <- "black"
edge.arrow.size <- 0.3
edge.curved <- 0.2
edge_width <- E(subgraph)$weight

# Apply a layout algorithm to improve graph visualization
layout <- layout_with_fr(net_2018)

# Rescale the layout coordinates
rescaled_layout <- rescale(layout)

# Set plot limits
xlim <- range(rescaled_layout[, 1])
ylim <- range(rescaled_layout[, 2])
par(mar = rep(0, 4))  # Set margin to remove excess white space

# Plot the consolidated graph with modified parameters
plot(net_2018, layout = rescaled_layout, vertex.size = vertex_size, vertex.label.cex = vertex.label.cex,
     vertex.label.dist = vertex.label.dist, vertex.label.color = vertex.label.color,vertex.color=vertex_color,
     edge.arrow.size = edge.arrow.size, edge.curved = edge.curved, edge.width = edge.width)

Year 2019 Network Graph

Network Graph for Year 2019 for the trade network created for the countries importing wheat from ukraine, also plotting High Intensity Trade, Normal Intensity Trade and Low Intensity Trade

  • High Trade (Red Color, Large) (0.75-1 quantile)
  • Normal Trade (Yellow Color, Medium) (0.25-0.75 qunatile)
  • Low Trade (Green Color, Small)(0-0.25 quantile)
  • No Trade (Blue, Smallest)
Code
# Assign vertex labels
vertex_labels <- V(net_2019)$name
V(net_2019)$label <- vertex_labels

# Set visual attributes for high, normal, and low intensity countries
vertex_color <- ifelse(V(net_2019)$name %in% high_intensity_countries, "red",
                      ifelse(V(net_2019)$name %in% normal_intensity_countries, "yellow",
                             ifelse(V(net_2019)$name %in% low_intensity_countries, "green", "blue")))
vertex_size <- ifelse(V(net_2019)$name %in% high_intensity_countries, 5,
                     ifelse(V(net_2019)$name %in% normal_intensity_countries, 4,
                            ifelse(V(net_2019)$name %in% low_intensity_countries, 3, 1)))

# Set plotting parameters for the subgraph
vertex.label.cex <- 0.5
vertex.label.dist <- 5
vertex.label.color <- "black"
edge.arrow.size <- 0.3
edge.curved <- 0.2
edge_width <- E(subgraph)$weight

# Apply a layout algorithm to improve graph visualization
layout <- layout_with_fr(net_2019)

# Rescale the layout coordinates
rescaled_layout <- rescale(layout)

# Set plot limits
xlim <- range(rescaled_layout[, 1])
ylim <- range(rescaled_layout[, 2])
par(mar = rep(0, 4))  # Set margin to remove excess white space

# Plot the consolidated graph with modified parameters
plot(net_2019, layout = rescaled_layout, vertex.size = vertex_size, vertex.label.cex = vertex.label.cex,
     vertex.label.dist = vertex.label.dist, vertex.label.color = vertex.label.color,vertex.color=vertex_color,
     edge.arrow.size = edge.arrow.size, edge.curved = edge.curved, edge.width = edge.width)

Year 2020 Network Graph

Network Graph for Year 2020 for the trade network created for the countries importing wheat from ukraine, also plotting High Intensity Trade, Normal Intensity Trade and Low Intensity Trade

  • High Trade (Red Color, Large) (0.75-1 quantile)
  • Normal Trade (Yellow Color, Medium) (0.25-0.75 qunatile)
  • Low Trade (Green Color, Small)(0-0.25 quantile)
  • No Trade (Blue, Smallest)
Code
# Assign vertex labels
vertex_labels <- V(net_2020)$name
V(net_2020)$label <- vertex_labels

# Set visual attributes for high, normal, and low intensity countries
vertex_color <- ifelse(V(net_2020)$name %in% high_intensity_countries, "red",
                      ifelse(V(net_2020)$name %in% normal_intensity_countries, "yellow",
                             ifelse(V(net_2020)$name %in% low_intensity_countries, "green", "blue")))
vertex_size <- ifelse(V(net_2020)$name %in% high_intensity_countries, 5,
                     ifelse(V(net_2020)$name %in% normal_intensity_countries, 4,
                            ifelse(V(net_2020)$name %in% low_intensity_countries, 3, 1)))

# Set plotting parameters for the subgraph
vertex.label.cex <- 0.5
vertex.label.dist <- 5
vertex.label.color <- "black"
edge.arrow.size <- 0.3
edge.curved <- 0.2
edge_width <- E(subgraph)$weight

# Apply a layout algorithm to improve graph visualization
layout <- layout_with_fr(net_2020)

# Rescale the layout coordinates
rescaled_layout <- rescale(layout)

# Set plot limits
xlim <- range(rescaled_layout[, 1])
ylim <- range(rescaled_layout[, 2])
par(mar = rep(0, 4))  # Set margin to remove excess white space

# Plot the consolidated graph with modified parameters
plot(net_2020, layout = rescaled_layout, vertex.size = vertex_size, vertex.label.cex = vertex.label.cex,
     vertex.label.dist = vertex.label.dist, vertex.label.color = vertex.label.color,vertex.color=vertex_color,
     edge.arrow.size = edge.arrow.size, edge.curved = edge.curved, edge.width = edge.width)

Year 2021 Network Graph

Network Graph for Year 2021 for the trade network created for the countries importing wheat from ukraine, also plotting High Intensity Trade, Normal Intensity Trade and Low Intensity Trade

  • High Trade (Red Color, Large) (0.75-1 quantile)
  • Normal Trade (Yellow Color, Medium) (0.25-0.75 qunatile)
  • Low Trade (Green Color, Small)(0-0.25 quantile)
  • No Trade (Blue, Smallest)
Code
# Assign vertex labels
vertex_labels <- V(net_2021)$name
V(net_2021)$label <- vertex_labels

# Set visual attributes for high, normal, and low intensity countries
vertex_color <- ifelse(V(net_2021)$name %in% high_intensity_countries, "red",
                      ifelse(V(net_2021)$name %in% normal_intensity_countries, "yellow",
                             ifelse(V(net_2021)$name %in% low_intensity_countries, "green", "blue")))
vertex_size <- ifelse(V(net_2021)$name %in% high_intensity_countries, 5,
                     ifelse(V(net_2021)$name %in% normal_intensity_countries, 4,
                            ifelse(V(net_2021)$name %in% low_intensity_countries, 3, 1)))

# Set plotting parameters for the subgraph
vertex.label.cex <- 0.5
vertex.label.dist <- 5
vertex.label.color <- "black"
edge.arrow.size <- 0.3
edge.curved <- 0.2
edge_width <- E(subgraph)$weight

# Apply a layout algorithm to improve graph visualization
layout <- layout_with_fr(net_2021)

# Rescale the layout coordinates
rescaled_layout <- rescale(layout)

# Set plot limits
xlim <- range(rescaled_layout[, 1])
ylim <- range(rescaled_layout[, 2])
par(mar = rep(0, 4))  # Set margin to remove excess white space

# Plot the consolidated graph with modified parameters
plot(net_2021, layout = rescaled_layout, vertex.size = vertex_size, vertex.label.cex = vertex.label.cex,
     vertex.label.dist = vertex.label.dist, vertex.label.color = vertex.label.color,vertex.color=vertex_color,
     edge.arrow.size = edge.arrow.size, edge.curved = edge.curved, edge.width = edge.width)

Year 2022 Network Graph

Network Graph for Year 2022 for the trade network created for the countries importing wheat from ukraine, also plotting High Intensity Trade, Normal Intensity Trade and Low Intensity Trade

  • High Trade (Red Color, Large) (0.75-1 quantile)
  • Normal Trade (Yellow Color, Medium) (0.25-0.75 qunatile)
  • Low Trade (Green Color, Small)(0-0.25 quantile)
  • No Trade (Blue, Smallest)
Code
# Assign vertex labels
vertex_labels <- V(net_2022)$name
V(net_2022)$label <- vertex_labels

# Set visual attributes for high, normal, and low intensity countries
vertex_color <- ifelse(V(net_2022)$name %in% high_intensity_countries, "red",
                      ifelse(V(net_2022)$name %in% normal_intensity_countries, "yellow",
                             ifelse(V(net_2022)$name %in% low_intensity_countries, "green", "blue")))
vertex_size <- ifelse(V(net_2022)$name %in% high_intensity_countries, 5,
                     ifelse(V(net_2022)$name %in% normal_intensity_countries, 4,
                            ifelse(V(net_2022)$name %in% low_intensity_countries, 3, 1)))

# Set plotting parameters for the subgraph
vertex.label.cex <- 0.5
vertex.label.dist <- 5
vertex.label.color <- "black"
edge.arrow.size <- 0.3
edge.curved <- 0.2
edge_width <- E(subgraph)$weight

# Apply a layout algorithm to improve graph visualization
layout <- layout_with_fr(net_2022)

# Rescale the layout coordinates
rescaled_layout <- rescale(layout)

# Set plot limits
xlim <- range(rescaled_layout[, 1])
ylim <- range(rescaled_layout[, 2])
par(mar = rep(0, 4))  # Set margin to remove excess white space

# Plot the consolidated graph with modified parameters
plot(net_2022, layout = rescaled_layout, vertex.size = vertex_size, vertex.label.cex = vertex.label.cex,
     vertex.label.dist = vertex.label.dist, vertex.label.color = vertex.label.color,vertex.color=vertex_color,
     edge.arrow.size = edge.arrow.size, edge.curved = edge.curved, edge.width = edge.width)

Network Analysis

Primary Network Attributes

The analysis includes calculating network attributes for each year from 2015 to 2022, such as nodes, edges, bipartiteness, directionality, weight, connectivity, components, component size, diameter, average path length, giant component proportion, singleton proportion, vertex attribute names, edge attribute names, max and min edge weights, median edge weight, and edge density. These calculations provide a comprehensive overview of the network’s structure, connectivity, and characteristics for each year. By comparing these attributes across different years, it is possible to observe trends and changes in the network’s properties over time.

Code
# List of networks
networks <- list(network_2015, network_2016, network_2017, network_2018, network_2019, network_2020, network_2021, network_2022)

# Create an empty data frame to store the information
network_info <- data.frame(Year = numeric(),
                           Nodes = numeric(),
                           Edges = numeric(),
                           Bipartite = logical(),
                           Directed = logical(),
                           Weighted = logical(),
                           Connected = logical(),
                           Components = numeric(),
                           Component_Sizes = character(),
                           Diameter = numeric(),
                           Average_Path_Length = numeric(),
                           Giant_Component_Proportion = numeric(),
                           Singleton_Proportion = numeric(),
                           Vertex_Attribute_Names = character(),
                           Edge_Attribute_Names = character(),
                           Vertex_Attribute_Values = character(),
                           Edge_Attribute_Values = character(),
                           Max_Edge_Weight = numeric(),
                           Min_Edge_Weight = numeric(),
                           Median_Edge_Weight = numeric(),
                           Edge_Density = numeric())

# Loop over the networks
for (i in seq_along(networks)) {
  network <- networks[[i]]
  year <- 2015 + i - 1
  
  # Get the number of nodes and edges
  nodes <- vcount(network)
  edges <- ecount(network)
  
  # Calculate the edge density
  edge_density <- edges / (nodes * (nodes - 1))
  
  # Calculate the connected components
  components <- clusters(network)
  num_components <- length(components$no)
  component_sizes <- components$csize
  
  # Calculate the diameter of the network
  diameter <- diameter(network)
  
  # Calculate the average path length
  average_path_length <- average.path.length(network)
  
  # Calculate the proportion of nodes in the giant component
  giant_component_proportion <- max(components$csize) / nodes
  
  # Calculate the proportion of unconnected nodes (singletons)
  singleton_proportion <- sum(components$csize == 1) / nodes
  
  # Retrieve other network information
  is_bipartite <- is_bipartite(network)
  is_directed <- is_directed(network)
  is_weighted <- is_weighted(network)
  is_connected <- is_connected(network)
  
  # Retrieve vertex attribute names, edge attribute names, vertex attribute values, and edge attribute values
  vertex_attr <- vertex_attr_names(network)
  vertex_attr_names <- V(network)$name
  edge_attr <- edge_attr_names(network)
  edge_attr_names <- E(network)$weight
  
  # Calculate max, min, and median edge weights
  max_edge_weight <- max(E(network)$weight)
  min_edge_weight <- min(E(network)$weight)
  median_edge_weight <- median(E(network)$weight)
  
  cat("Year:", year, "\n")
  cat("Max Edge Weight:", max_edge_weight, "\n")
  cat("Min Edge Weight:", min_edge_weight, "\n")
  cat("Median Edge Weight:", median_edge_weight, "\n\n")
  
  # Append the network information to the data frame
  network_info <- rbind(network_info,
                        data.frame(Year = year,
                                   Nodes = nodes,
                                   Edges = edges,
                                   Bipartite = is_bipartite,
                                   Directed = is_directed,
                                   Weighted = is_weighted,
                                   Connected = is_connected,
                                   Components = num_components,
                                   Component_Sizes = toString(component_sizes),
                                   Diameter = diameter,
                                   Average_Path_Length = average_path_length,
                                   Giant_Component_Proportion = giant_component_proportion,
                                   Singleton_Proportion = singleton_proportion,
                                   Max_Edge_Weight = max_edge_weight,
                                   Min_Edge_Weight = min_edge_weight,
                                   Median_Edge_Weight = median_edge_weight,
                                   Edge_Density = edge_density))

  
  # Before appending network information to the data frame
  cat("Year:", year, "\n")
  cat("Nodes:", nodes, "\n")
  cat("Edges:", edges, "\n")
  cat("Bipartite:", is_bipartite(network), "\n")
  cat("Directed:", is_directed(network), "\n")
  cat("Weighted:", is_weighted(network), "\n")
  cat("Connected:", is_connected(network), "\n")
  cat("Components:", num_components, "\n")
  cat("Component Sizes:", toString(component_sizes), "\n")
  cat("Diameter:", diameter, "\n")
  cat("Average Path Length:", average_path_length, "\n")
  cat("Giant Component Proportion:", giant_component_proportion, "\n")
  cat("Singleton Proportion:", singleton_proportion, "\n")
  cat("Edge Density:", edge_density, "\n")
}
Year: 2015 
Max Edge Weight: 1197028 
Min Edge Weight: 1 
Median Edge Weight: 1024 

Year: 2015 
Nodes: 209 
Edges: 1933 
Bipartite: FALSE 
Directed: TRUE 
Weighted: TRUE 
Connected: FALSE 
Components: 1 
Component Sizes: 191, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 
Diameter: 85541 
Average Path Length: 2325.67 
Giant Component Proportion: 0.9138756 
Singleton Proportion: 0.0861244 
Edge Density: 0.0444654 
Year: 2016 
Max Edge Weight: 1747058 
Min Edge Weight: 1 
Median Edge Weight: 889.5 

Year: 2016 
Nodes: 209 
Edges: 1946 
Bipartite: FALSE 
Directed: TRUE 
Weighted: TRUE 
Connected: FALSE 
Components: 1 
Component Sizes: 190, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 
Diameter: 82362 
Average Path Length: 2452.059 
Giant Component Proportion: 0.9090909 
Singleton Proportion: 0.09090909 
Edge Density: 0.04476445 
Year: 2017 
Max Edge Weight: 1597905 
Min Edge Weight: 1 
Median Edge Weight: 768 

Year: 2017 
Nodes: 209 
Edges: 1943 
Bipartite: FALSE 
Directed: TRUE 
Weighted: TRUE 
Connected: FALSE 
Components: 1 
Component Sizes: 198, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 
Diameter: 91219 
Average Path Length: 1820.422 
Giant Component Proportion: 0.9473684 
Singleton Proportion: 0.05263158 
Edge Density: 0.04469544 
Year: 2018 
Max Edge Weight: 2066796 
Min Edge Weight: 1 
Median Edge Weight: 646 

Year: 2018 
Nodes: 209 
Edges: 1869 
Bipartite: FALSE 
Directed: TRUE 
Weighted: TRUE 
Connected: FALSE 
Components: 1 
Component Sizes: 195, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 
Diameter: 90275 
Average Path Length: 1675.243 
Giant Component Proportion: 0.9330144 
Singleton Proportion: 0.06698565 
Edge Density: 0.04299319 
Year: 2019 
Max Edge Weight: 1498689 
Min Edge Weight: 1 
Median Edge Weight: 819.5 

Year: 2019 
Nodes: 209 
Edges: 1872 
Bipartite: FALSE 
Directed: TRUE 
Weighted: TRUE 
Connected: FALSE 
Components: 1 
Component Sizes: 192, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 
Diameter: 36540 
Average Path Length: 1036.727 
Giant Component Proportion: 0.9186603 
Singleton Proportion: 0.08133971 
Edge Density: 0.0430622 
Year: 2020 
Max Edge Weight: 1796607 
Min Edge Weight: 1 
Median Edge Weight: 743 

Year: 2020 
Nodes: 209 
Edges: 1895 
Bipartite: FALSE 
Directed: TRUE 
Weighted: TRUE 
Connected: FALSE 
Components: 1 
Component Sizes: 193, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 
Diameter: 70630 
Average Path Length: 1903.786 
Giant Component Proportion: 0.923445 
Singleton Proportion: 0.07655502 
Edge Density: 0.04359128 
Year: 2021 
Max Edge Weight: 1870576 
Min Edge Weight: 1 
Median Edge Weight: 1025 

Year: 2021 
Nodes: 209 
Edges: 1877 
Bipartite: FALSE 
Directed: TRUE 
Weighted: TRUE 
Connected: FALSE 
Components: 1 
Component Sizes: 194, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 
Diameter: 98140 
Average Path Length: 4136.258 
Giant Component Proportion: 0.9282297 
Singleton Proportion: 0.07177033 
Edge Density: 0.04317722 
Year: 2022 
Max Edge Weight: 2395449 
Min Edge Weight: 1 
Median Edge Weight: 1224.5 

Year: 2022 
Nodes: 209 
Edges: 1474 
Bipartite: FALSE 
Directed: TRUE 
Weighted: TRUE 
Connected: FALSE 
Components: 1 
Component Sizes: 186, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 
Diameter: 181634 
Average Path Length: 6057.446 
Giant Component Proportion: 0.8899522 
Singleton Proportion: 0.1100478 
Edge Density: 0.03390688 
Code
# Plot for Nodes
ggplot(network_info, aes(x = Year, y = Nodes)) +
  geom_line(color = "blue") +
  labs(x = "Year", y = "Number of Nodes") +
  ggtitle("Change in Number of Nodes over Years") +
  theme_minimal() +
  theme(plot.title = element_text(face = "bold", size = 14),
        axis.title = element_text(face = "bold", size = 12),
        axis.text = element_text(size = 10))

Code
# Plot for Edges
ggplot(network_info, aes(x = Year, y = Edges)) +
  geom_line(color = "red") +
  labs(x = "Year", y = "Number of Edges") +
  ggtitle("Change in Number of Edges over Years") +
  theme_minimal() +
  theme(plot.title = element_text(face = "bold", size = 14),
        axis.title = element_text(face = "bold", size = 12),
        axis.text = element_text(size = 10))

Code
# Plot for Component Sizes
ggplot(network_info, aes(x = Year, y = Components)) +
  geom_line(color = "green") +
  labs(x = "Year", y = "Number of Components") +
  ggtitle("Change in Number of Components over Years") +
  theme_minimal() +
  theme(plot.title = element_text(face = "bold", size = 14),
        axis.title = element_text(face = "bold", size = 12),
        axis.text = element_text(size = 10))

Code
# Plot for Diameter
ggplot(network_info, aes(x = Year, y = Diameter)) +
  geom_line(color = "purple") +
  labs(x = "Year", y = "Diameter") +
  ggtitle("Change in Diameter over Years") +
  theme_minimal() +
  theme(plot.title = element_text(face = "bold", size = 14),
        axis.title = element_text(face = "bold", size = 12),
        axis.text = element_text(size = 10))

Code
# Plot for Average Path Length
ggplot(network_info, aes(x = Year, y = Average_Path_Length)) +
  geom_line(color = "orange") +
  labs(x = "Year", y = "Average Path Length") +
  ggtitle("Change in Average Path Length over Years") +
  theme_minimal() +
  theme(plot.title = element_text(face = "bold", size = 14),
        axis.title = element_text(face = "bold", size = 12),
        axis.text = element_text(size = 10))

Code
# Plot for Proportion of Nodes in Giant Component
ggplot(network_info, aes(x = Year, y = Giant_Component_Proportion)) +
  geom_line(color = "blue") +
  labs(x = "Year", y = "Proportion of Nodes in Giant Component") +
  ggtitle("Change in Proportion of Nodes in Giant Component over Years") +
  theme_minimal() +
  theme(plot.title = element_text(face = "bold", size = 14),
        axis.title = element_text(face = "bold", size = 12),
        axis.text = element_text(size = 10))

Code
# Plot for Proportion of Singletons
ggplot(network_info, aes(x = Year, y = Singleton_Proportion)) +
  geom_line(color = "red") +
  labs(x = "Year", y = "Proportion of Singletons") +
  ggtitle("Change in Proportion of Singletons over Years") +
  theme_minimal() +
  theme(plot.title = element_text(face = "bold", size = 14),
        axis.title = element_text(face = "bold", size = 12),
        axis.text = element_text(size = 10))

Code
# Plot for Edge Density
ggplot(network_info, aes(x = Year, y = Edge_Density)) +
  geom_line(color = "green") +
  labs(x = "Year", y = "Edge Density") +
  ggtitle("Change in Edge Density over Years") +
  theme_minimal() +
  theme(plot.title = element_text(face = "bold", size = 14),
        axis.title = element_text(face = "bold", size = 12),
        axis.text = element_text(size = 10))

Code
# Plot for Minimum Edge Weight
ggplot(network_info, aes(x = Year, y = Min_Edge_Weight)) +
  geom_line(color = "blue") +
  labs(x = "Year", y = "Minimum Edge Weight") +
  ggtitle("Change in Minimum Edge Weight over Years")+
  theme_minimal() +
  theme(plot.title = element_text(face = "bold", size = 14),
        axis.title = element_text(face = "bold", size = 12),
        axis.text = element_text(size = 10))

Code
# Plot for Median Edge Weight
ggplot(network_info, aes(x = Year, y = Median_Edge_Weight)) +
  geom_line(color = "red") +
  labs(x = "Year", y = "Median Edge Weight") +
  ggtitle("Change in Median Edge Weight over Years")+
  theme_minimal() +
  theme(plot.title = element_text(face = "bold", size = 14),
        axis.title = element_text(face = "bold", size = 12),
        axis.text = element_text(size = 10))

Number of Edges have gone down from 1877 in 2021 to 1474 on 2022,The decrease in the number of edges from 1877 in 2021 to 1474 in 2022 suggests a reduction in the total number of trade relationships or interactions between the countries in the network. This could indicate changes in trade patterns, disruptions in supply chains, or shifts in trade relationships due to factors such as geopolitical events or economic conditions.

Diameter has almost doubled from 98140 in 2021 to 181634 in 2022,It was 70630 in 2020. The diameter of a network represents the longest shortest path length between any two nodes in the network. It provides an indication of the maximum number of steps or connections required to reach one node from another.This significant increase suggests a substantial expansion in the distance between nodes or entities within the network. It indicates a higher number of intermediary countries or entities involved in the trade routes, potentially reflecting changes in trade patterns or disruptions in supply chains.

It implies that the trade relationships or interactions between countries in the network have become more indirect or distant in 2022 compared to the previous years. It could indicate a higher number of intermediary countries or entities involved in the trade routes between specific pairs of countries.

Average Path Length has increased to 6057.5 in 2022, compared to 4136.258 in 2021 and 1903.8 in 2020. This upward trend suggests that, on average, it requires more steps or connections to reach one country from another within the network. The increase in average path length indicates a greater degree of indirectness or longer trade routes between countries. It could be influenced by changes in trade patterns, the addition of new countries, or shifts in trade relationships.

Giant Component Proportion has come down from 0.93 in 2021 to 0.89 in 2022. This metric represents the proportion of nodes that belong to the largest connected component in the network.The decrease in the Giant Component Proportion suggests a reduction in the relative size or dominance of the largest connected component compared to the overall network. It indicates a potential fragmentation or dispersal of trade relationships within the network.

Proportion of Singltons have gone up from 0.071 to 0.11, The increase in the Proportion of Singletons suggests a higher percentage of nodes that are not engaged in direct trade relationships with other nodes in the network. It indicates a rise in the number of isolated entities or countries within the trade network.This change could be influenced by various factors such as changes in trade policies, shifts in market demand, disruptions in supply chains.

Edge Density has decreased from 0.43 in 2021 to 0.34 in 2022. Edge Density is a measure of how many potential edges exist in the network compared to the actual number of edges present.The decrease in Edge Density suggests a reduction in the overall connectivity or density of trade relationships in the network. It indicates that a smaller proportion of potential trade relationships are realized or present in the network.The decline in Edge Density could be influenced by various factors such as changes in trade patterns, disruptions in supply chains, or shifts in trade relationships.

Number of Components is consistently one in all years, it indicates that every node in the network is directly or indirectly connected to every other node.

Median Edge Weight has sudden increase to 1224.5 in 2022 compared to 743 in 2020, 1025 in 2021. The higher edge weight values indicate a stronger higher number trades between countries in terms of the traded commodity wheat, which suggests changes in trade patterns, disruptions in supply chains, and shifts in trade relationships. It highlights the impact of geopolitical events on network dynamics and the potential influence on trade networks.

Minimum Edge Weight is consistently 1, the minimum edge weight being one indicates that there is a minimum level of trade or interaction between any pair of entities in the network.

Geodesic Distance Distribution

Geodesic distance plays a significant role in analyzing the impact of the Ukraine-Russia war on wheat international trade. This information helps assess the potential disruptions and logistical challenges faced in the wheat supply chain due to the war and enables better understanding of the spatial dynamics of the conflict’s effects on trade.

Code
# List of networks (assuming you have the networks for each year)
networks <- list(network_2015, network_2016, network_2017, network_2018, network_2019, network_2020, network_2021, network_2022)

# Create an empty list to store geodesic distances year-wise
geodesic_list <- list()
# Create an empty list to store frequency tables year-wise
freq_table_list <- list()

# Create empty vectors to store summary statistics
mean_list <- vector()
min_list <- vector()
max_list <- vector()
median_list <- vector()

# Loop over the networks
for (i in seq_along(networks)) {
  network <- networks[[i]]
  year <- 2015 + i - 1
  
  # Calculate geodesic distances
  geodesic <- distances(network)
  
  # Remove Inf values from geodesic distances
  geodesic <- geodesic[!is.infinite(geodesic)]
  
  # Store geodesic distances in the list
  geodesic_list[[as.character(year)]] <- geodesic
  
  # Create a histogram for the current year
  hist(as.vector(geodesic), breaks = 20, col = "steelblue", border = "white",
       main = paste("Distribution of Geodesic Distances -", year),
       xlab = "Geodesic Distance", ylab = "Frequency")
  
  # Create the frequency table
  freq_table <- table(as.vector(geodesic))
  
  # Store the frequency table in the list
  freq_table_list[[as.character(year)]] <- data.frame(Distance = as.numeric(names(freq_table)),
                                                      Frequency = as.numeric(freq_table))
  
  # Print the year-wise frequency table
  # cat("\n")
  # cat("Year:", year, "\n")
  # print(freq_table_list[[as.character(year)]])
  
  # Calculate summary statistics
  mean_val <- mean(as.vector(geodesic))
  min_val <- min(as.vector(geodesic))
  max_val <- max(as.vector(geodesic))
  median_val <- median(as.vector(geodesic))
  
  # Append values to the respective lists
  mean_list <- c(mean_list, mean_val)
  min_list <- c(min_list, min_val)
  max_list <- c(max_list, max_val)
  median_list <- c(median_list, median_val)
  
  cat("Mean:", mean_val, "\n")
  cat("Minimum:", min_val, "\n")
  cat("Maximum:", max_val, "\n")
  cat("Median:", median_val, "\n")
  cat("\n")
}

Mean: 2592.543 
Minimum: 0 
Maximum: 112344 
Median: 13 

Mean: 2138.036 
Minimum: 0 
Maximum: 72077 
Median: 11 

Mean: 2436.921 
Minimum: 0 
Maximum: 95220 
Median: 10 

Mean: 1085.058 
Minimum: 0 
Maximum: 28359 
Median: 9 

Mean: 1620.624 
Minimum: 0 
Maximum: 58642 
Median: 13 

Mean: 2097.829 
Minimum: 0 
Maximum: 107023 
Median: 11 

Mean: 2348.063 
Minimum: 0 
Maximum: 146173 
Median: 13 

Mean: 9292.384 
Minimum: 0 
Maximum: 306800 
Median: 44 
Code
# Create a summary table
summary_table <- data.frame(Year = 2015:2022,
                            Mean = mean_list,
                            Minimum = min_list,
                            Maximum = max_list,
                            Median = median_list)

# Print the summary table
print(summary_table)
  Year     Mean Minimum Maximum Median
1 2015 2592.543       0  112344     13
2 2016 2138.036       0   72077     11
3 2017 2436.921       0   95220     10
4 2018 1085.058       0   28359      9
5 2019 1620.624       0   58642     13
6 2020 2097.829       0  107023     11
7 2021 2348.063       0  146173     13
8 2022 9292.384       0  306800     44

From the analysis of geodesic distances and network characteristics in the context of the Ukraine-Russia war, several key observations emerge. The year 2022 stands out with notable changes compared to previous years, indicating a significant impact on the supply chain network and potential disruptions.

Firstly, the geodesic distance mean, maximum, and median all exhibit substantial increases in 2022. This suggests that the network’s nodes are becoming more geographically distant from each other on average, with longer routes and potentially heightened isolation between them. These changes imply that supply chain flows may encounter greater challenges, such as longer lead times, increased transportation costs, and potential disruptions in the flow of goods.

Diad and Triad Analysis

Diad and triad analysis for wheat international trade in the context of the Ukraine-Russia war focuses on studying the trade relationships between pairs and groups of three high trade countries. By examining diads and triads involved in wheat trade, it offers insights into supply chain disruptions, and potential shifts. This analysis contributes to understanding the changing landscape of wheat trade amidst the ongoing conflict and its implications for the industry.

Code
# List of networks
networks <- list(network_2015, network_2016, network_2017, network_2018, network_2019, network_2020, network_2021, network_2022)

# Create empty lists to store the results
dyads_list <- list()
triads_list <- list()

# Perform dyad and triad analysis for each network
for (i in 1:length(networks)) {
  network <- networks[[i]]

  # Subset the network to only include nodes in the list of high trade intensity countries for this year
  high_trade_network <- induced_subgraph(network, which(V(network)$name %in% high_intensity_countries_year[[as.character(2015+i-1)]]))

  # Classify all Dyads in the high trade intensity network
  dyads <- dyad_census(high_trade_network)
  dyads_list[[i]] <- dyads
  
  # Classify all Triads in the high trade intensity network
  triads <- triad_census(high_trade_network)
  triads_list[[i]] <- triads
}

# Print the results as before
# Define the triad labels
triad_labels <- c("003", "012", "102", "021D", "021U", "021C", "111D", "111U", "030T", "030C", "201", "120D", "120U", "120C", "210", "300")

# Print the results
for (i in 5:length(networks)) {
  year <- 2015 + (i - 1)
  cat("Year", year, ":\n")
  
  cat("Dyad Analysis:\n")
  dyads <- dyads_list[[i]]
  cat("Mutually connected dyads: ", dyads[["mut"]], "\n")
  cat("One-way connected dyads: ", dyads[["asym"]], "\n")
  cat("Disconnected dyads: ", dyads[["null"]], "\n")
  cat("Triad Analysis:\n")
  triads <- triads_list[[i]]
  for (j in 1:length(triad_labels)) {
    cat(triad_labels[j], "Triads: ", triads[j], "\n")
  }
  cat("\n")
}
Year 2019 :
Dyad Analysis:
Mutually connected dyads:  4 
One-way connected dyads:  15 
Disconnected dyads:  152 
Triad Analysis:
003 Triads:  698 
012 Triads:  179 
102 Triads:  43 
021D Triads:  10 
021U Triads:  2 
021C Triads:  15 
111D Triads:  5 
111U Triads:  13 
030T Triads:  0 
030C Triads:  0 
201 Triads:  1 
120D Triads:  1 
120U Triads:  0 
120C Triads:  0 
210 Triads:  2 
300 Triads:  0 

Year 2020 :
Dyad Analysis:
Mutually connected dyads:  3 
One-way connected dyads:  15 
Disconnected dyads:  118 
Triad Analysis:
003 Triads:  458 
012 Triads:  152 
102 Triads:  25 
021D Triads:  17 
021U Triads:  3 
021C Triads:  6 
111D Triads:  0 
111U Triads:  15 
030T Triads:  1 
030C Triads:  0 
201 Triads:  1 
120D Triads:  0 
120U Triads:  1 
120C Triads:  0 
210 Triads:  1 
300 Triads:  0 

Year 2021 :
Dyad Analysis:
Mutually connected dyads:  2 
One-way connected dyads:  16 
Disconnected dyads:  153 
Triad Analysis:
003 Triads:  717 
012 Triads:  180 
102 Triads:  22 
021D Triads:  28 
021U Triads:  3 
021C Triads:  3 
111D Triads:  2 
111U Triads:  10 
030T Triads:  4 
030C Triads:  0 
201 Triads:  0 
120D Triads:  0 
120U Triads:  0 
120C Triads:  0 
210 Triads:  0 
300 Triads:  0 

Year 2022 :
Dyad Analysis:
Mutually connected dyads:  16 
One-way connected dyads:  4 
Disconnected dyads:  16 
Triad Analysis:
003 Triads:  10 
012 Triads:  7 
102 Triads:  27 
021D Triads:  0 
021U Triads:  0 
021C Triads:  1 
111D Triads:  1 
111U Triads:  7 
030T Triads:  0 
030C Triads:  0 
201 Triads:  5 
120D Triads:  0 
120U Triads:  0 
120C Triads:  0 
210 Triads:  11 
300 Triads:  15 

From a dyad perspective, we can see a significant increase in the number of mutually connected dyads from 3 in 2020 to 16 in 2022. This suggests that more countries established reciprocal trade relationships in the aftermath of the conflict. In contrast, the number of disconnected dyads decreased dramatically from 118 in 2020 to 16 in 2022. This can potentially indicate a restructuring of trade networks in response to the geopolitical instability.

Looking at the triad census, the ‘300’ triads, indicating mutually connected triads, rose from 0 in 2020 to 15 in 2022. This implies an increase in fully interconnected trade relationships between groups of three countries, which could be a result of nations seeking more reliable trading partners or diversifying their trade networks to ensure supply chain resilience in light of the geopolitical turmoil.

Network Attributes

In analyzing wheat international trade during the Ukraine-Russia war, key network attributes can be calculated. These include degree, in-degree, and out-degree to measure trade connections, betweenness centrality to identify intermediary countries, eigenvector centrality to assess influence, and constraint centrality to evaluate vulnerability. These calculations provide valuable insights into the dynamics and impacts of the war on wheat trade networks and the countries involved.

Code
networks <- list(network_2015, network_2016, network_2017, network_2018, network_2019, network_2020, network_2021, network_2022)
network_years <- c(2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022)

degree_centralities <- list()
degree_centralities_in <- list()
degree_centralities_out <- list()
betweenness_centralities <- list()
eigenvector_centralities <- list()
closeness_centralities <- list()
constraint_centralities <- list()
in_weights <- list()
out_weights <- list()

degree_df <- data.frame(
  year = integer(),
  country = character(),
  degree_centralitie = numeric(),
  degree_centralitie_in = numeric(),
  degree_centralitie_out = numeric(),
  betweenness_centralitie = numeric(),
  eigenvector_centralitie = numeric(),
  closeness_centralitie = numeric(),
  constraint_centralitie = numeric(),
  in_weight = numeric(),
  out_weight = numeric(),
  intensity = character(),
  consol_intensity = character()
)
community_memberships <- list()

for (i in seq_along(networks)) {
  network <- networks[[i]]
  year <- network_years[i]
  
  # Convert the network to undirected graph
  network_undirected <- igraph::as.undirected(network)
  
  # Calculate degree centrality
  degree_centralities[[year]] <- igraph::degree(network_undirected)
  
  # Calculate in degree centrality
  degree_centralities_in[[year]] <- igraph::degree(network_undirected, mode = 'in')
  
  # Calculate out degree centrality
  degree_centralities_out[[year]] <- igraph::degree(network_undirected, mode = 'out')
  
  # Calculate betweenness centrality
  betweenness_centralities[[year]] <- igraph::betweenness(network_undirected)
  
  # Calculate eigenvector centrality
  eigenvector_centralities[[year]] <- igraph::eigen_centrality(network_undirected)$vector
  
  # Calculate in-weight and out-weight
  in_weights[[year]] <- igraph::strength(network, mode = 'in', weights = E(network)$weight)
  out_weights[[year]] <- igraph::strength(network, mode = 'out', weights = E(network)$weight)
  
  # Calculate closeness centrality
  closeness_centralities[[year]] <- igraph::closeness(network_undirected)
  
  # Calculate constraint centrality
  constraint_centralities[[year]] <- igraph::constraint(network_undirected)
  
  degree_df_temp <- data.frame(
    year = year,
    country = igraph::V(network)$name,
    degree_centralitie = degree_centralities[[year]],
    degree_centralitie_in = degree_centralities_in[[year]],
    degree_centralitie_out = degree_centralities_out[[year]],
    betweenness_centralitie = betweenness_centralities[[year]],
    eigenvector_centralitie = eigenvector_centralities[[year]],
    closeness_centralitie = closeness_centralities[[year]],
    constraint_centralitie = constraint_centralities[[year]],
    in_weight = in_weights[[year]],
    out_weight = out_weights[[year]],
    intensity = NA,
    consol_intensity = NA
  )
  
  # Set intensity values based on conditions
  degree_df_temp$intensity <- ifelse(
    degree_df_temp$country %in% high_intensity_countries_year[[as.character(year)]],
    "high",
    ifelse(
      degree_df_temp$country %in% low_intensity_countries_year[[as.character(year)]],
      "low",
      ifelse(
        degree_df_temp$country %in% normal_intensity_countries_year[[as.character(year)]],
        "normal",
        NA
      )
    )
  )
  
  # Set consolidated intensity values based on conditions
  degree_df_temp$consol_intensity <- ifelse(
    degree_df_temp$country %in% high_intensity_countries,
    "high",
    ifelse(
      degree_df_temp$country %in% low_intensity_countries,
      "low",
      ifelse(
        degree_df_temp$country %in% normal_intensity_countries,
        "normal",
        NA
      )
    )
  )
  
  degree_df <- rbind(degree_df, degree_df_temp, row.names = FALSE)
  
  # Assign the measures to the network for further analysis
  V(network)$degree_centralitie <- degree_centralities[[year]]
  V(network)$degree_centralitie_in <- degree_centralities_in[[year]]
  V(network)$degree_centralitie_out <- degree_centralities_out[[year]]
  V(network)$betweenness_centralitie <- betweenness_centralities[[year]]
  V(network)$eigenvector_centralitie <- eigenvector_centralities[[year]]
  V(network)$closeness_centralitie <- closeness_centralities[[year]]
  V(network)$constraint_centralitie <- constraint_centralities[[year]]
  V(network)$in_weight <- in_weights[[year]]
  V(network)$out_weight <- out_weights[[year]]
  
  # Calculate community membership using Louvain algorithm
  network_undirected <- igraph::as.undirected(network)
  community_memberships[[year]] <- igraph::cluster_fast_greedy(network_undirected)$membership
}

degree_df$country <- gsub("\\d", "", degree_df$country)
degree_df$community_size <- NA
degree_df$betweenness_within_community <- NA
degree_df$eigenvector_within_community <- NA
degree_df$community_density <- NA
degree_df$community_assortativity <- NA

for (i in seq_along(networks)) {
  year <- network_years[i]
  community_membership <- community_memberships[[year]]
  community_sizes <- table(community_membership)
  
  betweenness_within_communities <- rep(0, length(V(networks[[i]])))
  eigenvector_within_communities <- rep(0, length(V(networks[[i]])))
  community_densities <- rep(0, length(V(networks[[i]])))
  
  for (comm in unique(community_membership)) {
    nodes <- V(networks[[i]])$name[community_membership == comm]
    subgraph <- induced_subgraph(networks[[i]], nodes)
    betweenness_within_communities[community_membership == comm] <- sum(igraph::betweenness(subgraph, v = nodes))
    eigenvector_within_communities[community_membership == comm] <- sum(igraph::eigen_centrality(subgraph)$vector)
    community_densities[community_membership == comm] <- sum(E(subgraph)$weight) / (length(nodes) * (length(nodes) - 1))
  }
  
  degree_df$community_size[degree_df$year == year] <- community_sizes[community_membership]
  degree_df$betweenness_within_community[degree_df$year == year] <- betweenness_within_communities[community_membership]
  degree_df$eigenvector_within_community[degree_df$year == year] <- eigenvector_within_communities[community_membership]
  degree_df$community_density[degree_df$year == year] <- community_densities[community_membership]
  degree_df$community_assortativity[degree_df$year == year] <- igraph::assortativity_nominal(networks[[i]], community_membership)
}

# # Filtered data frames for each year and intensity level
# filtered_df_2015 <- degree_df %>% filter(year == 2015, degree_df$consol_intensity == "high")
# filtered_df_2016 <- degree_df %>% filter(year == 2016, degree_df$consol_intensity == "high")
# filtered_df_2017 <- degree_df %>% filter(year == 2017, degree_df$consol_intensity == "high")
# filtered_df_2018 <- degree_df %>% filter(year == 2018, degree_df$consol_intensity == "high")
# filtered_df_2019 <- degree_df %>% filter(year == 2019, degree_df$consol_intensity == "high")
# filtered_df_2020 <- degree_df %>% filter(year == 2020, degree_df$consol_intensity == "high")
# filtered_df_2021 <- degree_df %>% filter(year == 2021, degree_df$consol_intensity == "high")
# filtered_df_2022 <- degree_df %>% filter(year == 2022, degree_df$consol_intensity == "high")
# 
# filtered_df_2015
# filtered_df_2016
# filtered_df_2017
# filtered_df_2018
# filtered_df_2019
# filtered_df_2020
# filtered_df_2021
# filtered_df_2022
head(degree_df)
           year    country degree_centralitie degree_centralitie_in
Macedonia  2015  Macedonia                  9                     9
Canada     2015     Canada                 96                    96
France     2015     France                 96                    96
Georgia    2015    Georgia                  8                     8
Iraq       2015       Iraq                 11                    11
Azerbaijan 2015 Azerbaijan                  7                     7
           degree_centralitie_out betweenness_centralitie
Macedonia                       9                 3.00000
Canada                         96              1193.51905
France                         96              2397.66190
Georgia                         8               561.00000
Iraq                           11                60.38333
Azerbaijan                      7                 0.00000
           eigenvector_centralitie closeness_centralitie constraint_centralitie
Macedonia             5.875735e-05          3.881310e-06              0.6200077
Canada                9.636489e-01          3.895052e-06              0.1220351
France                4.499740e-01          3.898073e-06              0.1317498
Georgia               1.394159e-02          3.861943e-06              0.9469248
Iraq                  4.215198e-02          3.893611e-06              0.4305756
Azerbaijan            3.294558e-02          3.895492e-06              0.8563867
           in_weight out_weight intensity consol_intensity community_size
Macedonia      21108       1596      <NA>             <NA>             61
Canada         40768    7289209       low              low             39
France        309207    4811742    normal           normal             46
Georgia       118829        249    normal           normal             61
Iraq          121890         18      <NA>              low             39
Azerbaijan    296859        662    normal           normal             61
           betweenness_within_community eigenvector_within_community
Macedonia                          3663                     5.513647
Canada                             9938                     4.720102
France                              502                     5.475967
Georgia                            3663                     5.513647
Iraq                               9938                     4.720102
Azerbaijan                         3663                     5.513647
           community_density community_assortativity
Macedonia           4220.749                0.206514
Canada              2016.616                0.206514
France              6110.426                0.206514
Georgia             4220.749                0.206514
Iraq                2016.616                0.206514
Azerbaijan          4220.749                0.206514

Degree Distribution Plot

Degree distribution plots for wheat international trade during the Ukraine-Russia war showcase the distribution of countries based on their trade connections. The plots indicate potential trade disruptions and a consolidation of trade alliances among in the network during the conflict.

Code
# List of networks
networks <- list(network_2015, network_2016, network_2017, network_2018, network_2019, network_2020, network_2021, network_2022)

# Create an empty list to store the degree distributions and frequency tables
degree_distributions <- list()
frequency_tables <- list()

# Loop over the networks
for (i in seq_along(networks)) {
  network <- networks[[i]]
  year <- 2015 + i - 1
  
  # Calculate the degree distribution
  degree_dist <- igraph::degree(network)
  
  # Store the degree distribution
  degree_distributions[[i]] <- data.frame(Year = year, Degree = degree_dist)
  
  # Calculate the frequency table
  freq_table <- table(degree_dist)
  
  # Store the frequency table
  frequency_tables[[i]] <- data.frame(Degree = as.numeric(names(freq_table)), Frequency = as.numeric(freq_table))
}

# Print degree distributions and frequency tables for each year
for (i in seq_along(networks)) {
  year <- 2015 + i - 1
  
  # cat("Year:", year, "\n")
  # print(degree_distributions[[i]])
  
  # cat("Frequency Table for Year:", year, "\n")
  # print(frequency_tables[[i]])
}

# Combine all degree distributions into a single data frame
degree_data <- do.call(rbind, degree_distributions)

# Define colors for each year
colors <- c("green", "green", "green", "green", "green", "green", "blue", "red")

# Plot degree distribution for each year
individual_plots <- list()
combined_plot <- ggplot(degree_data, aes(x = Degree, fill = factor(Year))) +
  geom_histogram(binwidth = 1, position = "dodge") +
  scale_fill_manual(values = colors) +
  labs(x = "Degree", y = "Count", fill = "Year") +
  ggtitle("Combined Degree Distribution from 2015 to 2022") +
  theme_minimal() +
  theme(
    plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
    axis.title = element_text(size = 12),
    legend.title = element_text(size = 12),
    legend.text = element_text(size = 10),
    legend.position = "top",
    panel.grid.major = element_blank(),
    panel.grid.minor = element_blank()
  )

# Loop to create individual plots and save them
for (i in seq_along(networks)) {
  network <- networks[[i]]
  year <- 2015 + i - 1
  degree_dist <- igraph::degree(network)
  
  individual_plot <- ggplot(data.frame(Degree = degree_dist), aes(x = Degree)) +
    geom_histogram(binwidth = 1, fill = colors[i]) +
    labs(x = "Degree", y = "Count") +
    ggtitle(paste("Degree Distribution -", year)) +
    theme_minimal() +
    theme(
      plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
      axis.title = element_text(size = 12),
      panel.grid.major = element_blank(),
      panel.grid.minor = element_blank()
    )
  
  individual_plots[[i]] <- individual_plot
  
  
  # Print individual plot
  print(individual_plot)
}

Code
# Print combined plot
print(combined_plot)

The right-skewed graph of the consolidated degree distribution suggests that the network’s structure is characterized by a lower number of nodes with high degrees and a larger number of nodes with lower degrees. This indicates that the majority of nodes in the network have fewer connections.

The increase in density for nodes with a degree of 5 or less from 85 in 2021 and 76 in 2020 to 113 in 2022 implies a higher prevalence of nodes with very few connections in the network. This shift in the network structure could indicate the emergence of isolated or sparsely connected nodes.

One possible interpretation of these changes in the network is the impact of the Ukraine-Russia war and supply chain disruptions. The addition of new nodes with only a few connections or the removal of nodes with higher degrees could be a result of disruptions in the supply chain caused by the conflict. The dynamics of the war could have led to changes in trade relationships, with some countries reducing their interactions with Ukraine or seeking alternative trade partners.

Ukraine’s degree has decreased from 92 in 2021 and 83 in 2020 to 44 in 2022. This decline in degree suggests that Ukraine has experienced a reduction in its connections or interactions with other nodes in the network. The Ukraine-Russia war and supply chain disruptions may have caused a disruption in Ukraine’s trade relationships and resulted in a decrease in its degree within the network.

In 2022, the number of high-intensity trade countries with Ukraine decreased from 16 in 2021 to 9, while their degrees increased. The number and degree of low trading countries also decreased, while normal trading countries decreased in number but had a higher average degree. France was classified as a low trading country with Ukraine in 2021

Comparing 2021 to 2022, other countries in the network with high trade had higher degrees in 2021. However, in 2022, the number of high trading countries reduced, but their respective degrees increased. This suggests a shift towards more concentrated or extended trade relationships.

Average Degree Plot

Code
# List of networks
networks <- list(network_2015, network_2016, network_2017, network_2018, network_2019, network_2020, network_2021, network_2022)

# Create an empty list to store the average node degree for each year
average_degrees <- vector("double", length(networks))

# Loop over the networks
for (i in seq_along(networks)) {
  network <- networks[[i]]
  year <- 2015 + i - 1
  
  # Calculate the average node degree
  # print(igraph::degree(network))
  average_degree <- mean(igraph::degree(network))
  
  # Store the average node degree
  average_degrees[i] <- average_degree
}

# Create a data frame with year and average node degree
average_degree_data <- data.frame(Year = 2015:2022, Average_Degree = average_degrees)

# Plot the year-wise average node degree
average_degree_plot <- ggplot(average_degree_data, aes(x = Year, y = Average_Degree)) +
  geom_line(color = "steelblue", size = 1.5) +
  geom_point(color = "steelblue", size = 3) +
  labs(x = "Year", y = "Average Node Degree") +
  ggtitle("Year-wise Average Node Degree") +
  theme_minimal() +
  theme(
    plot.title = element_text(size = 16, face = "bold", hjust = 0.5),
    axis.title = element_text(size = 14),
    axis.text = element_text(size = 12),
    panel.grid.major = element_line(color = "lightgray", linetype = "dashed"),
    panel.grid.minor = element_blank(),
    panel.background = element_blank()
  )
Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
ℹ Please use `linewidth` instead.
Code
# Print the average node degree plot
print(average_degree_plot)

Code
networks <- list(network_2015, network_2016, network_2017, network_2018, network_2019, network_2020, network_2021, network_2022)
network_years <- c(2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022)

# Initialize a list to store the degree distributions for each network
degree_distributions <- vector("list", length(network_years))
degree_distributions_high <- vector("list", length(network_years))
degree_distributions_normal <- vector("list", length(network_years))
degree_distributions_low <- vector("list", length(network_years))

# Iterate over the networks
for (i in seq_along(networks)) {
  network <- networks[[i]]
  year <- network_years[i]
  
  degree_distribution <- igraph::degree(as(network, "igraph"))
  degree_distributions[[i]] <- degree_distribution[1:30]
  
  degree_distribution_high <- degree_distribution[high_intensity_countries_year[[as.character(year)]]]
  degree_distributions_high[[i]] <- degree_distribution_high
  
  degree_distribution_normal <- degree_distribution[normal_intensity_countries_year[[as.character(year)]]]
  degree_distributions_normal[[i]] <- degree_distribution_normal
  
  degree_distribution_low <- degree_distribution[low_intensity_countries_year[[as.character(year)]]]
  degree_distributions_low[[i]] <- degree_distribution_low
}

# Create bar plots for each degree distribution
par(mfrow = c(2, 2))  # Set the layout for subplots

for (i in seq_along(degree_distributions)) {
  degree_dist <- degree_distributions[[i]]
  degree_dist_high <- degree_distributions_high[[i]]
  degree_dist_normal <- degree_distributions_normal[[i]]
  degree_dist_low <- degree_distributions_low[[i]]
  
  sorted_degree_dist <- sort(degree_dist, decreasing = TRUE)
  sorted_degree_dist_high <- sort(degree_dist_high, decreasing = TRUE)
  sorted_degree_dist_normal <- sort(degree_dist_normal, decreasing = TRUE)
  sorted_degree_dist_low <- sort(degree_dist_low, decreasing = TRUE)
  
  # Customize plot appearance
  par(mar = c(5, 4, 4, 2) + 0.1)  # Adjust the margins
  
  barplot(sorted_degree_dist, main = paste("Degree Distribution Network Top 30 -", network_years[i]), xlab = "Country", ylab = "Degree",
          las = 2, col = "steelblue", border = "white", horiz = FALSE, cex.names = 0.8)
  
  barplot(sorted_degree_dist_high, main = paste("Degree Distribution (High Intensity) -", network_years[i]), xlab = "Country", ylab = "Degree",
          las = 2, col = "steelblue", border = "white", horiz = FALSE, cex.names = 0.8)
  
  barplot(sorted_degree_dist_normal, main = paste("Degree Distribution (Normal Intensity) -", network_years[i]), xlab = "Country", ylab = "Degree",
          las = 2, col = "steelblue", border = "white", horiz = FALSE, cex.names = 0.8)
  
  barplot(sorted_degree_dist_low, main = paste("Degree Distribution (Low Intensity) -", network_years[i]), xlab = "Country", ylab = "Degree",
          las = 2, col = "steelblue", border = "white", horiz = FALSE, cex.names = 0.8)
}

Betweenness Centrality Analysis

Analyse Change in International Wheat Trade in 2022 through change in Degree, In_Degree, Out_Degree, Betweenness Centrality, Strength (In_Weight and Out_Weight).

The Ukraine-Russia war in 2022 brought significant changes to wheat international trade, as observed through network attribute analysis. Degree, betweenness centrality, and strength (in_weight and out_weight) underwent notable shifts, indicating disruptions in trade connections, and changes in import/export volumes. These findings offer valuable insights into the impact of the conflict on the dynamics of global wheat trade.

Code
# List of networks
networks <- list(network_2015, network_2016, network_2017, network_2018, network_2019, network_2020, network_2021, network_2022)

# Loop over the networks
for (i in seq_along(networks)) {
  year <- 2015 + i - 1
  network <- networks[[i]]
  
  # Calculate betweenness centrality
  betweenness_centrality <- igraph::betweenness(network)
  
  # Create a data frame with country and betweenness centrality values
  df_bc <- data.frame(country = V(network)$name, betweenness_centrality = betweenness_centrality)
  
  # Sort the data frame by betweenness centrality values in descending order
  sorted_between_cent <- df_bc[order(df_bc$betweenness_centrality, decreasing = TRUE), ]
  
  # Print the sorted data frame with year information
  cat(paste("Betweenness centrality for year", year, ":\n"))
  print(sorted_between_cent[1:10,])
  
  # # Set node and edge attributes for improved visibility
  # node_size <- ifelse(sorted_between_cent$country %in% head(sorted_between_cent$country, n = 5), 30, 10)  # Increase node size for top countries
  # edge_width <- 1  # Adjust edge width as needed
  # edge_color <- "gray"  # Adjust edge color as needed
  # 
  # # Add labels to the prominent countries with red color
  # prominent_countries_betweenness <- head(sorted_between_cent$country, n = 5)
  # prominent_color <- "red"
  # V(network)[prominent_countries_betweenness]$label.color <- prominent_color
  # V(network)[prominent_countries_betweenness]$label <- V(network)[prominent_countries_betweenness]$name
  # 
  # # Spread out the labels
  # layout <- layout_with_kk(network)
  # 
  # # Plot the network with labeled prominent countries and adjusted label positions
  # plot(network, vertex.size = node_size, vertex.label.cex = 0.8,
  #      layout = layout, edge.width = edge_width, edge.color = edge_color,
  #      main = paste("Trade Network for Year", year))
  
}
Betweenness centrality for year 2015 :
                                          country betweenness_centrality
United_States_of_America United_States_of_America               8517.033
United_Kingdom                     United_Kingdom               5339.167
France                                     France               4964.217
Turkey                                     Turkey               4754.250
Belgium                                   Belgium               4243.933
Lebanon                                   Lebanon               3854.900
China                                       China               2680.683
South_Africa                         South_Africa               2514.133
Sweden                                     Sweden               2458.633
Greece                                     Greece               2358.383
Betweenness centrality for year 2016 :
                                          country betweenness_centrality
United_States_of_America United_States_of_America               6756.905
Belgium                                   Belgium               6207.686
United_Kingdom                     United_Kingdom               4938.686
Lebanon                                   Lebanon               4454.838
France                                     France               3020.600
Turkey                                     Turkey               2701.876
Poland                                     Poland               2156.333
Mexico                                     Mexico               2129.195
Sweden                                     Sweden               2109.560
Israel                                     Israel               2070.510
Betweenness centrality for year 2017 :
                                          country betweenness_centrality
France                                     France               6857.950
China                                       China               6743.500
Italy                                       Italy               6008.300
Finland                                   Finland               4325.267
United_States_of_America United_States_of_America               3982.767
Uganda                                     Uganda               3457.000
Ireland                                   Ireland               3147.633
Kenya                                       Kenya               3059.500
Australia                               Australia               3037.150
Canada                                     Canada               2915.817
Betweenness centrality for year 2018 :
                                          country betweenness_centrality
France                                     France               6767.795
Germany                                   Germany               5432.817
Turkey                                     Turkey               4953.688
United_States_of_America United_States_of_America               4935.064
United_Kingdom                     United_Kingdom               3688.167
United_Arab_Emirates         United_Arab_Emirates               3626.617
Austria                                   Austria               3437.150
Chile                                       Chile               3130.367
Kenya                                       Kenya               3043.417
Morocco                                   Morocco               2975.464
Betweenness centrality for year 2019 :
                                          country betweenness_centrality
France                                     France               4991.621
Italy                                       Italy               4310.288
Turkey                                     Turkey               3683.372
United_Kingdom                     United_Kingdom               3182.733
Iran                                         Iran               3046.988
Sweden                                     Sweden               3028.289
Netherlands                           Netherlands               2920.277
United_States_of_America United_States_of_America               2841.094
Finland                                   Finland               2826.560
Lebanon                                   Lebanon               2818.105
Betweenness centrality for year 2020 :
                                          country betweenness_centrality
France                                     France               9718.165
United_Kingdom                     United_Kingdom               6321.544
Iran                                         Iran               5641.955
United_States_of_America United_States_of_America               4841.034
Switzerland                           Switzerland               4617.568
Lebanon                                   Lebanon               4431.141
Austria                                   Austria               4326.777
Finland                                   Finland               3898.145
United_Arab_Emirates         United_Arab_Emirates               3815.682
Uganda                                     Uganda               3766.210
Betweenness centrality for year 2021 :
                                          country betweenness_centrality
Canada                                     Canada               6511.274
United_Arab_Emirates         United_Arab_Emirates               4830.624
Romania                                   Romania               4263.167
Turkey                                     Turkey               3788.317
Switzerland                           Switzerland               3580.662
Russia                                     Russia               3575.762
Poland                                     Poland               3390.669
France                                     France               3036.088
United_States_of_America United_States_of_America               2981.267
Denmark                                   Denmark               2526.583
Betweenness centrality for year 2022 :
                                          country betweenness_centrality
Sweden                                     Sweden               5441.509
United_Kingdom                     United_Kingdom               5350.919
United_States_of_America United_States_of_America               5254.583
Greece                                     Greece               3751.338
Romania                                   Romania               3485.363
Israel                                     Israel               3300.022
United_Arab_Emirates         United_Arab_Emirates               2857.238
Spain                                       Spain               2617.326
Ireland                                   Ireland               2276.105
Italy                                       Italy               2202.822

Detailed Betweenness Centrality Analysis

Analyzing the countries with the top 10 betweenness centrality scores in 2022 provides insights into their role as crucial intermediaries in the international wheat trade network. Additionally, examining the change in betweenness centrality can shed light on the impact of these countries on the overall trade dynamics. Considering the trade between Ukraine and the new entrants in the top 10, namely “Sweden,” “Greece,” “Israel,” “Spain,” “Ireland,” and “Italy,” allows for a closer examination of the evolving trade relationships and potential implications for wheat trade.

By comparing the change in betweenness centrality for these countries, it becomes possible to assess their increased significance as trade intermediaries and their potential impact on facilitating wheat trade. Understanding the trade dynamics between Ukraine and these new entrants can provide valuable insights into emerging trade corridors and evolving trade partnerships within the wheat international trade network in 2022.

Code
# List of target countries
target_countries <- c("Sweden", "United_Kingdom", "Greece", "Israel", "Spain", "Ireland", "Italy", "Canada", "Turkey", "Switzerland", "Russia", "Poland", "France", "Denmark", "United_Arab_Emirates", "Romania", "United_States_of_America")

# Initialize empty data frame to store the merged data
merged_data_bet <- data.frame(country = character(),
                          year = integer(),
                          betweenness=integer(),
                          export = numeric(),
                          degree = numeric(),
                          degree_in = numeric(),
                          degree_out = numeric(),
                          in_weight = numeric(),
                          out_weight = numeric(),
                          stringsAsFactors = FALSE)

# Loop over the target countries
for (country in target_countries) {
  # Filter the export data for the specific country and years
  export_2020 <- ifelse(country %in% sorted_trade_list_2020$country,
                        sorted_trade_list_2020$export[sorted_trade_list_2020$country == country],
                        NA)
  export_2021 <- ifelse(country %in% sorted_trade_list_2021$country,
                        sorted_trade_list_2021$export[sorted_trade_list_2021$country == country],
                        NA)
  export_2022 <- ifelse(country %in% sorted_trade_list_2022$country,
                        sorted_trade_list_2022$export[sorted_trade_list_2022$country == country],
                        NA)
  
  # Create empty vectors for degree centralities, in-degree centralities, out-degree centralities, betweenness centralities, in-weight, and out-weight
  betweenness_centrality <-numeric()
  degree <- numeric()
  degree_in <- numeric()
  degree_out <- numeric()
  in_weight <- numeric()
  out_weight <- numeric()
  
  # Loop over the years and fetch the degree centralities, in-weight, and out-weight from the degree_df dataframe
  for (year in 2020:2022) {
    betweenness_value <-ifelse(country %in% degree_df$country & year %in% degree_df$year,
                           degree_df$betweenness_centralitie[degree_df$country == country & degree_df$year == year],
                           NA)
    
    degree_value <- ifelse(country %in% degree_df$country & year %in% degree_df$year,
                           degree_df$degree_centralitie[degree_df$country == country & degree_df$year == year],
                           NA)
    in_degree_value <- ifelse(country %in% degree_df$country & year %in% degree_df$year,
                              degree_df$degree_centralitie_in[degree_df$country == country & degree_df$year == year],
                              NA)
    out_degree_value <- ifelse(country %in% degree_df$country & year %in% degree_df$year,
                               degree_df$degree_centralitie_out[degree_df$country == country & degree_df$year == year],
                               NA)
    in_weight_value <- ifelse(country %in% degree_df$country & year %in% degree_df$year,
                              degree_df$in_weight[degree_df$country == country & degree_df$year == year],
                              NA)
    out_weight_value <- ifelse(country %in% degree_df$country & year %in% degree_df$year,
                               degree_df$out_weight[degree_df$country == country & degree_df$year == year],
                               NA)
    
    # Append the degree centralities, in-weight, and out-weight to the corresponding vectors
    betweenness_centrality <-c(degree, betweenness_value)
    degree <- c(degree, degree_value)
    degree_in <- c(degree_in, in_degree_value)
    degree_out <- c(degree_out, out_degree_value)
    in_weight <- c(in_weight, in_weight_value)
    out_weight <- c(out_weight, out_weight_value)
  }
  
  # Create a data frame for the specific country
  country_data <- data.frame(country = rep(country, 3),
                             year = 2020:2022,
                             export = c(export_2020, export_2021, export_2022),
                             betweenness=betweenness_centrality,
                             degree = degree,
                             degree_in = degree_in,
                             degree_out = degree_out,
                             in_weight = in_weight,
                             out_weight = out_weight,
                             stringsAsFactors = FALSE)
  
  # Append the country data to the merged data frame
  merged_data_bet <- rbind(merged_data_bet, country_data)
}

# Print the merged data
print(merged_data_bet)
                    country year export betweenness degree degree_in degree_out
1                    Sweden 2020     NA     34.0000     34        34         34
2                    Sweden 2021     NA     33.0000     33        33         33
3                    Sweden 2022     NA   2260.0135     35        35         35
4            United_Kingdom 2020   8460     64.0000     64        64         64
5            United_Kingdom 2021  12222     61.0000     61        61         61
6            United_Kingdom 2022   1933   2765.4528     53        53         53
7                    Greece 2020  19316     29.0000     29        29         29
8                    Greece 2021  18761     31.0000     31        31         31
9                    Greece 2022  73539   1673.7905     30        30         30
10                   Israel 2020  54203     30.0000     30        30         30
11                   Israel 2021 110222     33.0000     33        33         33
12                   Israel 2022  33681   2762.3631     44        44         44
13                    Spain 2020  76526     48.0000     48        48         48
14                    Spain 2021  56441     40.0000     40        40         40
15                    Spain 2022 341710   2242.8345     43        43         43
16                  Ireland 2020     NA     25.0000     25        25         25
17                  Ireland 2021      9     23.0000     23        23         23
18                  Ireland 2022     NA   1387.1190     14        14         14
19                    Italy 2020  50121     62.0000     62        62         62
20                    Italy 2021  35299     65.0000     65        65         65
21                    Italy 2022 121798   1667.7004     56        56         56
22                   Canada 2020     NA     92.0000     92        92         92
23                   Canada 2021     NA     96.0000     96        96         96
24                   Canada 2022     NA   1862.8083     75        75         75
25                   Turkey 2020 246435     53.0000     53        53         53
26                   Turkey 2021 471364     53.0000     53        53         53
27                   Turkey 2022 719333    754.0810     44        44         44
28              Switzerland 2020   2542     36.0000     36        36         36
29              Switzerland 2021   5170     38.0000     38        38         38
30              Switzerland 2022   5956    523.5139     30        30         30
31                   Russia 2020     NA    103.0000    103       103        103
32                   Russia 2021     NA    102.0000    102       102        102
33                   Russia 2022     NA      0.0000     32        32         32
34                   Poland 2020   1223     58.0000     58        58         58
35                   Poland 2021   1473     47.0000     47        47         47
36                   Poland 2022 129201    700.1667     64        64         64
37                   France 2020      1     92.0000     92        92         92
38                   France 2021      1     89.0000     89        89         89
39                   France 2022      8   1088.2905     83        83         83
40                  Denmark 2020     NA     35.0000     35        35         35
41                  Denmark 2021     NA     42.0000     42        42         42
42                  Denmark 2022     NA    716.9429     34        34         34
43     United_Arab_Emirates 2020  27544     45.0000     45        45         45
44     United_Arab_Emirates 2021   1469     51.0000     51        51         51
45     United_Arab_Emirates 2022     NA    395.9738     10        10         10
46                  Romania 2020     NA     55.0000     55        55         55
47                  Romania 2021     NA     52.0000     52        52         52
48                  Romania 2022 140273   2386.3583     54        54         54
49 United_States_of_America 2020      5    101.0000    101       101        101
50 United_States_of_America 2021      3     94.0000     94        94         94
51 United_States_of_America 2022     NA   5062.3385     96        96         96
   in_weight out_weight
1      12853     266975
2      22971     185573
3      37892     208505
4     687129     285896
5     704459     308960
6     667975     321297
7     226071      91917
8     361317     228220
9     407911     232034
10    674420       5643
11    593970       8499
12    663379        181
13    963970     236102
14   1249760     171431
15   1920898     237290
16    117594      13014
17    103298      22528
18    111536       9887
19   2041340      55492
20   2438855     158679
21   2979234     241354
22     34372    7423110
23     65478    8025640
24     29240    8479227
25   2627275     254882
26   2714600     153577
27   3385105     181383
28    141493     240577
29    241640       7683
30    254985      26198
31     77135    8957879
32     84096    9132096
33      2376    3231449
34    180032    1114756
35    164527    1077571
36    285087    1434634
37    113836    4991259
38    146433    5025267
39     93540    7668148
40     48415     297347
41     45643     276364
42     74728     319458
43    412851     171221
44    454676     581824
45    223949       9940
46    318673    1038791
47    390879    1996409
48    379032    2139301
49    459613    7183949
50    407070    8225718
51    718693    9197043

There is some intersting findings from the analysis, In year 2022, there has been a notable trend among several European countries, including Spain, Italy, Turkey, Poland, and Greece, in the wheat trade. These countries have been strategically adjusting their import and export patterns to address supply chain disruptions and maintain a stable supply of wheat.

To mitigate potential vulnerabilities in their wheat supply chains, these European nations have increased their imports of wheat from Ukraine. Ukraine has emerged as a reliable source for meeting their domestic demands and ensuring a steady flow of wheat to support their economies.

At the same time, these countries have exhibited strong performance in exporting wheat to other nations. This indicates their active engagement in international trade and their ability to leverage their wheat production capabilities to meet global demand.

The trade connectivity of these countries, as reflected in their degree values, has remained stable or experienced growth. This demonstrates their consistent involvement in the wheat trade and their active participation in connecting various trading partners.

Furthermore, the inclusion of these countries in the top 10 in betweenness centrality underscores their significant role in facilitating wheat trade flows between different nations. Their strategic import decisions from Ukraine and their strong export performance position them as key players in the global wheat trade landscape.

Overall, the wheat trade dynamics of these European countries reflect a strategy to balance supply chain disruptions and ensure a steady supply of wheat. Their increased imports from Ukraine and robust export performance highlight their active engagement in the wheat trade, their contribution to global wheat supply, and their role in connecting trading partners worldwide.

Spain

Spain’s trade with Ukraine has experienced notable changes. In 2020, Spain imported goods worth $76.526 million from Ukraine, which decreased to $56.441 million in 2021. However, there was a significant increase in imports from Ukraine in 2022, reaching $341.710 million.

On the export side, Spain has been actively engaged in international trade. The country’s exports to other countries were valued at $963.970 million in 2020, $1.249760 billion in 2021, and experienced a significant boost to $1.920898 billion in 2022.

Spain’s degree values, representing trade connections, remained relatively stable at 48 in 2020, 40 in 2021, and 43 in 2022. This indicates a consistent level of connectivity and engagement with trade partners.

Furthermore, Spain’s inclusion in the top 10 countries in betweenness centrality highlights its significance in facilitating trade flows between different countries.

Overall, Spain’s trade dynamics with Ukraine demonstrate changes in import volumes and robust export performance. The notable increase in imports from Ukraine in 2022 signifies the deepening trade relationship between the two countries. Spain’s active involvement in international trade, coupled with its prominent position in betweenness centrality, solidifies its role as a key player in the global trade landscape.

Italy

Analyzing Italy’s trade dynamics, there is similarities with Spain in terms of import and export patterns. In 2020, Italy imported goods worth $50.121 million from Ukraine, and this decreased to $35.299 million in 2021. However, there was a significant increase in imports from Ukraine in 2022, reaching $121.798 million.

On the export side, Italy demonstrated strong performance. The country exported goods valued at $2.041340 billion in 2020, $2.438855 billion in 2021, and experienced further growth to $2.979234 billion in 2022.

Italy’s degree values remained relatively stable at 62 in 2020, 65 in 2021, and 56 in 2022, indicating consistent trade connections and engagement with trade partners.

Similar to Spain, Italy’s inclusion in the top 10 countries in betweenness centrality underscores its importance in facilitating trade flows between different countries.

Overall, Italy’s trade dynamics with Ukraine exhibit comparable trends to Spain, with changes in import volumes and robust export performance. The notable increase in imports from Ukraine in 2022 signifies the deepening trade relationship between the two countries. Italy’s active involvement in international trade and its position in betweenness centrality highlight its role as a significant player in the global trade landscape.

Turkey:

Analyzing Turkey’s trade dynamics, a similar trend to Italy and Spain is observed in terms of import and export patterns. In 2020, Turkey imported goods worth $246.435 million from Ukraine, and this increased to $471.364 million in 2021. In 2022, there was further growth in imports from Ukraine, reaching $719.333 million. These numbers suggest Turkey’s reliance on Ukrainian products to meet its domestic needs.

On the export side, Turkey demonstrated robust performance. The country exported goods valued at $2.627275 billion in 2020, $2.714600 billion in 2021, and experienced further growth to $3.385105 billion in 2022.Turkey’s degree values remained consistent at 53 across the years, indicating stable trade connections and engagement with trade partners.

The similarities between Turkey, Italy, and Spain highlight a potential trend among European countries to increase imports from Ukraine as a means to balance supply chain disruptions and ensure a steady flow of goods.Considering the inclusion of these countries in the top 10 in betweenness centrality, it reinforces their significance in facilitating trade flows between different countries and their active involvement in the global trade landscape.

Overall, the trade dynamics of these European countries with Ukraine indicate a strategy to mitigate supply chain disruptions and ensure a steady supply of goods. These countries are actively engaged in international trade and play a crucial role in connecting various trading partners.

Poland:

Analyzing Poland’s trade dynamics, a similar trend to Spain, Italy, and Turkey is observed in terms of import and export patterns. In 2020, Poland imported goods worth $1.223 million from Ukraine, and this increased to $1.473 million in 2021. In 2022, there was a substantial increase in imports from Ukraine, reaching $129.201 million. These numbers suggest Poland’s growing reliance on Ukrainian products to meet its domestic needs and support its economy.

On the export side, Poland demonstrated robust performance. The country exported goods valued at $1.114756 billion in 2020, $1.077571 billion in 2021, and experienced further growth to $1.434634 billion in 2022.

Poland’s degree values increased from 58 in 2020 to 64 in 2022, indicating an expansion in trade connections and active engagement in the trade network.

The similarities between Poland, Spain, Italy, and Turkey highlight a common trend among European countries to increase imports from Ukraine as a means to balance supply chain disruptions and ensure a steady flow of goods.

Considering the inclusion of these countries in the top 10 in betweenness centrality, it reinforces their significance in facilitating trade flows between different countries and their active involvement in the global trade landscape.

Overall, the trade dynamics of Poland, along with Spain, Italy, and Turkey, with Ukraine indicate a strategy to mitigate supply chain disruptions and ensure a steady supply of goods. These countries are actively engaged in international trade and play a crucial role in connecting various trading partners..

Greece:

Analyzing Greece’s trade dynamics, a similar pattern to Poland, Spain, Italy, and Turkey is observed in terms of import and export trends. In 2020, Greece imported goods worth $19.316 million from Ukraine, and this slightly decreased to $18.761 million in 2021. In 2022, there was a notable increase in imports from Ukraine, reaching $73.539 million. These figures indicate Greece’s growing reliance on Ukrainian products to meet its domestic demands and support its economy.

On the export side, Greece demonstrated consistent performance. The country exported goods valued at $91.917 million in 2020, $228.220 million in 2021, and experienced further growth to $232.034 million in 2022.

Greece’s degree values remained relatively stable throughout the three-year period, with a degree of 29 in 2020 and 30 in both 2021 and 2022. This indicates Greece’s consistent level of trade connections and involvement in the trade network.

The similarities between Greece, Poland, Spain, Italy, and Turkey highlight the common trend among these European countries in increasing imports from Ukraine to balance supply chain disruptions and ensure a steady flow of goods.

Considering Greece’s inclusion in the top 10 in betweenness centrality, it reinforces its significance in facilitating trade flows between different countries and its active role in the global trade landscape.

Overall, the trade dynamics of Greece, along with Poland, Spain, Italy, and Turkey, with Ukraine reflect a strategy to mitigate supply chain disruptions and maintain a stable supply of goods. These countries actively engage in international trade and play a crucial role in connecting various trading partners. It indicates that these countries serves as a crucial intermediary, facilitating trade flows between other countries. It implies that the country’s exports are in high demand by multiple other countries, and its position in the trade network allows it to act as a link or gateway for those trade flows.

Romania:

Analyzing Romania’s trade dynamics, a different pattern compared to Greece, Poland, Spain, Italy, and Turkey is observed. In 2020 and 2021, Romania did not import any goods from Ukraine. However, in 2022, there was a significant increase in imports, reaching $140.273 million. This indicates a shift in Romania’s trade patterns and a growing reliance on Ukrainian products to meet domestic demands.

On the export side, Romania has shown consistent performance. The country exported goods valued at $1.038791 billion in 2020, which increased to $1.996409 billion in 2021. In 2022, Romania’s export value further grew to $2.139301 billion.

Romania’s degree values remained relatively stable throughout the three-year period, with a degree of 55 in 2020 and 52 in 2021 and 2022. This suggests a consistent level of trade connections and involvement in the trade network.

Unlike Greece, Poland, Spain, Italy, and Turkey, Romania’s trade dynamics demonstrate a significant increase in imports from Ukraine and a steady growth in exports. This indicates that Romania’s domestic demand has increased, potentially driving the need for imported goods and supporting the country’s export-oriented industries.

While Romania’s trade patterns may differ from the other European countries mentioned, it highlights the country’s active participation in international trade and its evolving role in the global trade landscape.

Overall, Romania’s trade dynamics with Ukraine showcase a growing reliance on Ukrainian imports and steady export performance. The country’s consistent trade connections and increasing trade volumes reflect its active engagement in the global trade network and its contribution to the trade flows between different countries.

United Arab Emirates:

In 2022, the United Arab Emirates did not import any goods from Ukraine. However, in 2020 and 2021, there were imports of $27.544 million and $1.469 million worth of wheat from Ukraine, respectively. Despite the significant imports in the previous years, there has been a notable decline in the degree, in-degree, and out-degree of the United Arab Emirates in 2022. The values dropped from 51 to 10, indicating a reduction in the country’s trade connections and involvement in the trade network compared to previous years.

Additionally, looking at the in-weight (import) and out-weight (export) values, there was a decrease in both import and export volumes in 2022. The in-weight decreased to $223.949 million, while the out-weight remained relatively low at $9,940. These changes suggest a shift in the United Arab Emirates’ trade dynamics, potentially reflecting a strategic realignment of trade partnerships and a reduced emphasis on trade with Ukraine.

The declining degree and trade volumes indicate that the United Arab Emirates has undergone changes in its trade patterns and engagements with Ukraine. It is important to closely monitor these trends as they may have implications for the overall trade landscape and bilateral relations between the two countries

United States of America*:

In 2022, the United States of America did not export any goods to Ukraine. However, it imported $5,000 and $3,000 worth of wheat from Ukraine, indicating a small but notable import relationship. The country has a degree, in-degree, and out-degree of 96 in 2022, indicating its strong trade connections and involvement in the trade network. In the previous years, the degree, in-degree, and out-degree were 94 in 2021 and 101 in 2020, suggesting a relatively stable trade engagement.

The United States of America experienced imports of $407 million, $459.6 million, and $718.693 million in 2020, 2021, and 2022, respectively. On the export side, it exported $7.19 billion, $8.22 billion, and $9.197 billion in 2020, 2021, and 2022, respectively. These export figures indicate the country’s significant role in international trade and its capacity to supply goods to various countries.

The consistent degree values and high exports reflect that trade performance suggests its active participation in wheat international trade.

France:

In recent years, France has shown limited or minimal imports from Ukraine, with very low quantities imports recorded in 2022, 2021, and 2020. This indicates that France relies on alternative sources or domestic production to fulfill its import requirements, reducing its dependence on Ukrainian goods.

Despite the lower imports from Ukraine, France maintains a significant presence in international trade. In 2022, France exported goods worth 7.67 billion dollar, highlighting its active engagement in outbound trade activities. Additionally, France demonstrates a high level of connectivity in the trade network, with a degree, in-degree, and out-degree of 83, signifying its extensive trade connections with other countries.

Furthermore, France’s trade data reveals substantial export volumes in international trade. The out-weight, representing exports to various countries, reached 7.67 billion dollar in 2022, reflecting its significant export activities and its role as a major global exporter.

Overall, while France’s imports from Ukraine remain limited, the country demonstrates a strong presence in international trade with substantial export volumes and a robust network of trade connections. France’s trade activities and connections extend beyond its interactions with Ukraine, emphasizing its diversified trade relationships and active participation in the global trade landscape.

Israel:

Analyzing Israel’s trade dynamics with Ukraine, there have been fluctuations in both import and export values over the years. In 2020, Israel imported goods worth $54.203 million from Ukraine, reflecting its reliance on foreign products to meet domestic demands. The import volume increased to $110.222 million in 2021, indicating a growing need for imported goods. However, in 2022, there was a decline in imports to $33.681 million, suggesting potential shifts in Israel’s trade patterns and sourcing strategies.

On the export side, Israel has been exporting goods to other countries, with values of $674.42 million, $593.970 million, and $663.379 million in 2020, 2021, and 2022, respectively. These export figures highlight Israel’s active participation in international trade and its ability to sell goods to global markets.

Looking at the degree, in-degree, and out-degree values, there has been an upward trend from 2020 to 2022, indicating an increase in Israel’s trade connections and involvement in the trade network. The degree values increased from 30 to 44, suggesting a broader range of trade partners and a higher level of connectivity in the trade network.

Overall, Israel’s trade with Ukraine has experienced fluctuations in imports and exports, indicating changing trade dynamics. The increase in degree values demonstrates Israel’s growing role in the trade network, while the declining import values in 2022 may suggest a shift in sourcing strategies. These changes reflect the evolving nature of Israel’s trade relationships and highlight the country’s active engagement in international trade.

Overall, Israel’s trade relationship with Ukraine reflects evolving dynamics and changing trade patterns. The fluctuating import and export values, coupled with an increasing degree of connectivity, demonstrate Israel’s active engagement in international trade. Additionally, its position in betweenness centrality emphasizes its role as an influential player in facilitating global trade connections and maintaining trade relations with various countries worldwide.

Russia:

In 2022, the ongoing conflict between Russia and Ukraine has had a substantial impact on both countries’ trade dynamics. Specifically, Russia’s trade relations with Ukraine have been significantly affected. Despite having a high degree, in-degree, and out-degree of 103 and 102 in 2020 and 2021, indicating its active participation in the trade network,

Prior to 2022, Russia demonstrated active involvement in the trade network, as indicated by its high degree, in-degree, and out-degree values of 103 and 102 in 2020 and 2021, respectively. These metrics signify Russia’s extensive trade connections and engagement in global trade flows. However, in 2022, there was a substantial decrease in these measures, with the degree, in-degree, and out-degree dropping to 32. This decline suggests a notable shift in Russia’s trade dynamics, potentially influenced by the conflict with Ukraine. Russia did not export any goods to Ukraine in 2020, 2021 and 2022.

Additionally, Russia’s export of wheat to different countries decreased from $7.18 billion in 2020 and $8.95 billion in 2021 to $3.23 million in 2022. This decline in exports implies a significant change in Russia’s trade patterns and export destinations. The conflict likely disrupted trade routes and relationships, impacting Russia’s ability to maintain its previous export levels.Overall, the conflict between Russia and Ukraine has had far-reaching effects on Russia’s trade activities. The absence of exports to Ukraine, the decrease in trade metrics, and the decline in wheat exports to other countries all point to the considerable impact of the conflict on Russia’s trade dynamics.

Additionally, Russia’s export of wheat to different countries decreased from $7.18 billion in 2020 and $8.95 billion in 2021 to $3.23 million in 2022. This decline in exports implies a significant change in Russia’s trade patterns and export destinations. The conflict likely disrupted trade routes and relationships, impacting Russia’s ability to maintain its previous export levels.In 2022, Russia did not export any goods to Ukraine. However, in 2020 and 2021, it had a degree, in-degree, and out-degree of 103 and 102, respectively, indicating its significant involvement in the trade network. Russia also exported wheat worth $7.18 billion and $8.95 billion to different countries in 2020 and 2021, respectively. In 2022, there was a significant decrease in the degree, in-degree, and out-degree, with the values dropping to 32. Additionally, the export to different countries decreased to $3.23 million. These changes suggest a potential shift in Russia’s trade dynamics and its level of engagement with Ukraine in the specified period.

Denmark:

Denmark did not have any recorded exports from Ukraine during the analyzed period, including in 2020, 2021, and 2022. Despite the absence of exports, Denmark maintained a consistent degree centrality, with values of 35 in 2020, 42 in 2021, and 34 in 2022. This indicates that Denmark remained connected within the trade network, potentially through other trade partners or regions. In terms of imports, Denmark received 48,415 units of in-weight import in 2020, 45,643 units in 2021, and 74,728 units in 2022. The corresponding export values were 297,347 units, 276,364 units, and 319,458 units

Eigenvector Centrality Analysis

Analyzing the change in network attributes for international wheat trade in 2022, including degree, in_degree, out_degree, eigenvector centrality, and strength (in_weight and out_weight), offers valuable insights into the evolving trade dynamics. Shifts in degree, in_degree, and out_degree reflect changes in trade connections and potential disruptions in the network. Analyzing eigenvector centrality reveals shifts in the influence and importance of countries within the trade network. Changes in strength provide insights into variations in trade volumes and capacities. These analyses contribute to a comprehensive understanding of the changing landscape of international wheat trade in 2022.

Code
# List of networks
networks <- list(network_2015, network_2016, network_2017, network_2018, network_2019, network_2020, network_2021, network_2022)

# Loop over the networks
for (i in seq_along(networks)) {
  year <- 2015 + i - 1
  network <- networks[[i]]
  
  # Calculate eigen vector centrality
  eigen_centrality <- eigen_centrality(network)$vector
  
  # Create a data frame with country and eigen vector centrality values
  df_eigen <- data.frame(country = V(network)$name, eigen_centrality = eigen_centrality)
  
  # Sort the data frame by eigen vector centrality values in descending order
  sorted_eigen_cent <- df_eigen[order(df_eigen$eigen_centrality, decreasing = TRUE), ]
  
  # Print the sorted data frame with year information
  cat(paste("Eigen vector centrality for year", year, ":\n"))
  print(sorted_eigen_cent[1:10,])
  
  # # Set node and edge attributes for improved visibility
  # node_size <- ifelse(sorted_eigen_cent$country %in% head(sorted_eigen_cent$country, n = 5), 30, 10)  # Increase node size for top countries
  # edge_width <- 1  # Adjust edge width as needed
  # edge_color <- "gray"  # Adjust edge color as needed
  # 
  # # Add labels to the prominent countries with red color
  # prominent_countries_eigen <- head(sorted_eigen_cent$country, n = 5)
  # prominent_color <- "red"
  # V(network)[prominent_countries_eigen]$label.color <- prominent_color
  # V(network)[prominent_countries_eigen]$label <- V(network)[prominent_countries_eigen]$name
  # 
  # # Spread out the labels
  # layout <- layout_with_kk(network)
  # 
  # # Plot the network with labeled prominent countries and adjusted label positions
  # plot(network, vertex.size = node_size, vertex.label.cex = 0.8,
  #      layout = layout, edge.width = edge_width, edge.color = edge_color,
  #      main = paste("Trade Network (Eigenvector Centrality) for Year ", year))

  
}
Eigen vector centrality for year 2015 :
                                          country eigen_centrality
United_States_of_America United_States_of_America        1.0000000
Canada                                     Canada        0.9636489
Japan                                       Japan        0.5786250
Indonesia                               Indonesia        0.5265893
Australia                               Australia        0.5208250
France                                     France        0.4499740
Mexico                                     Mexico        0.4273465
Algeria                                   Algeria        0.4168922
Italy                                       Italy        0.4050265
Nigeria                                   Nigeria        0.3724037
Eigen vector centrality for year 2016 :
                                          country eigen_centrality
Russia                                     Russia        1.0000000
Sudan                                       Sudan        0.7453991
Egypt                                       Egypt        0.5742778
United_States_of_America United_States_of_America        0.4212463
Canada                                     Canada        0.3863937
Ukraine                                   Ukraine        0.3132849
Indonesia                               Indonesia        0.2972591
Nigeria                                   Nigeria        0.2518018
Australia                               Australia        0.2489724
Turkey                                     Turkey        0.2297628
Eigen vector centrality for year 2017 :
                                          country eigen_centrality
United_States_of_America United_States_of_America        1.0000000
Canada                                     Canada        0.8293723
Indonesia                               Indonesia        0.7286364
Australia                               Australia        0.7103072
Russia                                     Russia        0.6608841
Egypt                                       Egypt        0.5452470
Japan                                       Japan        0.5278745
Mexico                                     Mexico        0.4436026
Ukraine                                   Ukraine        0.4208707
Philippines                           Philippines        0.4013371
Eigen vector centrality for year 2018 :
                                          country eigen_centrality
Russia                                     Russia        1.0000000
Egypt                                       Egypt        0.6909353
Sudan                                       Sudan        0.4910254
Turkey                                     Turkey        0.3443724
United_States_of_America United_States_of_America        0.2337773
Viet_Nam                                 Viet_Nam        0.2331708
Canada                                     Canada        0.2234209
Indonesia                               Indonesia        0.2159582
Ukraine                                   Ukraine        0.1935586
Nigeria                                   Nigeria        0.1801041
Eigen vector centrality for year 2019 :
                                          country eigen_centrality
Russia                                     Russia        1.0000000
Egypt                                       Egypt        0.7730902
United_States_of_America United_States_of_America        0.6659335
Turkey                                     Turkey        0.6644324
Canada                                     Canada        0.5988344
Ukraine                                   Ukraine        0.5690210
Indonesia                               Indonesia        0.4943959
Bangladesh                             Bangladesh        0.3640165
Philippines                           Philippines        0.3070134
Mexico                                     Mexico        0.3053609
Eigen vector centrality for year 2020 :
                                          country eigen_centrality
Russia                                     Russia        1.0000000
Egypt                                       Egypt        0.7181222
Turkey                                     Turkey        0.6509912
Canada                                     Canada        0.4885286
United_States_of_America United_States_of_America        0.4875312
Ukraine                                   Ukraine        0.3920099
Indonesia                               Indonesia        0.3009434
China                                       China        0.2974200
Nigeria                                   Nigeria        0.2953696
Bangladesh                             Bangladesh        0.2373699
Eigen vector centrality for year 2021 :
                                          country eigen_centrality
United_States_of_America United_States_of_America        1.0000000
Australia                               Australia        0.8933106
Russia                                     Russia        0.8623375
Canada                                     Canada        0.8488401
Indonesia                               Indonesia        0.7815892
China                                       China        0.7354162
Ukraine                                   Ukraine        0.6866722
Egypt                                       Egypt        0.6482856
Turkey                                     Turkey        0.5973311
Philippines                           Philippines        0.4913795
Eigen vector centrality for year 2022 :
                                          country eigen_centrality
Australia                               Australia        1.0000000
China                                       China        0.7517810
United_States_of_America United_States_of_America        0.6763246
Canada                                     Canada        0.6238646
Indonesia                               Indonesia        0.5847326
Japan                                       Japan        0.4455140
Philippines                           Philippines        0.4395882
South_Korea                           South_Korea        0.2969312
Mexico                                     Mexico        0.2932081
France                                     France        0.2795493

Detailed Eigenvector Centrality Anlysis

Analyzing the countries with the top 10 eigenvector centrality scores in 2022 provides insights into their overall influence in the wheat trade network. These countries, including Australia, China, United States of America, Canada, Indonesia, Philippines, Russia, Egypt, Turkey, Japan, South Korea, Mexico, and France, play significant roles in global wheat trade. Their high eigenvector centrality suggests their importance in the network, a secondary analysis is also performed to determine their import relationships with Ukraine in the context of international wheat trade in 2022.

Code
# List of target countries
target_countries <- c("Viet_Nam", "Argentina", "Morocco", "Italy", "Brazil", "Algeria", "Yemen", "Thailand", "Colombia", "Nigeria")


# Initialize an empty data frame to store the merged data
merged_data_eigen <- data.frame(country = character(),
                          year = integer(),
                          eigen = numeric(),
                          export = numeric(),
                          degree = numeric(),
                          degree_in = numeric(),
                          degree_out = numeric(),
                          in_weight = numeric(),
                          out_weight = numeric(),
                          stringsAsFactors = FALSE)

# Loop over the target countries
for (country in target_countries) {
  # Filter the export data for the specific country and years
  export_2020 <- ifelse(country %in% sorted_trade_list_2020$country,
                        sorted_trade_list_2020$export[sorted_trade_list_2020$country == country],
                        NA)
  export_2021 <- ifelse(country %in% sorted_trade_list_2021$country,
                        sorted_trade_list_2021$export[sorted_trade_list_2021$country == country],
                        NA)
  export_2022 <- ifelse(country %in% sorted_trade_list_2022$country,
                        sorted_trade_list_2022$export[sorted_trade_list_2022$country == country],
                        NA)
  
  # Create empty vectors for degree centralities, in-degree centralities, out-degree centralities, eigenvector centralities, in-weight, and out-weight
  eigen_centrality <- numeric()
  degree <- numeric()
  degree_in <- numeric()
  degree_out <- numeric()
  in_weight <- numeric()
  out_weight <- numeric()
  
  # Loop over the years and fetch the degree centralities, in-weight, and out-weight from the degree_df dataframe
  for (year in 2020:2022) {
    eigen_value <- ifelse(country %in% degree_df$country & year %in% degree_df$year,
                          degree_df$eigenvector_centralitie[degree_df$country == country & degree_df$year == year],
                          NA)
    
    degree_value <- ifelse(country %in% degree_df$country & year %in% degree_df$year,
                           degree_df$degree_centralitie[degree_df$country == country & degree_df$year == year],
                           NA)
    in_degree_value <- ifelse(country %in% degree_df$country & year %in% degree_df$year,
                              degree_df$degree_centralitie_in[degree_df$country == country & degree_df$year == year],
                              NA)
    out_degree_value <- ifelse(country %in% degree_df$country & year %in% degree_df$year,
                               degree_df$degree_centralitie_out[degree_df$country == country & degree_df$year == year],
                               NA)
    in_weight_value <- ifelse(country %in% degree_df$country & year %in% degree_df$year,
                              degree_df$in_weight[degree_df$country == country & degree_df$year == year],
                              NA)
    out_weight_value <- ifelse(country %in% degree_df$country & year %in% degree_df$year,
                               degree_df$out_weight[degree_df$country == country & degree_df$year == year],
                               NA)
    
    # Append the degree centralities, in-weight, and out-weight to the corresponding vectors
    eigen_centrality <- c(eigen_centrality, eigen_value)
    degree <- c(degree, degree_value)
    degree_in <- c(degree_in, in_degree_value)
    degree_out <- c(degree_out, out_degree_value)
    in_weight <- c(in_weight, in_weight_value)
    out_weight <- c(out_weight, out_weight_value)
  }
  
  # Create a data frame for the specific country
  country_data <- data.frame(country = rep(country, 3),
                             year = 2020:2022,
                             eigen = eigen_centrality,
                             export = c(export_2020, export_2021, export_2022),
                             degree = degree,
                             degree_in = degree_in,
                             degree_out = degree_out,
                             in_weight = in_weight,
                             out_weight = out_weight,
                             stringsAsFactors = FALSE)
  
  # Append the country data to the merged data frame
  merged_data_eigen <- rbind(merged_data_eigen, country_data)
}

# Print the merged data
print(merged_data_eigen)
     country year      eigen export degree degree_in degree_out in_weight
1   Viet_Nam 2020 0.12650947  55452     20        20         20    843748
2   Viet_Nam 2021 0.29746347  80890     23        23         23   1394752
3   Viet_Nam 2022 0.27934046     NA     10        10         10   1288119
4  Argentina 2020 0.13232508     NA     38        38         38       175
5  Argentina 2021 0.16956548     NA     49        49         49       174
6  Argentina 2022 0.18456712     NA     35        35         35        67
7    Morocco 2020 0.16460317 208090     22        22         22   1449940
8    Morocco 2021 0.23505138 297061     24        24         24   1632423
9    Morocco 2022 0.18178595  23066     19        19         19   2627669
10     Italy 2020 0.17300612  50121     62        62         62   2041340
11     Italy 2021 0.25948272  35299     65        65         65   2438855
12     Italy 2022 0.15875864 121798     56        56         56   2979234
13    Brazil 2020 0.09635500     NA     18        18         18   1347454
14    Brazil 2021 0.11527080     NA     22        22         22   1672146
15    Brazil 2022 0.15101223     NA     27        27         27   2065094
16   Algeria 2020 0.10935470   1358     16        16         16   1646071
17   Algeria 2021 0.23550225  30616     20        20         20   2341939
18   Algeria 2022 0.14230809     NA     14        14         14   2487897
19     Yemen 2020 0.11852796 144375     11        11         11    671369
20     Yemen 2021 0.18696505 198316     11        11         11    836508
21     Yemen 2022 0.13594284     NA      5         5          5    775992
22  Thailand 2020 0.09847665 132158     19        19         19    798451
23  Thailand 2021 0.18224883 115848     20        20         20    810866
24  Thailand 2022 0.12696511   5312     10        10         10    710027
25  Colombia 2020 0.07701622     NA      4         4          4    477631
26  Colombia 2021 0.16900348   4463      5         5          5    654918
27  Colombia 2022 0.12652921   1225      8         8          8    892182
28   Nigeria 2020 0.29536964     NA     21        21         21   2067421
29   Nigeria 2021 0.46930750 495223     19        19         19   2748804
30   Nigeria 2022 0.12124271     NA     14        14         14   1631601
   out_weight
1       11945
2       13834
3         331
4     2687685
5     3435962
6     4354970
7          11
8          91
9         122
10      55492
11     158679
12     241354
13     119006
14     323335
15    1056933
16          7
17         49
18        109
19        205
20        390
21          0
22         21
23         37
24         44
25          1
26          0
27          0
28         19
29          6
30       1000

Turkey was in top 10 in 2021 but it’s eigenvector_centrality value has decreased considerably in 2022, This is the only country in which is import considerable amount from Ukraine remaining prominent countries are not importing directly from Ukraine.

Secondary Analysis

To identify which prominent countries with high eigenvector centralities are importing from “Spain,” “Italy,” “Turkey,” “Poland,” “Greece,” and “Romania,” a secondary analysis is required. By examining specific trade data and bilateral trade relationships between these countries and the prominent countries, it can be determined if there are significant import connections. This analysis would involve assessing trade volumes between the prominent countries with high eigenvector centralities and “Spain,” “Italy,” “Turkey,” “Poland,” “Greece,” and “Romania” in the context of international wheat trade.

Code
# Read the data into a DataFrame
data_1 <- read.csv("C:/social network project/project data/1001/Unform Data/Merged/TradeData/TradeData_2022.csv")


data_1 <- data_1 %>%  
  rename(exporters = "X")

data_1 <- data_1 %>% 
  select(c(exporters, "Australia", "China", "United_States_of_America", "Canada", "Indonesia", "Philippines", "Russia", "Egypt", "Turkey", "Japan", "South_Korea", "Mexico", "France")) %>% 
           filter(exporters %in% c("Spain", "Italy", "Turkey", "Poland", "Greece", "Romania"))

data_1
  exporters Australia China United_States_of_America Canada Indonesia
1    Greece         0     0                        3      0         0
2     Italy         1     0                      983      0         0
3    Poland         0     0                        0      1         0
4   Romania         0     0                        1      1         0
5     Spain         0     0                        0      0         0
6    Turkey        48     0                        0      0         0
  Philippines Russia  Egypt Turkey Japan South_Korea Mexico France
1           0      0      0    701     0           0      0      0
2           0     21      0     60    43           0      0  11054
3           0     12      0      0     2           0      0   2425
4           0      0 472566  12958     0       11180      0   6205
5           0      0      0     23     0           0      0   6110
6           0   1532      0      0     0        3766      0     69

In the year 2022, the wheat trade dynamics indicate several noteworthy patterns among prominent countries and their import relationships with Ukraine.

Egypt, a significant wheat importer, imported a substantial amount of 472.566 million dollars’ worth of wheat from Romania. This highlights a strong trade partnership between the two countries in the wheat sector.

The United States, although importing a smaller quantity, obtained 0.98 million dollars’ worth of wheat from Italy. While the volume may be relatively low, it demonstrates a trade link between the United States and Italy in terms of wheat imports.

South Korea, another notable importer, sourced wheat from both Romania and Turkey. They imported 11.18 million dollars’ worth of wheat from Romania and 3.76 million dollars’ worth of wheat from Turkey. This showcases South Korea’s diversified wheat imports from multiple countries.

France, a prominent player in the wheat market, engaged in wheat imports from several European countries. They imported 11.05 million dollars’ worth of wheat from Italy, indicating a trade connection between the two countries. Additionally, France imported 6.2 million dollars’ worth of wheat from Romania and 6 million dollars’ worth from Spain. These trade relationships highlight the interconnectedness between France and these European wheat-exporting countries.

Importantly, these prominent countries appear to rely on intermediaries or trading partners that directly import from Ukraine. The observation is particularly significant for European countries that rank high in betweenness centrality, indicating their pivotal role in facilitating trade flows between Ukraine and other prominent wheat-importing nations.

The data from 2022 suggests that these prominent countries are involved in wheat imports from countries that have direct trade relationships with Ukraine. Additionally, European countries with high betweenness centrality values are serving as important intermediaries, importing from Ukraine and exporting to prominent wheat-importing nations globally.

Community Analysis

Community Detection

To perform community detection for the countries trading with Ukraine, the Walktrap community detection algorithm, cluster_walktrap, and the Fast Greedy Algorithm are suitable choices. These algorithms analyze the patterns of trade relationships to identify clusters or communities within the network. This analysis provides overall structure of the international wheat trade network in relation to the Ukraine-Russia war.

Code
# List of networks
networks <- list(network_2015, network_2016, network_2017, network_2018, network_2019, network_2020, network_2021, network_2022)

new_degree_df <- data.frame()

# Loop over the networks
for (i in seq_along(networks)) {
  network <- networks[[i]]
  year <- 2015 + i - 1
  
  # Convert the network to an undirected graph
  network_undirected <- as.undirected(network)
  
  # Perform community detection using the fast greedy algorithm
  community_fast <- fastgreedy.community(network_undirected)
  community_walk <- walktrap.community(network_undirected)
  
  # Plot cluster with year
  plot(community_fast, network, vertex.shape = "circle", vertex.size = 7, vertex.label.cex = .5, vertex.label.color = "black", edge.arrow.size = .25, rescale = TRUE, asp = 0, sub = paste("Fast and Greedy Method - Year", year))
  
  # Get the community membership
  community_membership <- membership(community_walk)
  
  # Filter the degree data frame for the current year's nodes
  temp <- degree_df[degree_df$year == year & degree_df$country %in% V(network)$name, ]
  
  # Match the community membership to the degree data frame
  temp$community <- community_membership[match(temp$country, V(network)$name)]
  
  new_degree_df <- rbind(new_degree_df, temp)
  
  # Print the dataframe with community memberships
  print(head(new_degree_df))
}

           year    country degree_centralitie degree_centralitie_in
Macedonia  2015  Macedonia                  9                     9
Canada     2015     Canada                 96                    96
France     2015     France                 96                    96
Georgia    2015    Georgia                  8                     8
Iraq       2015       Iraq                 11                    11
Azerbaijan 2015 Azerbaijan                  7                     7
           degree_centralitie_out betweenness_centralitie
Macedonia                       9                 3.00000
Canada                         96              1193.51905
France                         96              2397.66190
Georgia                         8               561.00000
Iraq                           11                60.38333
Azerbaijan                      7                 0.00000
           eigenvector_centralitie closeness_centralitie constraint_centralitie
Macedonia             5.875735e-05          3.881310e-06              0.6200077
Canada                9.636489e-01          3.895052e-06              0.1220351
France                4.499740e-01          3.898073e-06              0.1317498
Georgia               1.394159e-02          3.861943e-06              0.9469248
Iraq                  4.215198e-02          3.893611e-06              0.4305756
Azerbaijan            3.294558e-02          3.895492e-06              0.8563867
           in_weight out_weight intensity consol_intensity community_size
Macedonia      21108       1596      <NA>             <NA>             61
Canada         40768    7289209       low              low             39
France        309207    4811742    normal           normal             46
Georgia       118829        249    normal           normal             61
Iraq          121890         18      <NA>              low             39
Azerbaijan    296859        662    normal           normal             61
           betweenness_within_community eigenvector_within_community
Macedonia                          3663                     5.513647
Canada                             9938                     4.720102
France                              502                     5.475967
Georgia                            3663                     5.513647
Iraq                               9938                     4.720102
Azerbaijan                         3663                     5.513647
           community_density community_assortativity community
Macedonia           4220.749                0.206514         7
Canada              2016.616                0.206514         4
France              6110.426                0.206514         1
Georgia             4220.749                0.206514         2
Iraq                2016.616                0.206514         4
Azerbaijan          4220.749                0.206514         2

           year    country degree_centralitie degree_centralitie_in
Macedonia  2015  Macedonia                  9                     9
Canada     2015     Canada                 96                    96
France     2015     France                 96                    96
Georgia    2015    Georgia                  8                     8
Iraq       2015       Iraq                 11                    11
Azerbaijan 2015 Azerbaijan                  7                     7
           degree_centralitie_out betweenness_centralitie
Macedonia                       9                 3.00000
Canada                         96              1193.51905
France                         96              2397.66190
Georgia                         8               561.00000
Iraq                           11                60.38333
Azerbaijan                      7                 0.00000
           eigenvector_centralitie closeness_centralitie constraint_centralitie
Macedonia             5.875735e-05          3.881310e-06              0.6200077
Canada                9.636489e-01          3.895052e-06              0.1220351
France                4.499740e-01          3.898073e-06              0.1317498
Georgia               1.394159e-02          3.861943e-06              0.9469248
Iraq                  4.215198e-02          3.893611e-06              0.4305756
Azerbaijan            3.294558e-02          3.895492e-06              0.8563867
           in_weight out_weight intensity consol_intensity community_size
Macedonia      21108       1596      <NA>             <NA>             61
Canada         40768    7289209       low              low             39
France        309207    4811742    normal           normal             46
Georgia       118829        249    normal           normal             61
Iraq          121890         18      <NA>              low             39
Azerbaijan    296859        662    normal           normal             61
           betweenness_within_community eigenvector_within_community
Macedonia                          3663                     5.513647
Canada                             9938                     4.720102
France                              502                     5.475967
Georgia                            3663                     5.513647
Iraq                               9938                     4.720102
Azerbaijan                         3663                     5.513647
           community_density community_assortativity community
Macedonia           4220.749                0.206514         7
Canada              2016.616                0.206514         4
France              6110.426                0.206514         1
Georgia             4220.749                0.206514         2
Iraq                2016.616                0.206514         4
Azerbaijan          4220.749                0.206514         2

           year    country degree_centralitie degree_centralitie_in
Macedonia  2015  Macedonia                  9                     9
Canada     2015     Canada                 96                    96
France     2015     France                 96                    96
Georgia    2015    Georgia                  8                     8
Iraq       2015       Iraq                 11                    11
Azerbaijan 2015 Azerbaijan                  7                     7
           degree_centralitie_out betweenness_centralitie
Macedonia                       9                 3.00000
Canada                         96              1193.51905
France                         96              2397.66190
Georgia                         8               561.00000
Iraq                           11                60.38333
Azerbaijan                      7                 0.00000
           eigenvector_centralitie closeness_centralitie constraint_centralitie
Macedonia             5.875735e-05          3.881310e-06              0.6200077
Canada                9.636489e-01          3.895052e-06              0.1220351
France                4.499740e-01          3.898073e-06              0.1317498
Georgia               1.394159e-02          3.861943e-06              0.9469248
Iraq                  4.215198e-02          3.893611e-06              0.4305756
Azerbaijan            3.294558e-02          3.895492e-06              0.8563867
           in_weight out_weight intensity consol_intensity community_size
Macedonia      21108       1596      <NA>             <NA>             61
Canada         40768    7289209       low              low             39
France        309207    4811742    normal           normal             46
Georgia       118829        249    normal           normal             61
Iraq          121890         18      <NA>              low             39
Azerbaijan    296859        662    normal           normal             61
           betweenness_within_community eigenvector_within_community
Macedonia                          3663                     5.513647
Canada                             9938                     4.720102
France                              502                     5.475967
Georgia                            3663                     5.513647
Iraq                               9938                     4.720102
Azerbaijan                         3663                     5.513647
           community_density community_assortativity community
Macedonia           4220.749                0.206514         7
Canada              2016.616                0.206514         4
France              6110.426                0.206514         1
Georgia             4220.749                0.206514         2
Iraq                2016.616                0.206514         4
Azerbaijan          4220.749                0.206514         2

           year    country degree_centralitie degree_centralitie_in
Macedonia  2015  Macedonia                  9                     9
Canada     2015     Canada                 96                    96
France     2015     France                 96                    96
Georgia    2015    Georgia                  8                     8
Iraq       2015       Iraq                 11                    11
Azerbaijan 2015 Azerbaijan                  7                     7
           degree_centralitie_out betweenness_centralitie
Macedonia                       9                 3.00000
Canada                         96              1193.51905
France                         96              2397.66190
Georgia                         8               561.00000
Iraq                           11                60.38333
Azerbaijan                      7                 0.00000
           eigenvector_centralitie closeness_centralitie constraint_centralitie
Macedonia             5.875735e-05          3.881310e-06              0.6200077
Canada                9.636489e-01          3.895052e-06              0.1220351
France                4.499740e-01          3.898073e-06              0.1317498
Georgia               1.394159e-02          3.861943e-06              0.9469248
Iraq                  4.215198e-02          3.893611e-06              0.4305756
Azerbaijan            3.294558e-02          3.895492e-06              0.8563867
           in_weight out_weight intensity consol_intensity community_size
Macedonia      21108       1596      <NA>             <NA>             61
Canada         40768    7289209       low              low             39
France        309207    4811742    normal           normal             46
Georgia       118829        249    normal           normal             61
Iraq          121890         18      <NA>              low             39
Azerbaijan    296859        662    normal           normal             61
           betweenness_within_community eigenvector_within_community
Macedonia                          3663                     5.513647
Canada                             9938                     4.720102
France                              502                     5.475967
Georgia                            3663                     5.513647
Iraq                               9938                     4.720102
Azerbaijan                         3663                     5.513647
           community_density community_assortativity community
Macedonia           4220.749                0.206514         7
Canada              2016.616                0.206514         4
France              6110.426                0.206514         1
Georgia             4220.749                0.206514         2
Iraq                2016.616                0.206514         4
Azerbaijan          4220.749                0.206514         2

           year    country degree_centralitie degree_centralitie_in
Macedonia  2015  Macedonia                  9                     9
Canada     2015     Canada                 96                    96
France     2015     France                 96                    96
Georgia    2015    Georgia                  8                     8
Iraq       2015       Iraq                 11                    11
Azerbaijan 2015 Azerbaijan                  7                     7
           degree_centralitie_out betweenness_centralitie
Macedonia                       9                 3.00000
Canada                         96              1193.51905
France                         96              2397.66190
Georgia                         8               561.00000
Iraq                           11                60.38333
Azerbaijan                      7                 0.00000
           eigenvector_centralitie closeness_centralitie constraint_centralitie
Macedonia             5.875735e-05          3.881310e-06              0.6200077
Canada                9.636489e-01          3.895052e-06              0.1220351
France                4.499740e-01          3.898073e-06              0.1317498
Georgia               1.394159e-02          3.861943e-06              0.9469248
Iraq                  4.215198e-02          3.893611e-06              0.4305756
Azerbaijan            3.294558e-02          3.895492e-06              0.8563867
           in_weight out_weight intensity consol_intensity community_size
Macedonia      21108       1596      <NA>             <NA>             61
Canada         40768    7289209       low              low             39
France        309207    4811742    normal           normal             46
Georgia       118829        249    normal           normal             61
Iraq          121890         18      <NA>              low             39
Azerbaijan    296859        662    normal           normal             61
           betweenness_within_community eigenvector_within_community
Macedonia                          3663                     5.513647
Canada                             9938                     4.720102
France                              502                     5.475967
Georgia                            3663                     5.513647
Iraq                               9938                     4.720102
Azerbaijan                         3663                     5.513647
           community_density community_assortativity community
Macedonia           4220.749                0.206514         7
Canada              2016.616                0.206514         4
France              6110.426                0.206514         1
Georgia             4220.749                0.206514         2
Iraq                2016.616                0.206514         4
Azerbaijan          4220.749                0.206514         2

           year    country degree_centralitie degree_centralitie_in
Macedonia  2015  Macedonia                  9                     9
Canada     2015     Canada                 96                    96
France     2015     France                 96                    96
Georgia    2015    Georgia                  8                     8
Iraq       2015       Iraq                 11                    11
Azerbaijan 2015 Azerbaijan                  7                     7
           degree_centralitie_out betweenness_centralitie
Macedonia                       9                 3.00000
Canada                         96              1193.51905
France                         96              2397.66190
Georgia                         8               561.00000
Iraq                           11                60.38333
Azerbaijan                      7                 0.00000
           eigenvector_centralitie closeness_centralitie constraint_centralitie
Macedonia             5.875735e-05          3.881310e-06              0.6200077
Canada                9.636489e-01          3.895052e-06              0.1220351
France                4.499740e-01          3.898073e-06              0.1317498
Georgia               1.394159e-02          3.861943e-06              0.9469248
Iraq                  4.215198e-02          3.893611e-06              0.4305756
Azerbaijan            3.294558e-02          3.895492e-06              0.8563867
           in_weight out_weight intensity consol_intensity community_size
Macedonia      21108       1596      <NA>             <NA>             61
Canada         40768    7289209       low              low             39
France        309207    4811742    normal           normal             46
Georgia       118829        249    normal           normal             61
Iraq          121890         18      <NA>              low             39
Azerbaijan    296859        662    normal           normal             61
           betweenness_within_community eigenvector_within_community
Macedonia                          3663                     5.513647
Canada                             9938                     4.720102
France                              502                     5.475967
Georgia                            3663                     5.513647
Iraq                               9938                     4.720102
Azerbaijan                         3663                     5.513647
           community_density community_assortativity community
Macedonia           4220.749                0.206514         7
Canada              2016.616                0.206514         4
France              6110.426                0.206514         1
Georgia             4220.749                0.206514         2
Iraq                2016.616                0.206514         4
Azerbaijan          4220.749                0.206514         2

           year    country degree_centralitie degree_centralitie_in
Macedonia  2015  Macedonia                  9                     9
Canada     2015     Canada                 96                    96
France     2015     France                 96                    96
Georgia    2015    Georgia                  8                     8
Iraq       2015       Iraq                 11                    11
Azerbaijan 2015 Azerbaijan                  7                     7
           degree_centralitie_out betweenness_centralitie
Macedonia                       9                 3.00000
Canada                         96              1193.51905
France                         96              2397.66190
Georgia                         8               561.00000
Iraq                           11                60.38333
Azerbaijan                      7                 0.00000
           eigenvector_centralitie closeness_centralitie constraint_centralitie
Macedonia             5.875735e-05          3.881310e-06              0.6200077
Canada                9.636489e-01          3.895052e-06              0.1220351
France                4.499740e-01          3.898073e-06              0.1317498
Georgia               1.394159e-02          3.861943e-06              0.9469248
Iraq                  4.215198e-02          3.893611e-06              0.4305756
Azerbaijan            3.294558e-02          3.895492e-06              0.8563867
           in_weight out_weight intensity consol_intensity community_size
Macedonia      21108       1596      <NA>             <NA>             61
Canada         40768    7289209       low              low             39
France        309207    4811742    normal           normal             46
Georgia       118829        249    normal           normal             61
Iraq          121890         18      <NA>              low             39
Azerbaijan    296859        662    normal           normal             61
           betweenness_within_community eigenvector_within_community
Macedonia                          3663                     5.513647
Canada                             9938                     4.720102
France                              502                     5.475967
Georgia                            3663                     5.513647
Iraq                               9938                     4.720102
Azerbaijan                         3663                     5.513647
           community_density community_assortativity community
Macedonia           4220.749                0.206514         7
Canada              2016.616                0.206514         4
France              6110.426                0.206514         1
Georgia             4220.749                0.206514         2
Iraq                2016.616                0.206514         4
Azerbaijan          4220.749                0.206514         2

           year    country degree_centralitie degree_centralitie_in
Macedonia  2015  Macedonia                  9                     9
Canada     2015     Canada                 96                    96
France     2015     France                 96                    96
Georgia    2015    Georgia                  8                     8
Iraq       2015       Iraq                 11                    11
Azerbaijan 2015 Azerbaijan                  7                     7
           degree_centralitie_out betweenness_centralitie
Macedonia                       9                 3.00000
Canada                         96              1193.51905
France                         96              2397.66190
Georgia                         8               561.00000
Iraq                           11                60.38333
Azerbaijan                      7                 0.00000
           eigenvector_centralitie closeness_centralitie constraint_centralitie
Macedonia             5.875735e-05          3.881310e-06              0.6200077
Canada                9.636489e-01          3.895052e-06              0.1220351
France                4.499740e-01          3.898073e-06              0.1317498
Georgia               1.394159e-02          3.861943e-06              0.9469248
Iraq                  4.215198e-02          3.893611e-06              0.4305756
Azerbaijan            3.294558e-02          3.895492e-06              0.8563867
           in_weight out_weight intensity consol_intensity community_size
Macedonia      21108       1596      <NA>             <NA>             61
Canada         40768    7289209       low              low             39
France        309207    4811742    normal           normal             46
Georgia       118829        249    normal           normal             61
Iraq          121890         18      <NA>              low             39
Azerbaijan    296859        662    normal           normal             61
           betweenness_within_community eigenvector_within_community
Macedonia                          3663                     5.513647
Canada                             9938                     4.720102
France                              502                     5.475967
Georgia                            3663                     5.513647
Iraq                               9938                     4.720102
Azerbaijan                         3663                     5.513647
           community_density community_assortativity community
Macedonia           4220.749                0.206514         7
Canada              2016.616                0.206514         4
France              6110.426                0.206514         1
Georgia             4220.749                0.206514         2
Iraq                2016.616                0.206514         4
Azerbaijan          4220.749                0.206514         2
Code
community_df <- new_degree_df %>% 
  select(year,country, consol_intensity,degree_centralitie,degree_centralitie_in,
         degree_centralitie_out,betweenness_centralitie, 
         eigenvector_centralitie, community) %>% 
  group_by(year,community, country,consol_intensity) %>%
  summarise(mean_degree_centrality = mean(degree_centralitie),
            mean_in_degree_centrality = mean(degree_centralitie_in),
            mean_out_degree_centrality = mean(degree_centralitie_out),
            mean_in_degree_centrality = mean(betweenness_centralitie),
            mean_betweenness_centrality=mean(betweenness_centralitie),
            mean_eigenvector_centrality=mean(eigenvector_centralitie)
)
`summarise()` has grouped output by 'year', 'community', 'country'. You can
override using the `.groups` argument.

Bar plot: Walktrap Community Clusters

The Walktrap community detection algorithm was utilized to identify clusters within the network of countries trading with Ukraine. The resulting community clusters can be visualized using a bar plot. The bar plot represents the number of countries within each cluster, with the cluster labels displayed on the x-axis and the corresponding counts on the y-axis. This visualization provides an overview of the community structure and facilitates a better understanding of the trade dynamics and potential alliances within the wheat trade network involving Ukraine.

Code
year_community_country <- community_df %>% group_by(year, community) %>% 
  summarise(total_countries = n())
`summarise()` has grouped output by 'year'. You can override using the
`.groups` argument.
Code
year_community_country
# A tibble: 405 × 3
# Groups:   year [8]
    year community total_countries
   <dbl>     <dbl>           <int>
 1  2015         1              41
 2  2015         2              53
 3  2015         3               5
 4  2015         4              52
 5  2015         5               5
 6  2015         6               5
 7  2015         7               2
 8  2015         8               1
 9  2015         9               1
10  2015        10               1
# ℹ 395 more rows
Code
# Assuming your data frame is named 'df'
# Convert year column to factor for better visualization
year_community_country$year <- as.factor(year_community_country$year)

ggplot(year_community_country, aes(x = community, y = total_countries, fill = community)) +
  geom_bar(stat = "identity", position = "stack") +
  facet_wrap(~ year, ncol = 2) +
  labs(x = "Community", y = "Total Countries") +
  ggtitle("Total Countries in Each Community by Year") +
  theme_minimal()

The above graph explains number of countries falling different in different community groups between year 2015 to 2022, I have observed total 28 communities in the dataset from year 2015 to 2022, where 1 being the most powerful or prominent groups based on the volume of trade, strength in the network and key position in managing the supply chain in the network. The graph shows that there are more prominent countries in community level and very less countries in lower rank community clusters. These prominent countries are associated with larger trade volumes, higher number of network degree values etc.

The presence of more countries in higher-ranked community clusters suggests the existence of dominant players in the wheat international trade network. These prominent countries likely have stronger trade connections, larger volumes of wheat trade, and potentially greater influence over global wheat markets. In the context of the Ukraine-Russia war, these influential countries may play a significant role in shaping the dynamics of the wheat supply chain and could have more leverage in dealing with the disruptions caused by the conflict.

The presence of higher-ranked community clusters with a larger number of countries suggests the existence of trade hubs or central nodes in the network. These trade hubs act as key intermediaries, connecting different regions or clusters within the wheat trade network. Analyzing the membership of countries in these higher-ranked clusters can help identify the countries that play a central role in the trade network. In the context of the Ukraine-Russia war, these trade hubs may face heightened risks and disruptions, impacting the overall flow of wheat trade.

The presence of multiple communities within the prominent cluster suggests that it is not a homogeneous group but rather consists of various subgroups with distinct characteristics. These subdivisions could represent different trade patterns, regional dependencies, or other factors that differentiate countries within the prominent cluster. Analyzing these communities can provide a deeper understanding of the internal dynamics and complexities within the cluster.

The lower number of countries in lower-ranked community clusters indicates that these clusters are relatively smaller and may have weaker trade connections or less influence in the network. In the context of the Ukraine-Russia war, countries belonging to these lower-ranked clusters might be more vulnerable to disruptions in the wheat supply chain. They may have limited alternative trade routes or dependencies on specific trading partners, making them more susceptible to the impacts of the conflict. By examining the composition of the clusters and the geographical distribution of countries within them, it may be possible to identify regions that are more strongly interconnected or regions with higher diversification in terms of trade partners. In the context of the Ukraine-Russia war, this information can help assess the regional impact of disruptions and identify potential alternative routes or partners to mitigate the effects of the conflict.

The community detection algorithm accurately identified all the prominent wheat trading countries, as United States of America, Australia, Canada, Indonesia, China, Japan have been identified in list of top countries through eigenvector centrality or betweenness centrality.

Community for High/Normal/Low Trade Countries

Plots of High, Normal, Low Intensity Trade Countries using Walktrap Community

The yearwise bar plots distribution of communitities in each trade intensity category, with the trade intensity levels (high, normal, low) displayed on the x-axis and the corresponding count of countries on the y-axis.

This visualization provides a clear overview of the distribution of countries across different trade intensity categories within the community structure. It allows for easy comparison and identification of the number of countries classified as high, normal, and low-intensity trade in the wheat trade network. By analyzing this bar plot, insights can be gained into the clustering of countries based on their trade intensity levels.

Code
year_CONSOLE_INTENSITY_COMMUNITY <- community_df %>%
  filter(!is.na(consol_intensity)) %>%
  group_by(year, consol_intensity, community) %>%
  summarise(total = n())
`summarise()` has grouped output by 'year', 'consol_intensity'. You can
override using the `.groups` argument.
Code
year_CONSOLE_INTENSITY_COMMUNITY$year <- as.factor(year_CONSOLE_INTENSITY_COMMUNITY$year)
year_CONSOLE_INTENSITY_COMMUNITY$community <- as.factor(year_CONSOLE_INTENSITY_COMMUNITY$community)

ggplot(year_CONSOLE_INTENSITY_COMMUNITY, aes(x = consol_intensity, y = total, fill = community)) +
  geom_bar(stat = "identity", position = "stack") +
  facet_wrap(~ year, ncol = 2) +
  labs(x = "Intensity", y = "Total", fill = "Community") +
  ggtitle("Total in Each Community by Year") +
  theme_minimal()

The provided graph depicts the yearly shift in communities or clusters identified by the cluster_fast_greedy algorithm for countries that import from Ukraine. It categorizes these countries based on their trade intensity: high, normal, and low. The graph showcases the distribution of community membership rankings within each trade intensity category.

An important finding from the graph is that, regardless of the trade intensity category, there is a decreasing trend in the number of prominent countries according to their community ranking over time. This trend raises concerns about the diminishing prominence and influence of countries importing from Ukraine within their respective communities.

The decrease in the number of prominent countries within the communities of countries importing from Ukraine may indicate a temporary shift in trade patterns. European countries, which traditionally did not import directly from Ukraine, might have engaged in a stop-gap arrangement by importing from Ukraine and then exporting to prominent countries within the network. This diversification strategy helps mitigate the supply chain disruptions caused by the conflict, ensuring continued trade flows to the prominent countries.

The involvement of European countries as intermediaries reflects their adaptability and flexibility in managing the supply chain during the conflict. By importing from Ukraine and redirecting exports to prominent countries, these European countries play a significant role in maintaining stability within the wheat trade network. Their actions help ensure the continued availability of wheat to the prominent countries, mitigating potential disruptions caused by the conflict.

The temporary nature of the stop-gap arrangement highlights the resilience of the wheat supply chain in adapting to disruptions. However, it is essential to monitor the situation closely. Any prolonged or escalated conflict could still impact the overall stability of the supply chain and have broader economic implications. The reliance on alternative routes and intermediaries also introduces vulnerabilities, as any disruptions along these paths or changes in trade dynamics could still impact the flow of wheat to the prominent countries.

Hypothesis

Hypothesis 1: The degree centrality of nodes in the wheat supply chain network is influenced by the Russia and Ukraine war, indicating the impact on the connectivity and structure of the supply chain.

By performing the CUG test on size using the degree centrality measure, this hypothesis aims to assess the impact of the Russia and Ukraine war on the wheat supply chain network. The degree centrality of nodes represents their level of connectivity and importance within the network. This hypothesis suggests that the war may disrupt or alter the connectivity and structure of the supply chain, leading to changes in the degree centrality of nodes involved in the wheat trade.

Hypothesis 2: The number of edges in the wheat supply chain network, as measured by the degree centrality of nodes, is influenced by the Russia and Ukraine war, reflecting the changes in the flow of wheat trade and relationships among entities.

By performing the CUG test on edges using the degree centrality measure, this hypothesis examines the impact of the Russia and Ukraine war on the number of edges (connections) within the wheat supply chain network. The degree centrality of nodes represents their level of involvement in the trade relationships. This hypothesis suggests that the war may disrupt or alter the flow of wheat trade, leading to changes in the number of edges and the degree centrality of nodes involved in the supply chain.

Code
# List of networks
networks <- list(wtn_2015_stat, wtn_2016_stat, wtn_2017_stat, wtn_2018_stat, wtn_2019_stat, wtn_2020_stat, wtn_2021_stat, wtn_2022_stat)

cug_sizes <- list()
cug_edges <- list()

# Loop over the networks
for (i in seq_along(networks)) {
  network <- networks[[i]]
  year <- 2015 + i - 1

  # Perform CUG test on size
  cug_size <- cug.test(network,
                       FUN = centralization,
                       FUN.arg = list(FUN = "degree", mode = "all"),
                       mode = "digraph",
                       cmode = "size")

  # Perform CUG test on edges
  cug_edge <- cug.test(network,
                       FUN = centralization,
                       FUN.arg = list(FUN = "degree", mode = "all"),
                       mode = "digraph",
                       cmode = "edges")

  # Append the CUG results to the respective lists
  cug_sizes[[i]] <- cug_size
  cug_edges[[i]] <- cug_edge
}

# Print the CUG test results for each year
for (i in seq_along(cug_sizes)) {
  year <- 2015 + i - 1
  print(paste("Year", year, "CUG Size Test Result:"))
  print(cug_sizes[[i]])

  print(paste("Year", year, "CUG Edge Test Result:"))
  print(cug_edges[[i]])
  
  # Plot
  plot(cug_sizes[[i]], main = paste("Year:", year, " Degree Conditioned on Size"))
  
  plot(cug_edges[[i]], main = paste("Year:", year, " Degree Conditioned on Edges"))


}
[1] "Year 2015 CUG Size Test Result:"

Univariate Conditional Uniform Graph Test

Conditioning Method: size 
Graph Type: digraph 
Diagonal Used: FALSE 
Replications: 1000 

Observed Value: 0.2706243 
Pr(X>=Obs): 0 
Pr(X<=Obs): 1 

[1] "Year 2015 CUG Edge Test Result:"

Univariate Conditional Uniform Graph Test

Conditioning Method: edges 
Graph Type: digraph 
Diagonal Used: FALSE 
Replications: 1000 

Observed Value: 0.2706243 
Pr(X>=Obs): 0 
Pr(X<=Obs): 1 

[1] "Year 2016 CUG Size Test Result:"

Univariate Conditional Uniform Graph Test

Conditioning Method: size 
Graph Type: digraph 
Diagonal Used: FALSE 
Replications: 1000 

Observed Value: 0.2727494 
Pr(X>=Obs): 0 
Pr(X<=Obs): 1 

[1] "Year 2016 CUG Edge Test Result:"

Univariate Conditional Uniform Graph Test

Conditioning Method: edges 
Graph Type: digraph 
Diagonal Used: FALSE 
Replications: 1000 

Observed Value: 0.2727494 
Pr(X>=Obs): 0 
Pr(X<=Obs): 1 

[1] "Year 2017 CUG Size Test Result:"

Univariate Conditional Uniform Graph Test

Conditioning Method: size 
Graph Type: digraph 
Diagonal Used: FALSE 
Replications: 1000 

Observed Value: 0.2655379 
Pr(X>=Obs): 0 
Pr(X<=Obs): 1 

[1] "Year 2017 CUG Edge Test Result:"

Univariate Conditional Uniform Graph Test

Conditioning Method: edges 
Graph Type: digraph 
Diagonal Used: FALSE 
Replications: 1000 

Observed Value: 0.2655379 
Pr(X>=Obs): 0 
Pr(X<=Obs): 1 

[1] "Year 2018 CUG Size Test Result:"

Univariate Conditional Uniform Graph Test

Conditioning Method: size 
Graph Type: digraph 
Diagonal Used: FALSE 
Replications: 1000 

Observed Value: 0.2721107 
Pr(X>=Obs): 0 
Pr(X<=Obs): 1 

[1] "Year 2018 CUG Edge Test Result:"

Univariate Conditional Uniform Graph Test

Conditioning Method: edges 
Graph Type: digraph 
Diagonal Used: FALSE 
Replications: 1000 

Observed Value: 0.2721107 
Pr(X>=Obs): 0 
Pr(X<=Obs): 1 

[1] "Year 2019 CUG Size Test Result:"

Univariate Conditional Uniform Graph Test

Conditioning Method: size 
Graph Type: digraph 
Diagonal Used: FALSE 
Replications: 1000 

Observed Value: 0.2817493 
Pr(X>=Obs): 0 
Pr(X<=Obs): 1 

[1] "Year 2019 CUG Edge Test Result:"

Univariate Conditional Uniform Graph Test

Conditioning Method: edges 
Graph Type: digraph 
Diagonal Used: FALSE 
Replications: 1000 

Observed Value: 0.2817493 
Pr(X>=Obs): 0 
Pr(X<=Obs): 1 

[1] "Year 2020 CUG Size Test Result:"

Univariate Conditional Uniform Graph Test

Conditioning Method: size 
Graph Type: digraph 
Diagonal Used: FALSE 
Replications: 1000 

Observed Value: 0.2642257 
Pr(X>=Obs): 0 
Pr(X<=Obs): 1 

[1] "Year 2020 CUG Edge Test Result:"

Univariate Conditional Uniform Graph Test

Conditioning Method: edges 
Graph Type: digraph 
Diagonal Used: FALSE 
Replications: 1000 

Observed Value: 0.2642257 
Pr(X>=Obs): 0 
Pr(X<=Obs): 1 

[1] "Year 2021 CUG Size Test Result:"

Univariate Conditional Uniform Graph Test

Conditioning Method: size 
Graph Type: digraph 
Diagonal Used: FALSE 
Replications: 1000 

Observed Value: 0.2525084 
Pr(X>=Obs): 0 
Pr(X<=Obs): 1 

[1] "Year 2021 CUG Edge Test Result:"

Univariate Conditional Uniform Graph Test

Conditioning Method: edges 
Graph Type: digraph 
Diagonal Used: FALSE 
Replications: 1000 

Observed Value: 0.2525084 
Pr(X>=Obs): 0 
Pr(X<=Obs): 1 

[1] "Year 2022 CUG Size Test Result:"

Univariate Conditional Uniform Graph Test

Conditioning Method: size 
Graph Type: digraph 
Diagonal Used: FALSE 
Replications: 1000 

Observed Value: 0.2448788 
Pr(X>=Obs): 0 
Pr(X<=Obs): 1 

[1] "Year 2022 CUG Edge Test Result:"

Univariate Conditional Uniform Graph Test

Conditioning Method: edges 
Graph Type: digraph 
Diagonal Used: FALSE 
Replications: 1000 

Observed Value: 0.2448788 
Pr(X>=Obs): 0 
Pr(X<=Obs): 1 

Interpretation, Hypothesis 1: In all three years, the observed values of the test statistic are quite similar, indicating a consistent degree centrality in the wheat supply chain network. Furthermore, the probabilities Pr(X>=Obs) and Pr(X<=Obs) are both 0, suggesting that the observed values deviate significantly from what would be expected under a uniform random graph model.

Based on this analysis, it appears that the degree centrality of the wheat supply chain network did not show a significant change or impact in response to the Russia and Ukraine war across the years 2020, 2021, and 2022.

The shift in the density distribution of the degree distribution in 2022 compared to 2021 indicates potential changes in the connectivity and influence of nodes in the wheat trade network. The Russia and Ukraine war may have caused disruptions or alterations in the flow of wheat trade, resulting in shifts in the number of connections and the importance of nodes in the supply chain. Further analysis and investigation of the network structure can provide more insights into the specific changes and their implications on the wheat trade network.

Interpretation, Hypothesis 2:

In all three years, the observed values of the test statistic are quite similar, indicating a consistent number of edges (degree centrality) in the wheat supply chain network. Furthermore, the probabilities Pr(X>=Obs) and Pr(X<=Obs) are both 0, suggesting that the observed values deviate significantly from what would be expected under a uniform random graph model.

Based on this analysis, it appears that the number of edges in the wheat supply chain network, as measured by the degree centrality of nodes, did not show a significant change or impact in response to the Russia and Ukraine war across the years 2020, 2021, and 2022.

Hypothesis 3: The betweenness centrality of nodes in the wheat trade network is influenced by the Russia and Ukraine war, reflecting the impact on the flow of trade and the importance of nodes as intermediaries in connecting different regions or entities.

Code
# # List of networks
# networks <- list(wtn_2015_stat, wtn_2016_stat, wtn_2017_stat, wtn_2018_stat, wtn_2019_stat, wtn_2020_stat, wtn_2021_stat, wtn_2022_stat)
# 
# cug_betweenness <- list()
# 
# # Loop over the networks
# for (i in seq_along(networks)) {
#   network <- networks[[i]]
#   year <- 2015 + i - 1
# 
#   # Perform CUG test on betweenness centrality
#   cug_betweenness[[i]] <- cug.test(network,
#                                    FUN = centralization,
#                                    FUN.arg = list(FUN = "betweenness", mode = "all"),
#                                    mode = "digraph",
#                                    cmode = "size")
# }

I tried to run the above program for hypothesis on betweenness, but it is taking infinite amount of time and failing because of resources

Hypothesis 4: The network correlation between two networks with the same nodes but at different points in time is significantly different from zero, indicating a change in the network structure over time.

Code
# Convert adjacency matrices to regular matrices
network1_matrix <- as.matrix(as_adjacency_matrix(network_2021))
network2_matrix <- as.matrix(as_adjacency_matrix(network_2022))

# Calculate network correlation
network_corr <- cor(network1_matrix, network2_matrix)
Warning in cor(network1_matrix, network2_matrix): the standard deviation is zero
Code
# Perform the one-sample t-test
t_test_result <- t.test(network_corr, mu = 0)

# Print the test result
cat("Network Correlation:", network_corr, "\n")
Network Correlation: 0.7847349 0.09595386 0.2509242 0.1033217 0.1319604 0.160594 0.1319604 0.1073391 0.6669722 0.4417109 0.3486073 0.3282393 0.2317527 -0.03690062 0.3321056 0.3861575 0.4417109 -0.04353261 0.321798 -0.04031935 0.1751543 0.2305469 0.3651399 0.6637151 0.2156592 0.1503552 0.1450515 0.05940885 0.4812667 0.1751543 0.3337904 0.3983692 0.5630217 -0.05369829 0.1989533 0.05551119 0.3615508 0.2382409 0.425974 0.3364507 NA -0.04194852 -0.05638839 0.08932288 -0.03123323 -0.03690062 -0.04194852 -0.03321056 0.05551119 0.1450515 -0.05232396 -0.01889283 -0.03690062 0.3861575 0.08575274 0.09595386 0.4295232 0.06354684 0.121034 -0.0291436 0.2305469 -0.0218687 0.2305469 0.4346605 -0.04353261 0.2582981 0.1448853 0.1619501 -0.01085521 0.1307315 0.05940885 0.121034 -0.01085521 -0.0291436 -0.0291436 -0.02691519 -0.03690062 -0.04353261 -0.0245098 -0.0245098 -0.0218687 -0.01889283 -0.02691519 -0.01889283 -0.0245098 -0.03321056 -0.0218687 -0.0245098 -0.01889283 -0.02691519 -0.0291436 -0.03123323 -0.01538862 -0.03509485 -0.03863914 -0.03863914 -0.0218687 -0.0245098 -0.01538862 0.05940885 0.1033217 -0.0245098 -0.04806063 -0.03690062 0.1033217 -0.0218687 0.08329777 -0.03123323 NA 0.121034 -0.04194852 -0.03123323 -0.03690062 -0.03509485 0.06354684 -0.0291436 -0.04194852 0.0227616 -0.01538862 -0.03321056 -0.04194852 -0.0245098 -0.03509485 -0.01538862 -0.01538862 -0.01085521 0.1319604 -0.02691519 -0.01538862 -0.01538862 -0.0218687 -0.01889283 0.1116016 -0.03509485 -0.0245098 -0.01085521 -0.01085521 -0.0218687 -0.0218687 -0.02691519 -0.01538862 -0.03321056 -0.0245098 -0.01085521 -0.02691519 -0.01538862 -0.01889283 -0.0218687 -0.0245098 0.2066592 -0.01085521 -0.0218687 -0.01889283 -0.01538862 -0.01889283 -0.0245098 -0.01085521 -0.01889283 -0.01889283 NA -0.01538862 -0.01538862 -0.04194852 NA -0.0291436 NA -0.01085521 -0.01889283 -0.03690062 -0.01538862 -0.01538862 NA -0.01889283 -0.01085521 NA -0.01889283 -0.01085521 -0.01085521 -0.01538862 -0.01538862 -0.01085521 -0.01085521 -0.0245098 -0.01085521 -0.02691519 -0.02691519 -0.01085521 -0.01085521 -0.01085521 -0.01889283 -0.01889283 NA NA -0.01085521 -0.01085521 -0.01085521 -0.01085521 -0.01085521 NA NA -0.01085521 NA NA NA NA -0.01085521 -0.01085521 -0.01085521 -0.01085521 0.3057861 0.4264729 0.3011702 0.2483334 0.07211409 0.09570532 0.3057861 0.3404537 0.3320504 0.2850697 0.3135295 0.469996 0.3318396 0.1479433 0.3011702 0.3969735 0.3719204 0.1113683 0.2898234 0.1278987 0.1708945 0.2337533 0.3301131 0.2959091 0.3087959 0.2152891 0.2076948 0.3189965 0.2318914 0.1708945 0.2089398 0.4106055 0.2850697 0.2152891 0.2848752 0.3080947 0.3947414 0.2005064 0.3570081 0.34113 NA 0.298608 0.34113 0.2207141 0.07211409 0.1479433 0.298608 0.2837341 0.3080947 0.2793256 0.2979006 0.1614107 0.1479433 0.1630427 0.3529431 0.1373934 0.06287589 0.2507982 0.2837341 0.08286355 0.1373934 0.132298 0.3301131 0.34113 0.198219 0.159799 0.08286355 0.3080947 -0.01554325 0.3230335 0.2410196 0.173305 -0.01554325 -0.04172985 -0.04172985 -0.03853906 0.1479433 0.1113683 0.1116016 -0.03509485 0.132298 0.1614107 0.09570532 0.1614107 -0.03509485 0.06287589 0.132298 0.1116016 0.1614107 0.2299497 0.207457 -0.04472192 0.2082261 0.159799 0.1373934 0.04103361 -0.03131313 0.1116016 -0.0220345 0.2410196 0.2483334 0.1116016 0.1708945 0.2483334 0.1479433 0.132298 0.1192716 0.07211409 NA -0.0475532 0.298608 0.1889501 0.2483334 -0.05025126 0.2507982 -0.04172985 0.1192716 0.3479461 0.2082261 0.06287589 0.1192716 0.1116016 -0.05025126 -0.0220345 -0.0220345 -0.01554325 0.1889501 0.09570532 -0.0220345 -0.0220345 -0.03131313 0.1614107 0.05477387 0.05477387 0.2582981 -0.01554325 -0.01554325 -0.03131313 -0.03131313 0.3641941 0.2082261 0.06287589 0.1116016 -0.01554325 -0.03853906 -0.0220345 -0.02705207 -0.03131313 0.1116016 -0.03131313 -0.01554325 -0.03131313 -0.02705207 -0.0220345 0.1614107 0.1116016 0.3093106 0.1614107 -0.02705207 NA 0.2082261 -0.0220345 0.1192716 NA 0.207457 NA -0.01554325 -0.02705207 0.1479433 0.2082261 -0.0220345 NA 0.1614107 0.3093106 NA 0.1614107 0.3093106 0.3093106 0.2082261 0.2082261 0.3093106 0.3093106 0.2582981 0.3093106 0.09570532 0.09570532 -0.01554325 0.3093106 -0.01554325 0.1614107 -0.02705207 NA NA -0.01554325 -0.01554325 0.3093106 -0.01554325 0.3093106 NA NA -0.01554325 NA NA NA NA 0.3093106 -0.01554325 0.3093106 -0.01554325 0.1645806 0.2036054 0.871345 0.1666667 0.293894 0.06753674 0.2292373 0.5574708 0.3259435 0.3014854 0.2895048 0.4761079 0.4761079 0.3333333 0.5818713 0.3256029 0.3495483 0.2053596 0.559017 0.2895048 0.4301249 0.3635811 0.3635811 0.1152351 0.5780576 0.404226 0.4684753 0.4982116 0.4370415 0.2532511 0.270666 0.3859065 0.3976112 0.4446486 0.5362405 0.4792122 0.5783517 0.3360438 0.3308413 0.4527748 NA 0.3699102 0.4916851 0.2895048 0.2292373 0.2777778 0.3699102 0.3277778 0.5213829 0.4684753 0.3788755 0.04740668 0.2777778 0.2824507 0.5384184 0.2569306 0.1444444 0.4743434 0.3277778 0.3259435 0.2036054 0.205777 0.3102559 0.4138645 0.3014854 0.1268085 0.2569939 0.3948708 0.1470871 0.4237144 0.2824507 0.2055556 0.1470871 0.2569939 0.1880444 0.2161176 0.2222222 0.3495483 0.2509242 0.1697429 0.205777 0.1517014 0.290408 0.2559961 0.1697429 0.2666667 0.205777 0.1697429 0.1517014 0.2161176 0.3948931 0.2292373 0.2085144 0.3592908 0.3635811 0.2569306 0.02469324 0.1697429 -0.04633654 0.4119073 0.2222222 0.08856149 0.4301249 0.2777778 0.2222222 0.205777 0.3202881 0.293894 NA 0.2055556 0.270666 0.293894 0.3333333 0.3011702 0.4301249 0.1880444 0.3699102 0.4315308 0.2085144 0.2666667 0.270666 0.1697429 0.06868795 0.2085144 0.2085144 0.1470871 0.2292373 0.1418272 -0.04633654 0.08108894 0.1152351 0.2559961 0.2430497 0.3011702 0.2509242 0.1470871 0.1470871 0.205777 0.1152351 0.2161176 0.2085144 0.2055556 0.2509242 0.1470871 0.2161176 0.2085144 0.1517014 0.1152351 0.007380124 0.205777 0.1470871 0.02469324 -0.05688801 -0.04633654 0.2559961 0.08856149 0.1470871 0.2559961 0.1517014 NA 0.2085144 0.08108894 0.3202881 NA 0.3259435 NA 0.1470871 0.04740668 0.3333333 0.08108894 0.2085144 NA 0.1517014 0.1470871 NA 0.2559961 0.1470871 0.1470871 0.08108894 0.2085144 0.1470871 0.1470871 0.2509242 0.1470871 0.2161176 0.290408 0.1470871 0.1470871 0.1470871 0.04740668 0.04740668 NA NA 0.1470871 0.1470871 0.1470871 -0.03268602 0.1470871 NA NA -0.03268602 NA NA NA NA 0.1470871 0.1470871 0.1470871 0.1470871 0.3501244 -0.04923846 0.2292373 0.8464147 0.09017413 0.5630663 0.6100746 0.3306937 0.2400716 0.2343789 0.25838 0.2338488 0.2338488 0.06465668 0.293894 0.4573882 0.3309966 0.4276143 0.3466809 0.4648865 0.3832029 0.165154 0.3795465 0.1541428 0.2509256 0.419125 0.4079626 0.02365801 0.2741939 0.3832029 0.4453047 0.1165345 0.2343789 0.09408929 0.1973983 0.1894209 0.3923402 0.241019 0.2239334 0.08458122 NA 0.1460485 0.241019 0.4648865 0.09017413 0.2880161 0.1460485 0.08052696 0.3589669 0.2485903 0.1821718 0.1855814 0.1763364 0.1971501 0.2885035 0.165154 0.2033747 0.205424 0.2033747 0.2400716 0.3795465 0.1541428 0.2723502 0.319238 0.2343789 0.4226221 0.3786765 0.2741939 0.3475533 0.2270411 0.1971501 0.2033747 -0.01383297 0.1014667 0.2400716 0.2643839 0.06465668 0.2343789 0.295154 0.1319604 -0.02786763 0.1855814 0.2643839 -0.02407543 0.295154 0.2033747 -0.02786763 0.295154 -0.02407543 0.1150427 0.1014667 0.2201493 -0.01960996 0.07211409 0.165154 0.05795777 0.1541428 0.295154 0.4927003 0.1971501 0.06465668 0.1319604 0.205424 0.2880161 0.2880161 0.1541428 0.1460485 0.09017413 NA 0.2033747 -0.05345566 0.2201493 0.3996958 0.1889501 0.205424 0.1014667 0.1460485 0.1973983 -0.01960996 0.08052696 0.1460485 0.1319604 0.1889501 -0.01960996 -0.01960996 -0.01383297 0.2201493 -0.03429846 0.2365452 -0.01960996 -0.02786763 0.1855814 0.1889501 0.1889501 0.1319604 -0.01383297 -0.01383297 -0.02786763 0.1541428 0.2643839 -0.01960996 -0.04232074 0.1319604 -0.01383297 0.2643839 -0.01960996 -0.02407543 0.3361533 0.295154 0.3361533 -0.01383297 0.5181637 0.3952382 0.4927003 -0.02407543 0.295154 0.3475533 -0.02407543 -0.02407543 NA -0.01960996 -0.01960996 0.3455526 NA 0.1014667 NA 0.3475533 0.3952382 0.1763364 0.2365452 -0.01960996 NA -0.02407543 -0.01383297 NA -0.02407543 -0.01383297 -0.01383297 -0.01960996 -0.01960996 -0.01383297 -0.01383297 0.295154 -0.01383297 -0.03429846 0.1150427 -0.01383297 -0.01383297 -0.01383297 -0.02407543 0.3952382 NA NA -0.01383297 -0.01383297 -0.01383297 -0.01383297 -0.01383297 NA NA -0.01383297 NA NA NA NA -0.01383297 -0.01383297 -0.01383297 -0.01383297 0.3057861 0.1373934 0.3592908 0.2483334 0.5394581 0.09570532 -0.04472192 0.4027064 0.3320504 0.3719204 0.2207141 0.2627615 0.2627615 0.1479433 0.4174114 0.3969735 0.1113683 0.198219 0.4037896 0.2207141 0.0909908 0.2337533 0.1373934 0.132298 0.3624883 0.2152891 0.2793256 0.3189965 0.3080947 0.3307019 0.1192716 0.3307019 0.2850697 0.3613781 0.3479461 0.2318914 0.3947414 0.2005064 0.1883873 0.2708182 NA 0.298608 0.34113 0.2207141 0.1889501 0.0475532 0.1192716 0.06287589 0.2318914 0.4942177 0.2233363 -0.02705207 0.2483334 0.4749504 0.4104822 0.2337533 0.3941632 0.2507982 0.2837341 0.3320504 0.3301131 0.132298 0.3301131 0.4114418 0.2850697 0.2648241 0.3320504 0.384298 0.3093106 0.3230335 0.3189965 0.173305 -0.01554325 0.207457 0.08286355 0.2299497 0.1479433 0.2850697 0.2582981 0.1116016 0.2959091 0.1614107 0.4984385 0.3498734 0.1116016 0.173305 0.2959091 -0.03509485 0.3498734 0.3641941 0.3320504 0.1889501 0.4384866 0.3698492 0.3301131 0.2337533 0.132298 0.2582981 -0.0220345 0.2410196 0.3487234 0.2582981 0.2507982 0.2483334 0.0475532 0.2959091 0.298608 0.1889501 NA 0.173305 0.2089398 0.3057861 0.4491135 0.159799 0.3307019 0.08286355 0.298608 0.1587334 0.4384866 0.173305 0.2089398 0.1116016 0.05477387 -0.0220345 -0.0220345 -0.01554325 0.07211409 0.3641941 -0.0220345 0.2082261 -0.03131313 0.3498734 0.2648241 0.159799 0.2582981 0.3093106 -0.01554325 0.2959091 0.132298 0.2299497 0.2082261 0.2837341 0.2582981 -0.01554325 0.09570532 -0.0220345 0.1614107 -0.03131313 -0.03509485 0.132298 -0.01554325 0.132298 -0.02705207 -0.0220345 0.3498734 0.1116016 -0.01554325 0.3498734 0.1614107 NA 0.4384866 0.2082261 0.1192716 NA 0.3320504 NA 0.3093106 0.1614107 0.2483334 -0.0220345 0.2082261 NA 0.1614107 0.3093106 NA 0.1614107 0.3093106 0.3093106 0.2082261 0.4384866 0.3093106 0.3093106 -0.03509485 0.3093106 0.2299497 0.2299497 0.3093106 -0.01554325 0.3093106 0.1614107 -0.02705207 NA NA -0.01554325 0.3093106 0.3093106 -0.01554325 0.3093106 NA NA -0.01554325 NA NA NA NA 0.3093106 0.3093106 -0.01554325 -0.01554325 0.1855814 -0.0297841 0.2559961 0.3318467 0.1855814 0.4610437 0.1855814 0.1721076 0.2011124 0.278143 0.1354737 0.0794752 0.2034328 -0.02844401 0.2559961 0.2416904 0.278143 0.1222934 0.145797 0.1354737 0.106337 0.1431292 0.1431292 0.2767356 0.2240452 0.2207579 0.08610203 -0.03816164 0.2342302 0.2497205 0.1285704 0.106337 0.1222934 0.0896829 0.06281638 0.3709735 0.1683771 0.08270559 0.1165448 -0.04346571 NA -0.03233506 0.08270559 0.4685796 -0.02407543 -0.02844401 -0.03233506 -0.02559961 0.2342302 0.08610203 -0.04033274 -0.01456311 -0.02844401 -0.03816164 0.2519528 -0.0297841 -0.02559961 -0.03704645 0.3707202 -0.02246469 0.3160424 -0.01685699 0.1431292 0.2088769 0.1222934 0.1614107 0.2011124 0.2342302 0.5745678 0.07639498 -0.03816164 -0.02559961 -0.008367493 -0.02246469 -0.02246469 -0.02074697 -0.02844401 -0.03355612 -0.01889283 -0.01889283 0.2767356 -0.01456311 0.2201484 -0.01456311 -0.01889283 -0.02559961 -0.01685699 -0.01889283 -0.01456311 -0.02074697 -0.02246469 -0.02407543 -0.01186197 -0.02705207 -0.0297841 -0.0297841 -0.01685699 -0.01889283 -0.01186197 0.1017644 -0.02844401 -0.01889283 -0.03704645 -0.02844401 -0.02844401 -0.01685699 0.2894758 -0.02407543 NA -0.02559961 -0.03233506 -0.02407543 0.1517014 -0.02705207 0.2497205 -0.02246469 -0.03233506 0.1759942 -0.01186197 -0.02559961 -0.03233506 -0.01889283 0.1614107 -0.01186197 -0.01186197 -0.008367493 -0.02407543 -0.02074697 -0.01186197 -0.01186197 -0.01685699 0.3236246 -0.02705207 -0.02705207 0.2443472 -0.008367493 -0.008367493 -0.01685699 -0.01685699 -0.02074697 -0.01186197 -0.02559961 -0.01889283 -0.008367493 -0.02074697 -0.01186197 -0.01456311 -0.01685699 -0.01889283 0.2767356 -0.008367493 0.2767356 -0.01456311 -0.01186197 0.3236246 -0.01889283 -0.008367493 -0.01456311 -0.01456311 NA -0.01186197 -0.01186197 0.1285704 NA -0.02246469 NA 0.5745678 -0.01456311 0.1517014 -0.01186197 -0.01186197 NA -0.01456311 -0.008367493 NA -0.01456311 -0.008367493 -0.008367493 -0.01186197 -0.01186197 -0.008367493 -0.008367493 -0.01889283 -0.008367493 -0.02074697 -0.02074697 -0.008367493 -0.008367493 -0.008367493 -0.01456311 -0.01456311 NA NA -0.008367493 -0.008367493 -0.008367493 -0.008367493 -0.008367493 NA NA -0.008367493 NA NA NA NA -0.008367493 -0.008367493 -0.008367493 -0.008367493 0.3361533 0.1156366 0.2963189 0.2798567 -0.02786763 0.1851148 0.7001742 0.3285222 0.3621871 0.2317553 0.3977967 0.2713468 0.3789588 0.2798567 0.205777 0.3202514 0.5023522 0.0964568 0.287122 0.2532063 0.4550232 0.4158607 0.5659728 0.2353659 0.2593353 0.2934605 0.2856449 0.1987767 0.4294069 0.4550232 0.3816347 0.4550232 0.3670537 0.2934605 0.2364668 0.1919835 0.3225911 0.278289 0.4851452 0.278289 NA -0.03742827 0.1687553 0.3977967 -0.02786763 0.1234662 0.3816347 0.3144273 0.3106952 0.1740565 0.1856312 0.2767356 -0.03292432 -0.04417261 0.2916387 -0.0344755 -0.02963189 0.2060707 0.1423977 -0.02600318 0.1156366 -0.0195122 -0.0344755 0.1687553 0.0964568 -0.03131313 -0.02600318 0.0732718 -0.009685486 0.05315819 0.07730207 -0.02963189 -0.009685486 -0.02600318 -0.02600318 -0.02401489 0.1234662 -0.03884166 -0.0218687 -0.0218687 -0.0195122 0.2767356 -0.02401489 -0.01685699 -0.0218687 -0.02963189 -0.0195122 0.2066592 -0.01685699 0.1851148 -0.02600318 -0.02786763 -0.01373039 0.132298 0.1156366 0.1156366 -0.0195122 -0.0218687 -0.01373039 0.1987767 -0.03292432 -0.0218687 0.2060707 0.1234662 0.1234662 -0.0195122 -0.03742827 -0.02786763 NA -0.02963189 -0.03742827 -0.02786763 0.1234662 -0.03131313 0.08159447 -0.02600318 0.1022594 0.1382132 -0.01373039 -0.02963189 0.1022594 0.2066592 -0.03131313 0.3449761 -0.01373039 -0.009685486 -0.02786763 -0.02401489 -0.01373039 -0.01373039 -0.0195122 -0.01685699 -0.03131313 -0.03131313 0.2066592 -0.009685486 -0.009685486 -0.0195122 -0.0195122 0.3942445 -0.01373039 -0.02963189 -0.0218687 -0.009685486 -0.02401489 -0.01373039 -0.01685699 -0.0195122 -0.0218687 -0.0195122 -0.009685486 -0.0195122 -0.01685699 -0.01373039 -0.01685699 0.2066592 0.4963811 -0.01685699 -0.01685699 NA -0.01373039 -0.01373039 0.1022594 NA 0.3621871 NA -0.009685486 -0.01685699 0.2798567 0.3449761 -0.01373039 NA -0.01685699 -0.009685486 NA -0.01685699 -0.009685486 -0.009685486 -0.01373039 -0.01373039 -0.009685486 -0.009685486 0.2066592 -0.009685486 -0.02401489 -0.02401489 -0.009685486 -0.009685486 -0.009685486 -0.01685699 -0.01685699 NA NA -0.009685486 -0.009685486 -0.009685486 -0.009685486 -0.009685486 NA NA -0.009685486 NA NA NA NA -0.009685486 -0.009685486 -0.009685486 -0.009685486 0.2338488 0.2259194 0.4761079 0.5734146 0.3875419 0.2898155 0.4643885 0.825962 0.2591778 0.4687472 0.4544969 0.5456522 0.5002174 0.3753259 0.6290185 0.5501778 0.4687472 0.3544986 0.6077421 0.5765919 0.5175038 0.4794344 0.4794344 0.05612297 0.5430759 0.5461795 0.6713135 0.6014656 0.5316684 0.5175038 0.432031 0.5175038 0.4687472 0.4020488 0.5513946 0.4815472 0.6086484 0.42219 0.4484037 0.5146824 NA 0.2550987 0.42219 0.3934495 0.1570023 0.1772373 0.4910085 0.3576022 0.5817896 0.4828588 0.3672374 0.2034328 0.2432668 0.3963145 0.5046628 0.1625407 0.2849697 0.4123937 0.2849697 0.177229 0.4794344 0.1637349 0.2259194 0.4684362 0.24025 0.2627615 0.3411266 0.3311836 0.188108 0.352476 0.293739 0.1397047 -0.02555815 0.01333139 0.177229 0.2898155 0.3092964 0.3544986 0.2317527 0.135266 0.1637349 0.3273904 0.2898155 0.2034328 0.2317527 0.2849697 0.1637349 0.135266 0.2034328 0.2898155 0.2591778 0.2338488 0.2666667 0.4009178 0.2259194 0.09916196 0.1637349 0.3282393 0.1152174 0.293739 0.1112077 0.135266 0.3598386 0.2432668 0.1772373 0.1637349 0.2550987 0.1570023 NA 0.2123372 0.1961212 0.2338488 0.3753259 0.05552695 0.3598386 0.0952802 0.2550987 0.2195257 0.2666667 0.1397047 0.1961212 0.03877933 0.05552695 0.2666667 0.1152174 0.188108 0.1570023 0.2898155 0.1152174 0.1152174 0.05612297 0.2034328 0.4009178 0.3318396 0.2317527 -0.02555815 -0.02555815 0.1637349 0.05612297 0.2898155 -0.03623188 0.06707214 0.135266 -0.02555815 0.02492582 -0.03623188 0.0794752 0.05612297 0.03877933 0.1637349 -0.02555815 0.1637349 0.0794752 0.1152174 0.2034328 0.135266 0.188108 0.2034328 0.0794752 NA 0.2666667 -0.03623188 0.3140761 NA 0.2591778 NA 0.188108 0.2034328 0.2432668 0.1152174 0.1152174 NA -0.04448239 0.188108 NA 0.2034328 0.188108 0.188108 0.1152174 0.2666667 0.188108 0.188108 0.135266 0.188108 0.02492582 0.1132224 -0.02555815 -0.02555815 -0.02555815 0.2034328 0.0794752 NA NA -0.02555815 -0.02555815 0.188108 0.188108 0.188108 NA NA -0.02555815 NA NA NA NA 0.188108 0.188108 -0.02555815 -0.02555815 0.5113756 0.1260414 0.2222222 0.3282828 0.2880161 0.2161176 0.2880161 0.375823 0.7897863 0.6816193 0.8264894 0.5073851 0.3753259 0.3282828 0.3888889 0.4472136 0.6816193 0.1835129 0.3755448 0.3828934 0.4622838 0.4944703 0.4944703 0.5926378 0.2836264 0.33808 0.4648717 0.2236068 0.5788883 0.3859065 0.6225318 0.6150384 0.6816193 0.2682591 0.2633607 0.2875273 0.426805 0.1839398 0.4962619 0.5199835 NA 0.1082664 0.2511485 0.2941742 0.06465668 0.1363636 0.2796882 0.2666667 0.3603676 0.1909938 0.06377113 0.3318467 0.04040404 0.372678 0.2171042 -0.05817297 0.4777778 0.1567745 0.1611111 -0.04387702 0.4023631 -0.03292432 0.1260414 0.4527748 0.01747742 0.1479433 0.07521774 0.2146871 -0.01634301 0.2357766 0.1490712 -0.05 -0.01634301 -0.04387702 0.07521774 0.08779776 0.2323232 0.01747742 -0.03690062 0.1033217 -0.03292432 0.3318467 0.08779776 -0.02844401 0.1033217 0.05555556 -0.03292432 0.2435441 -0.02844401 -0.04052204 -0.04387702 0.1763364 -0.02316827 0.3487234 -0.05817297 -0.05817297 0.1234662 0.1033217 -0.02316827 0.0745356 0.04040404 -0.03690062 0.08039718 0.04040404 0.1363636 -0.03292432 0.0225555 0.06465668 NA 0.05555556 0.0225555 -0.04702304 0.04040404 -0.05283689 0.08039718 0.07521774 -0.0631554 0.08249854 -0.02316827 -0.05 -0.0631554 0.1033217 -0.05283689 0.1969303 -0.02316827 -0.01634301 -0.04702304 0.2161176 0.1969303 0.1969303 0.1234662 -0.02844401 0.4491135 0.0475532 0.2435441 -0.01634301 -0.01634301 -0.03292432 0.2798567 0.08779776 -0.02316827 -0.05 -0.03690062 -0.01634301 -0.04052204 -0.02316827 0.1517014 -0.03292432 -0.03690062 0.1234662 -0.01634301 -0.03292432 -0.02844401 -0.02316827 0.1517014 0.1033217 0.2941742 -0.02844401 -0.02844401 NA -0.02316827 -0.02316827 0.1082664 NA 0.07521774 NA -0.01634301 -0.02844401 0.2323232 0.1969303 -0.02316827 NA -0.02844401 -0.01634301 NA 0.3318467 -0.01634301 -0.01634301 -0.02316827 -0.02316827 -0.01634301 -0.01634301 0.1033217 -0.01634301 -0.04052204 -0.04052204 -0.01634301 -0.01634301 -0.01634301 0.1517014 -0.02844401 NA NA -0.01634301 -0.01634301 -0.01634301 0.2941742 -0.01634301 NA NA -0.01634301 NA NA NA NA -0.01634301 -0.01634301 -0.01634301 -0.01634301 0.3832029 0.1441668 0.4301249 0.4622838 0.3832029 0.2536243 0.4720924 0.4851791 0.4168098 0.7075557 0.556469 0.5175038 0.4123937 0.3859065 0.4743434 0.6148256 0.6414793 0.3110969 0.5009459 0.4152401 0.5744619 0.6573443 0.5840332 0.2060707 0.4473902 0.4504311 0.4915164 0.3181992 0.7117997 0.3920884 0.5999447 0.6352531 0.5093263 0.2837131 0.4477038 0.3639444 0.5686413 0.5313527 0.5530485 0.4778591 NA 0.2588445 0.3708719 0.4152401 0.02764505 0.1567745 0.3270645 0.2709385 0.4798962 0.4370194 0.1810441 0.2497205 0.1567745 0.496175 0.4220514 0.1441668 0.4389686 0.3312973 0.1869234 0.03764441 0.6573443 0.08159447 0.3641 0.5848463 0.1789439 0.3307019 0.3220184 0.2479926 0.2258649 0.297688 0.1995486 0.1029084 -0.0212857 -0.05714693 0.1324357 0.1514904 0.1567745 0.1128675 0.06354684 0.06354684 -0.04288176 0.2497205 0.1514904 -0.03704645 0.1751543 0.1029084 0.08159447 0.1751543 -0.03704645 0.04935655 0.1324357 0.205424 -0.03017515 0.2507982 0.07085568 -0.002455395 0.08159447 0.1751543 -0.03017515 0.1402234 0.08039718 -0.04806063 0.209715 0.1567745 0.3095291 -0.04288176 0.2588445 0.1165345 NA 0.1029084 -0.0140357 0.1165345 0.2331518 0.01108711 0.209715 0.03764441 0.05418435 0.1597958 -0.03017515 0.01889334 0.05418435 0.06354684 0.01108711 0.3201918 -0.03017515 -0.0212857 0.1165345 0.2536243 0.1450083 0.1450083 0.08159447 0.106337 0.4106055 0.2507982 0.1751543 -0.0212857 -0.0212857 0.08159447 0.08159447 0.1514904 -0.03017515 0.01889334 -0.04806063 -0.0212857 0.04935655 0.1450083 0.106337 0.08159447 -0.04806063 0.2060707 -0.0212857 0.08159447 -0.03704645 -0.03017515 0.106337 0.06354684 0.2258649 -0.03704645 -0.03704645 NA -0.03017515 -0.03017515 0.1906244 NA 0.1324357 NA 0.2258649 -0.03704645 0.3095291 0.1450083 0.1450083 NA -0.03704645 -0.0212857 NA 0.106337 -0.0212857 -0.0212857 -0.03017515 -0.03017515 -0.0212857 -0.0212857 0.06354684 -0.0212857 -0.0527773 -0.0527773 -0.0212857 -0.0212857 -0.0212857 0.106337 0.106337 NA NA -0.0212857 -0.0212857 -0.0212857 0.2258649 -0.0212857 NA NA -0.0212857 NA NA NA NA -0.0212857 -0.0212857 -0.0212857 -0.0212857 0.3309966 0.1704266 0.3495483 0.1835129 0.2343789 0.1742223 0.3309966 0.448048 0.4634007 0.4972509 0.7726797 0.4116229 0.5258715 0.4325661 0.4456741 0.4279336 0.5690722 0.1381443 0.4773105 0.3889106 0.3771734 0.4891662 0.4891662 0.3670537 0.3386378 0.387859 0.553806 0.4279336 0.5397102 0.4432498 0.5928552 0.6414793 0.4972509 0.2670505 0.4576801 0.4136773 0.4388102 0.1905691 0.5474235 0.5975803 NA 0.1479477 0.2487136 0.2354029 0.04114343 0.1835129 0.3704015 0.3062917 0.4136773 0.3168655 0.2153713 0.278143 0.01747742 0.3634504 0.3426362 0.01105676 0.3062917 0.2450204 0.1236527 -0.05176284 0.3297964 -0.03884166 0.1704266 0.3650025 -0.005498282 0.198219 0.1543026 0.224628 -0.01928027 0.2321962 0.2344842 0.03233322 -0.01928027 -0.05176284 0.05126986 0.1742223 0.1835129 0.1381443 -0.04353261 0.1990891 -0.03884166 0.278143 0.06320869 -0.03355612 0.07777826 0.1236527 -0.03884166 0.1990891 -0.03355612 0.06320869 -0.05176284 0.1377611 -0.0273322 0.2850697 0.01105676 0.01105676 0.0964568 0.07777826 -0.0273322 0.1055179 0.01747742 -0.04353261 0.1789439 0.1004951 0.1835129 -0.03884166 0.07379646 0.04114343 NA 0.1236527 0.07379646 0.04114343 0.1835129 -0.06233303 0.1789439 0.05126986 -0.0003547907 0.04042757 -0.0273322 -0.05898628 -0.0003547907 0.07777826 0.1113683 0.3534965 0.1630821 0.2493582 0.04114343 0.1742223 0.1630821 0.1630821 0.0964568 -0.03355612 0.3719204 0.1113683 0.1990891 -0.01928027 -0.01928027 -0.03884166 0.0964568 0.06320869 -0.0273322 -0.05898628 0.07777826 -0.01928027 -0.0478049 -0.0273322 0.1222934 -0.03884166 -0.04353261 0.0964568 -0.01928027 -0.03884166 -0.03355612 -0.0273322 0.1222934 0.1990891 0.2493582 -0.03355612 -0.03355612 NA -0.0273322 -0.0273322 0.1479477 NA 0.1543026 NA -0.01928027 -0.03355612 0.1835129 0.1630821 -0.0273322 NA -0.03355612 -0.01928027 NA 0.1222934 -0.01928027 -0.01928027 -0.0273322 -0.0273322 -0.01928027 -0.01928027 0.07777826 -0.01928027 -0.0478049 -0.0478049 -0.01928027 -0.01928027 -0.01928027 0.1222934 -0.03355612 NA NA -0.01928027 -0.01928027 -0.01928027 0.2493582 -0.01928027 NA NA -0.01928027 NA NA NA NA -0.01928027 -0.01928027 -0.01928027 -0.01928027 0.3378661 0.3174529 0.5254939 0.33808 0.2566072 0.1277645 0.3378661 0.5469028 0.4560745 0.5690718 0.492639 0.7383537 0.4500923 0.6173634 0.6063391 0.5423261 0.5690718 0.2066462 0.5861294 0.492639 0.5060037 0.4514886 0.4514886 0.2934605 0.5247656 0.644385 0.5768499 0.5965588 0.5244118 0.3392857 0.4693699 0.617149 0.5690718 0.2887701 0.5587082 0.5244118 0.7066053 0.3654748 0.5462547 0.6588841 NA 0.3446423 0.5121794 0.2989809 0.09408929 0.33808 0.4693699 0.5416629 0.6834091 0.5270311 0.3520965 0.2207579 0.33808 0.3796283 0.516024 0.1834172 0.388057 0.3948584 0.1576482 0.1094579 0.3844707 0.1796697 0.3844707 0.6099825 0.1462419 0.2883336 0.1961121 0.3654146 -0.02378257 0.3903444 0.2711631 0.1576482 -0.02378257 0.02280373 0.1094579 0.2211309 0.1984382 0.3274547 0.1503552 0.1503552 0.06587889 0.2207579 0.1277645 0.0896829 0.1503552 0.2344511 0.06587889 0.1503552 0.0896829 0.2211309 0.1961121 0.1753482 0.1264304 0.3613781 0.1834172 0.04938156 0.06587889 0.252382 -0.03371478 0.2711631 0.2682591 0.04832846 0.2281404 0.1984382 0.1984382 0.06587889 0.2199146 0.1753482 NA 0.1576482 0.2199146 0.1753482 0.2682591 -0.003844448 0.2837131 0.02280373 0.1575507 0.2955151 0.1264304 0.08084521 0.1575507 0.04832846 0.06920007 0.1264304 0.2865757 0.2021519 0.1753482 0.2211309 0.1264304 0.1264304 0.06587889 0.0896829 0.3613781 0.1422446 0.252382 -0.02378257 -0.02378257 -0.04791192 0.06587889 0.2211309 0.1264304 0.00404226 0.1503552 -0.02378257 0.03439814 -0.03371478 0.0896829 0.06587889 0.04832846 0.1796697 -0.02378257 -0.04791192 -0.04139211 -0.03371478 0.2207579 0.1503552 0.2021519 0.0896829 -0.04139211 NA 0.1264304 -0.03371478 0.2199146 NA 0.1961121 NA -0.02378257 -0.04139211 0.2682591 0.1264304 -0.03371478 NA 0.0896829 0.2021519 NA 0.2207579 0.2021519 0.2021519 0.1264304 0.1264304 0.2021519 0.2021519 0.1503552 0.2021519 0.03439814 0.1277645 -0.02378257 0.2021519 -0.02378257 0.2207579 0.0896829 NA NA -0.02378257 -0.02378257 0.2021519 0.2021519 0.2021519 NA NA -0.02378257 NA NA NA NA 0.2021519 -0.02378257 0.2021519 -0.02378257 0.2741939 0.2692937 0.5635535 0.2146871 0.1894209 0.2362862 0.3589669 0.5843851 0.30105 0.4136773 0.3876324 0.5817896 0.7321532 0.5788883 0.6057242 0.4063322 0.4136773 0.224628 0.5446117 0.5223209 0.4798962 0.4091258 0.4790418 0.0732718 0.5649807 0.6834091 0.6652081 0.7457995 0.3917989 0.4219203 0.3682625 0.4219203 0.4766938 0.4714128 0.5964449 0.557672 0.483616 0.34198 0.4568971 0.5460452 NA 0.3032018 0.4440126 0.4549766 0.1894209 0.2875273 0.6935663 0.4918634 0.668254 0.457315 0.378195 0.2342302 0.2875273 0.2365985 0.5539202 0.1294617 0.2514906 0.537872 0.3316148 0.120247 0.3392097 -0.04543988 0.1294617 0.4950289 0.09859511 0.1556881 0.30105 0.4470899 -0.0225555 0.4194863 0.3497543 0.091242 -0.0225555 0.2106485 0.2106485 0.3336902 0.2146871 0.2876444 0.1619501 0.3748278 0.1919835 0.3709735 0.2362862 0.09748687 0.2683889 0.4117391 0.0732718 0.2683889 0.09748687 0.3336902 0.02984547 0.2741939 0.1350954 0.384298 0.2692937 0.2692937 0.3106952 0.2683889 0.1350954 0.2931764 -0.003833698 0.1619501 0.3639444 0.2146871 0.2146871 0.1919835 0.1730803 0.019875 NA 0.2514906 0.1730803 0.1894209 0.2875273 0.07948479 0.2479926 0.30105 0.3032018 0.2761076 0.1350954 0.091242 0.3032018 0.05551119 0.07948479 0.1350954 0.1350954 -0.0225555 0.104648 0.1388822 0.3021661 0.1350954 0.0732718 0.09748687 0.384298 0.384298 0.2683889 -0.0225555 -0.0225555 0.0732718 0.1919835 0.3336902 -0.03197525 0.01111772 0.2683889 -0.0225555 0.04147825 -0.03197525 0.09748687 0.0732718 0.05551119 0.3106952 -0.0225555 0.0732718 0.09748687 0.1350954 0.2342302 0.2683889 0.2131495 0.09748687 0.09748687 NA 0.1350954 -0.03197525 0.3682625 NA 0.3914515 NA -0.0225555 0.2342302 0.2875273 0.1350954 -0.03197525 NA -0.03925646 -0.0225555 NA 0.09748687 -0.0225555 -0.0225555 -0.03197525 0.1350954 -0.0225555 -0.0225555 0.2683889 -0.0225555 -0.05592574 0.3336902 -0.0225555 -0.0225555 -0.0225555 0.09748687 0.09748687 NA NA -0.0225555 -0.0225555 -0.0225555 0.2131495 -0.0225555 NA NA -0.0225555 NA NA NA NA -0.0225555 0.2131495 -0.0225555 -0.0225555 0.05187362 0.1919099 0.4949598 0.205455 0.05187362 0.07436147 0.4648865 0.4956658 0.06216667 0.1586491 0.2617739 0.4544969 0.4544969 0.7377702 0.4949598 0.2631174 0.3889106 0.2354029 0.5293672 0.5078493 0.6270834 0.2770674 0.3622249 -0.03597466 0.383236 0.6217445 0.5424697 0.6076759 0.3876324 0.3446256 0.2479686 0.3446256 0.3889106 0.4280863 0.561386 0.3876324 0.4317741 0.2179279 0.3729008 0.590754 NA 0.08948103 0.4043409 0.2617739 0.05187362 0.2941742 0.5649438 0.6285055 0.6570094 0.4791664 0.4410923 0.3020266 0.205455 0.0563823 0.435995 0.02159496 0.1405499 0.4152401 0.04295877 0.06216667 0.1067524 0.1086158 0.02159496 0.2800656 0.1586491 0.03508333 0.06216667 0.1855995 -0.01785714 0.3231027 0.1942057 0.04295877 -0.01785714 -0.04794209 0.1722754 0.311637 0.205455 0.3889106 0.08932288 0.3486073 -0.03597466 0.3020266 -0.04427629 -0.03107926 0.2189651 0.4333233 -0.03597466 0.2189651 -0.03107926 0.1929992 0.1722754 0.1551268 -0.02531474 0.3135295 0.2770674 0.1919099 0.1086158 0.2189651 -0.02531474 0.3320291 0.02801659 -0.04031935 0.4152401 0.1167358 0.205455 -0.03597466 0.08948103 0.1551268 NA 0.238141 0.1687248 0.05187362 0.205455 0.1278987 0.2033967 0.1722754 0.2479686 0.2269546 -0.02531474 0.1405499 0.3272124 0.08932288 0.03508333 0.3816684 0.3816684 0.2692308 0.05187362 0.07436147 0.1781768 0.1781768 0.1086158 0.1354737 0.3135295 0.2207141 0.2189651 -0.01785714 -0.01785714 -0.03597466 -0.03597466 0.1929992 -0.02531474 -0.05463235 0.2189651 -0.01785714 0.07436147 -0.02531474 0.1354737 0.1086158 -0.04031935 0.1086158 -0.01785714 -0.03597466 -0.03107926 -0.02531474 -0.03107926 0.2189651 0.2692308 -0.03107926 -0.03107926 NA -0.02531474 -0.02531474 0.4064562 NA 0.3924929 NA -0.01785714 -0.03107926 0.205455 0.1781768 0.1781768 NA -0.03107926 -0.01785714 NA 0.1354737 -0.01785714 -0.01785714 -0.02531474 -0.02531474 -0.01785714 -0.01785714 0.2189651 -0.01785714 -0.04427629 0.07436147 -0.01785714 -0.01785714 -0.01785714 0.1354737 0.1354737 NA NA -0.01785714 -0.01785714 -0.01785714 0.2692308 -0.01785714 NA NA -0.01785714 NA NA NA NA -0.01785714 -0.01785714 -0.01785714 -0.01785714 0.3112485 0.3299681 0.6523923 0.3533792 0.3780359 0.2298487 0.3112485 0.6989448 0.2726193 0.4710506 0.4150586 0.6639176 0.6244302 0.3533792 0.9181818 0.4822123 0.5703442 0.2724635 0.7264356 0.468115 0.5474521 0.4401332 0.3850506 0.3114538 0.7098908 0.5142422 0.6612181 0.6159351 0.5510702 0.3647495 0.3924009 0.5474521 0.5703442 0.3889781 0.569955 0.5075098 0.6843408 0.5217346 0.4010073 0.7226977 NA 0.3411435 0.3609642 0.3089457 0.1776737 0.2386065 0.4949157 0.2836094 0.5946306 0.579325 0.3615859 0.0536081 0.2959928 0.4822123 0.6403572 0.219803 0.3467344 0.4561008 0.4098594 0.2013975 0.4401332 0.2179282 0.3850506 0.481542 0.2228167 0.3197128 0.3438411 0.5075098 0.1545998 0.4909941 0.3039153 0.2204844 -0.03109766 0.1301757 0.2013975 0.2298487 0.1812201 0.371757 0.1813551 0.1813551 0.2179282 0.1613398 0.2298487 0.1613398 0.2652117 0.3467344 0.1244025 0.09749841 0.1613398 0.2298487 0.2726193 0.2444611 0.2191646 0.3197128 0.2748856 0.1647205 0.1244025 0.2652117 0.08753989 0.3039153 0.2386065 0.09749841 0.3647495 0.1812201 0.1238337 0.1244025 0.3411435 0.2444611 NA 0.2836094 0.2898862 0.2444611 0.2386065 0.139605 0.3647495 0.2013975 0.2898862 0.3536343 0.2191646 0.1573594 0.1873714 0.01364175 0.07956913 0.2191646 0.2191646 0.1545998 0.3112485 0.2298487 0.08753989 0.08753989 0.1244025 0.1613398 0.4397846 0.3197128 0.1813551 -0.03109766 0.1545998 0.1244025 0.03087689 0.1531101 0.08753989 0.09423445 0.2652117 0.1545998 0.07637145 0.08753989 0.1613398 0.1244025 0.09749841 0.2179282 -0.03109766 0.1244025 0.0536081 0.08753989 0.2690715 0.01364175 -0.03109766 0.2690715 0.0536081 NA 0.2191646 -0.04408484 0.2898862 NA 0.2013975 NA 0.1545998 0.1613398 0.2386065 -0.04408484 0.2191646 NA 0.0536081 0.1545998 NA 0.1613398 0.1545998 0.1545998 0.08753989 0.2191646 0.1545998 0.1545998 0.09749841 0.1545998 0.07637145 0.1531101 -0.03109766 0.1545998 -0.03109766 0.1613398 0.0536081 NA NA 0.1545998 -0.03109766 0.1545998 0.1545998 0.1545998 NA NA -0.03109766 NA NA NA NA 0.1545998 0.1545998 0.1545998 -0.03109766 0.419125 0.3174529 0.4850713 0.4079008 0.3378661 0.3144973 0.5816429 0.4603099 0.3694204 0.5086675 0.492639 0.4981359 0.4981359 0.4777217 0.5659165 0.8677218 0.5690718 0.2670505 0.6257609 0.492639 0.5615764 0.5185064 0.6525421 0.1796697 0.4874227 0.5935829 0.6266688 0.5423261 0.5774109 0.3392857 0.5317338 0.5615764 0.5086675 0.2887701 0.5148427 0.3654146 0.7066053 0.561081 0.6048922 0.5121794 NA 0.3446423 0.4143763 0.3635336 0.1753482 0.2682591 0.5317338 0.388057 0.4714128 0.6266688 0.3002373 0.2207579 0.33808 0.5423261 0.5960603 0.3174529 0.4648599 0.4504311 0.08084521 0.1961121 0.5185064 0.1796697 0.4514886 0.561081 0.08583765 0.5805117 0.3694204 0.4184137 -0.02378257 0.3903444 0.3253957 0.3112541 -0.02378257 0.1094579 0.1961121 0.2211309 0.1984382 0.3274547 0.252382 0.1503552 0.06587889 0.2207579 0.2211309 0.0896829 0.252382 0.1576482 0.06587889 0.252382 0.0896829 0.2211309 0.1961121 0.2566072 0.1264304 0.3613781 0.1834172 0.04938156 0.1796697 0.3544087 0.2865757 0.2169305 0.1984382 0.1503552 0.2281404 0.2682591 0.33808 0.1796697 0.2822784 0.1753482 NA 0.2344511 0.09518691 0.2566072 0.2682591 0.06920007 0.2837131 0.1094579 0.1575507 0.1639185 0.1264304 0.00404226 0.09518691 0.04832846 0.1422446 0.2865757 0.2865757 0.2021519 0.3378661 0.3144973 0.2865757 0.1264304 0.06587889 -0.04139211 0.3613781 0.2883336 0.252382 -0.02378257 -0.02378257 0.06587889 0.1796697 0.3144973 -0.03371478 0.00404226 0.1503552 -0.02378257 0.1277645 -0.03371478 0.0896829 0.1796697 0.1503552 0.2934605 -0.02378257 0.1796697 0.2207579 0.2865757 0.2207579 0.1503552 0.2021519 0.0896829 -0.04139211 NA 0.1264304 -0.03371478 0.1575507 NA 0.1094579 NA -0.02378257 0.2207579 0.2682591 0.1264304 0.1264304 NA -0.04139211 0.2021519 NA 0.2207579 0.2021519 0.2021519 0.1264304 0.1264304 0.2021519 0.2021519 0.1503552 0.2021519 0.03439814 0.1277645 -0.02378257 -0.02378257 -0.02378257 0.2207579 0.2207579 NA NA -0.02378257 -0.02378257 0.2021519 0.2021519 0.2021519 NA NA -0.02378257 NA NA NA NA 0.2021519 -0.02378257 -0.02378257 -0.02378257 0.3706422 0.2796693 0.4550594 0.2981424 0.1971501 0.1449761 0.4573882 0.466403 0.4036608 0.621383 0.6076759 0.6014656 0.4988901 0.372678 0.6276682 0.5368421 0.8793156 0.2344842 0.5653846 0.4698525 0.6741508 0.5658424 0.5658424 0.4417261 0.5073663 0.4338609 0.6333604 0.5368421 0.5760658 0.3181992 0.5810184 0.5555003 0.621383 0.3253957 0.4299624 0.46291 0.5933661 0.4603416 0.4723234 0.6169527 NA 0.1815683 0.3559342 0.4009408 0.02365801 0.1490712 0.5144434 0.4248529 0.5760658 0.4206287 0.2264769 0.2416904 0.1490712 0.4210526 0.446623 0.1365827 0.3428638 0.4368497 0.1788854 0.0336384 0.4942991 0.07730207 0.2796693 0.4603416 0.1055179 0.3189965 0.3111552 0.4063322 -0.02192645 0.4355233 0.2473684 0.1788854 -0.02192645 -0.05886719 0.126144 0.1449761 0.1490712 0.170001 0.05940885 0.05940885 0.07730207 0.2416904 0.04530502 -0.03816164 0.1683251 0.1788854 -0.04417261 0.1683251 -0.03816164 0.04530502 0.2186496 0.1971501 -0.03108349 0.3189965 0.06503936 -0.006503936 0.07730207 0.1683251 -0.03108349 0.1894737 0.0745356 -0.04950738 0.2588739 0.1490712 0.2981424 -0.04417261 0.2481433 0.1104041 NA 0.1788854 0.0484182 0.1104041 0.1490712 0.007088812 0.3181992 0.0336384 0.1149932 0.2426521 -0.03108349 0.09689628 0.1149932 0.05940885 -0.07088812 0.3108349 0.1398757 -0.02192645 0.1971501 0.2446471 0.1398757 0.1398757 0.07730207 0.1017644 0.3969735 0.3189965 0.2772413 -0.02192645 -0.02192645 0.07730207 0.07730207 0.1449761 -0.03108349 -0.06708204 -0.04950738 -0.02192645 0.04530502 -0.03108349 0.1017644 0.07730207 -0.04950738 0.1987767 -0.02192645 -0.04417261 -0.03816164 -0.03108349 0.2416904 0.05940885 0.2192645 -0.03816164 -0.03816164 NA -0.03108349 -0.03108349 0.2481433 NA 0.126144 NA -0.02192645 -0.03816164 0.2236068 0.1398757 0.1398757 NA -0.03816164 -0.02192645 NA 0.1017644 -0.02192645 -0.02192645 -0.03108349 -0.03108349 -0.02192645 -0.02192645 0.1683251 -0.02192645 -0.05436603 0.04530502 -0.02192645 -0.02192645 -0.02192645 0.1017644 0.1017644 NA NA -0.02192645 -0.02192645 -0.02192645 0.2192645 -0.02192645 NA NA -0.02192645 NA NA NA NA -0.02192645 -0.02192645 -0.02192645 -0.02192645 0.3361533 0.1156366 0.205777 0.2798567 0.1541428 0.1851148 0.1541428 0.1345642 0.3621871 0.2317553 0.2532063 0.05612297 0.1637349 0.1234662 0.1152351 0.3202514 0.2317553 0.2317553 0.287122 0.2532063 0.08159447 0.1156366 0.1156366 0.2353659 0.1756917 0.1796697 0.06246814 0.07730207 0.3106952 0.2060707 0.1022594 0.2060707 0.2317553 0.1796697 0.2364668 0.1919835 0.2268219 -0.05031214 0.2224629 0.1687553 NA 0.1022594 0.278289 0.2532063 -0.02786763 0.1234662 0.1022594 0.1423977 0.3106952 0.2856449 0.1856312 0.2767356 0.1234662 0.07730207 0.2916387 0.1156366 0.1423977 0.08159447 0.1423977 0.168092 0.1156366 -0.0195122 0.2657486 0.278289 0.3670537 0.2959091 0.168092 0.4294069 0.4963811 0.3705885 0.1987767 0.1423977 -0.009685486 0.168092 -0.02600318 -0.02401489 0.1234662 0.0964568 -0.0218687 -0.0218687 -0.0195122 0.2767356 0.1851148 -0.01685699 -0.0218687 -0.02963189 -0.0195122 0.2066592 -0.01685699 -0.02401489 0.168092 -0.02786763 -0.01373039 0.2959091 0.1156366 0.1156366 -0.0195122 -0.0218687 -0.01373039 0.07730207 0.2798567 -0.0218687 0.2060707 0.2798567 0.2798567 -0.0195122 0.241947 0.1541428 NA -0.02963189 0.1022594 0.1541428 0.4362472 0.132298 0.3305469 -0.02600318 0.1022594 0.2364668 -0.01373039 0.1423977 0.1022594 0.4351871 0.132298 -0.01373039 -0.01373039 -0.009685486 -0.02786763 -0.02401489 -0.01373039 0.3449761 -0.0195122 0.5703282 -0.03131313 -0.03131313 0.4351871 0.4963811 -0.009685486 -0.0195122 -0.0195122 0.1851148 0.3449761 0.1423977 -0.0218687 -0.009685486 0.1851148 -0.01373039 0.2767356 -0.0195122 -0.0218687 -0.0195122 -0.009685486 0.2353659 -0.01685699 -0.01373039 -0.01685699 0.2066592 0.4963811 -0.01685699 -0.01685699 NA -0.01373039 0.3449761 0.241947 NA 0.3621871 NA 0.4963811 -0.01685699 0.4362472 0.3449761 -0.01373039 NA 0.2767356 -0.009685486 NA -0.01685699 -0.009685486 -0.009685486 -0.01373039 -0.01373039 -0.009685486 -0.009685486 0.2066592 -0.009685486 0.1851148 0.1851148 0.4963811 -0.009685486 0.4963811 -0.01685699 -0.01685699 NA NA -0.009685486 0.4963811 -0.009685486 -0.009685486 -0.009685486 NA NA -0.009685486 NA NA NA NA -0.009685486 -0.009685486 -0.009685486 -0.009685486 0.4448233 0.3299681 0.6191687 0.4681519 0.3112485 0.3065873 0.4448233 0.5921876 0.2726193 0.5206974 0.4150586 0.5454554 0.5454554 0.3533792 0.7188397 0.5713608 0.5703442 0.3221103 0.7915826 0.468115 0.4561008 0.4401332 0.4401332 0.3114538 0.7098908 0.5142422 0.6202716 0.4822123 0.5075098 0.3647495 0.4436583 0.5474521 0.5206974 0.4724875 0.6060084 0.4639494 0.7546245 0.5217346 0.5455913 0.5619272 NA 0.3411435 0.481542 0.3620022 0.3112485 0.3533792 0.4436583 0.2836094 0.5510702 0.6202716 0.4468329 0.1613398 0.4681519 0.5713608 0.6403572 0.4401332 0.3467344 0.4561008 0.2836094 0.4150629 0.4952157 0.2179282 0.3850506 0.6021198 0.2724635 0.3797487 0.3438411 0.4639494 0.1545998 0.4521679 0.3930638 0.3467344 -0.03109766 0.3438411 0.3438411 0.3833259 0.2959928 0.4710506 0.3490684 0.2652117 0.2179282 0.2690715 0.3065873 0.2690715 0.3490684 0.3467344 0.1244025 0.3490684 0.1613398 0.3065873 0.3438411 0.3112485 0.2191646 0.4397846 0.3850506 0.2748856 0.2179282 0.3490684 0.2191646 0.3930638 0.2959928 0.1813551 0.4561008 0.3533792 0.3533792 0.3114538 0.4436583 0.3112485 NA 0.4098594 0.2386288 0.3780359 0.4107655 0.2596769 0.4561008 0.2726193 0.3411435 0.3536343 0.2191646 0.2836094 0.2898862 0.1813551 0.1996409 0.2191646 0.2191646 0.1545998 0.3780359 0.1531101 0.2191646 0.2191646 0.2179282 0.2690715 0.4397846 0.3197128 0.3490684 0.1545998 0.1545998 0.2179282 0.03087689 0.3065873 0.08753989 0.1573594 0.2652117 0.1545998 0.3065873 0.08753989 0.2690715 0.2179282 0.09749841 0.3114538 -0.03109766 0.2179282 0.1613398 0.2191646 0.1613398 0.1813551 0.1545998 0.2690715 0.1613398 NA 0.2191646 0.08753989 0.3411435 NA 0.2726193 NA 0.1545998 0.2690715 0.2959928 0.08753989 0.08753989 NA 0.0536081 0.1545998 NA 0.1613398 0.1545998 0.1545998 0.08753989 0.2191646 0.1545998 0.1545998 0.3490684 0.1545998 0.2298487 0.3833259 0.1545998 -0.03109766 0.1545998 0.1613398 0.1613398 NA NA 0.1545998 0.1545998 0.1545998 0.1545998 0.1545998 NA NA -0.03109766 NA NA NA NA 0.1545998 0.1545998 -0.03109766 -0.03109766 0.2343789 0.1704266 0.3976112 0.5155838 0.1377611 0.3962495 0.6208497 0.551008 0.2573353 0.3536082 0.3889106 0.5258715 0.4687472 0.5986015 0.5417999 0.4924167 0.4972509 0.4254296 0.5244328 0.8494336 0.7075557 0.3297964 0.4891662 0.0964568 0.4274399 0.7502846 0.7315114 0.5568999 0.4136773 0.3771734 0.4445527 0.3771734 0.4254296 0.387859 0.4576801 0.4766938 0.5913235 0.3650025 0.4079823 0.4812914 NA 0.222099 0.4812914 0.4656644 0.1377611 0.3495483 0.6670064 0.5802502 0.7287595 0.4353357 0.4003546 0.278143 0.2665306 0.2344842 0.4853823 0.09074166 0.3062917 0.5093263 0.2149722 0.1543026 0.4094813 0.0964568 0.1704266 0.3650025 0.1381443 0.2850697 0.2573353 0.2876444 -0.01928027 0.4006996 0.2989673 0.1236527 -0.01928027 0.05126986 0.2573353 0.3962495 0.1835129 0.4972509 0.1990891 0.3204 -0.03884166 0.278143 0.1742223 -0.03355612 0.3204 0.3976112 -0.03884166 0.3204 -0.03355612 0.2852359 0.1543026 0.3309966 -0.0273322 0.3719204 0.2501115 0.1704266 0.2317553 0.3204 0.3534965 0.3634504 0.01747742 0.07777826 0.3771734 0.1835129 0.2665306 0.0964568 0.07379646 0.1377611 NA 0.3062917 0.1479477 0.1377611 0.2665306 0.1113683 0.2450204 0.1543026 0.2962502 0.1968973 -0.0273322 0.1236527 0.2962502 0.07777826 0.1113683 0.1630821 0.3534965 0.2493582 0.1377611 0.1742223 0.3534965 0.1630821 0.0964568 0.1222934 0.4587711 0.2850697 0.1990891 -0.01928027 -0.01928027 -0.03884166 0.2317553 0.2852359 -0.0273322 -0.05898628 0.1990891 -0.01928027 0.1742223 -0.0273322 0.1222934 0.2317553 0.1990891 0.2317553 -0.01928027 0.2317553 0.278143 0.3534965 0.1222934 0.3204 0.2493582 -0.03355612 -0.03355612 NA -0.0273322 -0.0273322 0.4445527 NA 0.2573353 NA -0.01928027 0.278143 0.2665306 0.1630821 -0.0273322 NA -0.03355612 -0.01928027 NA 0.1222934 -0.01928027 -0.01928027 -0.0273322 -0.0273322 -0.01928027 -0.01928027 0.3204 -0.01928027 -0.0478049 0.1742223 -0.01928027 -0.01928027 -0.01928027 0.1222934 0.278143 NA NA -0.01928027 -0.01928027 -0.01928027 0.2493582 -0.01928027 NA NA -0.01928027 NA NA NA NA -0.01928027 -0.01928027 -0.01928027 -0.01928027 0.3706422 0.1365827 0.4550594 0.4472136 0.2838961 0.2446471 0.5441343 0.5588433 0.3111552 0.4924167 0.4698525 0.4988901 0.4988901 0.5217492 0.584516 0.4789474 0.4924167 0.2989673 0.5653846 0.6076759 0.9114519 0.4942991 0.5658424 0.07730207 0.4675018 0.6507914 0.7397263 0.4789474 0.5760658 0.3775245 0.5144434 0.496175 0.4924167 0.3796283 0.47679 0.3497543 0.502079 0.3559342 0.5349205 0.564749 NA 0.1815683 0.3037306 0.4698525 0.1104041 0.2236068 0.5810184 0.4248529 0.5760658 0.5269945 0.2818379 0.2416904 0.1490712 0.3052632 0.4893435 0.06503936 0.4248529 0.4368497 0.09689628 0.126144 0.4942991 0.07730207 0.1365827 0.3559342 0.04103473 0.1630427 0.2186496 0.2931764 -0.02192645 0.3346653 0.1894737 0.09689628 -0.02192645 0.0336384 0.2186496 0.2446471 0.1490712 0.2344842 0.1683251 0.2772413 -0.04417261 0.2416904 0.1449761 -0.03816164 0.2772413 0.2608746 -0.04417261 0.2772413 -0.03816164 0.1449761 0.126144 0.2838961 -0.03108349 0.3189965 0.208126 0.1365827 0.1987767 0.2772413 0.1398757 0.2473684 3.977449e-21 0.05940885 0.3181992 0.1490712 0.2236068 0.07730207 0.0484182 0.1104041 NA 0.1788854 0.0484182 0.1104041 0.1490712 0.1630427 0.1402234 0.2186496 0.2481433 0.1489969 -0.03108349 0.01490712 0.1815683 0.05940885 0.08506574 0.3108349 0.3108349 0.2192645 0.1104041 0.2446471 0.3108349 0.1398757 0.07730207 -0.03816164 0.4749504 0.3969735 0.1683251 -0.02192645 -0.02192645 0.07730207 0.1987767 0.2446471 -0.03108349 -0.06708204 0.1683251 -0.02192645 0.1449761 -0.03108349 0.1017644 0.1987767 0.05940885 0.3202514 -0.02192645 0.07730207 0.1017644 0.1398757 0.1017644 0.1683251 0.2192645 -0.03816164 -0.03816164 NA -0.03108349 -0.03108349 0.3147183 NA 0.2186496 NA -0.02192645 0.1017644 0.2236068 0.1398757 0.3108349 NA -0.03816164 -0.02192645 NA 0.1017644 -0.02192645 -0.02192645 -0.03108349 -0.03108349 -0.02192645 -0.02192645 0.1683251 -0.02192645 -0.05436603 0.04530502 -0.02192645 -0.02192645 -0.02192645 0.1017644 0.2416904 NA NA -0.02192645 -0.02192645 -0.02192645 0.2192645 -0.02192645 NA NA -0.02192645 NA NA NA NA -0.02192645 -0.02192645 -0.02192645 -0.02192645 0.2458006 0.2629489 0.5187765 0.1939773 0.2458006 0.1831646 0.4453047 0.5238709 0.3756214 0.5187039 0.4857 0.4910085 0.549986 0.6225318 0.5187765 0.4478684 0.5928552 0.1479477 0.5021061 0.4857 0.7363848 0.7565686 0.5097588 0.241947 0.4516152 0.5317338 0.6396589 0.6475935 0.6285055 0.3270645 0.4641026 0.5999447 0.5187039 0.3446423 0.4805147 0.498384 0.566307 0.4437677 0.570693 0.6238598 NA 0.1578755 0.3237063 0.3272124 0.04629642 0.1939773 0.6172161 0.508852 0.6285055 0.5173453 0.2924161 0.2894758 0.1082664 0.2481433 0.5102955 0.01613908 0.2260061 0.3952846 0.1317241 -0.04987927 0.4274888 -0.03742827 0.09840903 0.383737 -0.0003547907 0.1192716 0.1628711 0.3032018 -0.01857869 0.3049328 0.1815683 0.03744213 -0.01857869 0.0564959 0.0564959 0.06854962 0.1939773 0.1479477 -0.04194852 0.2085441 -0.03742827 0.2894758 0.06854962 -0.03233506 0.08329777 0.1317241 -0.03742827 0.2085441 -0.03233506 0.06854962 0.0564959 0.1460485 -0.02633762 0.3882762 0.09840903 0.09840903 0.1022594 0.08329777 -0.02633762 0.1149932 -0.0631554 -0.04194852 0.1906244 0.1082664 0.1939773 -0.03742827 0.08131868 0.04629642 NA 0.03744213 0.08131868 0.04629642 0.1082664 -0.06006482 0.1906244 0.1628711 0.08131868 0.1574233 -0.02633762 -0.05683986 0.08131868 0.08329777 0.1192716 0.3668454 0.3668454 0.2587746 0.04629642 0.2977795 0.1702539 0.1702539 0.1022594 -0.03233506 0.2089398 0.298608 0.2085441 -0.01857869 -0.01857869 0.1022594 0.1022594 0.1831646 -0.02633762 -0.05683986 0.08329777 -0.01857869 -0.04606534 -0.02633762 0.1285704 -0.03742827 -0.04194852 -0.03742827 -0.01857869 -0.03742827 -0.03233506 -0.02633762 0.1285704 0.08329777 0.2587746 -0.03233506 -0.03233506 NA -0.02633762 -0.02633762 0.1578755 NA 0.2692462 NA -0.01857869 -0.03233506 0.3653991 0.1702539 0.1702539 NA -0.03233506 -0.01857869 NA 0.1285704 -0.01857869 -0.01857869 -0.02633762 -0.02633762 -0.01857869 -0.01857869 0.08329777 -0.01857869 -0.04606534 0.06854962 -0.01857869 -0.01857869 -0.01857869 0.1285704 -0.03233506 NA NA -0.01857869 -0.01857869 -0.01857869 0.2587746 -0.01857869 NA NA -0.01857869 NA NA NA NA -0.01857869 -0.01857869 -0.01857869 -0.01857869 0.295154 0.2305469 0.2509242 0.1033217 0.1319604 0.160594 0.295154 0.1942921 0.1448853 0.3204 0.3486073 0.3282393 0.3282393 0.1033217 0.3321056 0.2772413 0.5630217 -0.04353261 0.321798 0.08932288 0.2867618 0.4997329 0.4997329 0.2066592 0.2906555 0.04832846 0.2451035 0.2772413 0.3748278 0.1751543 0.4590366 0.3983692 0.4417109 0.1503552 0.2870491 0.1619501 0.3615508 0.4346605 0.425974 0.4346605 NA 0.08329777 0.1400312 0.08932288 0.1319604 0.1033217 0.2085441 -0.03321056 0.1619501 0.2451035 0.1559752 0.2443472 0.1033217 0.3861575 0.1661219 0.2305469 0.2752786 0.2867618 -0.03321056 -0.0291436 0.3651399 -0.0218687 0.2305469 0.3364507 -0.04353261 0.2582981 0.3189143 0.2683889 -0.01085521 0.2256026 0.2772413 0.2752786 -0.01085521 -0.0291436 0.1448853 0.160594 0.1033217 0.07777826 -0.0245098 0.1803922 -0.0218687 0.2443472 -0.02691519 -0.01889283 0.1803922 0.121034 -0.0218687 0.1803922 -0.01889283 -0.02691519 -0.0291436 0.1319604 -0.01538862 0.1116016 -0.03863914 -0.03863914 0.2066592 0.1803922 -0.01538862 -0.04950738 -0.03690062 -0.0245098 0.1751543 0.1033217 0.3837665 -0.0218687 0.3337904 -0.03123323 NA 0.2752786 0.08329777 0.1319604 0.1033217 -0.03509485 0.1751543 0.1448853 -0.04194852 -0.06533423 -0.01538862 -0.03321056 -0.04194852 -0.0245098 -0.03509485 0.3062336 -0.01538862 -0.01085521 0.295154 0.160594 0.3062336 0.3062336 0.2066592 -0.01889283 0.1116016 0.2582981 0.1803922 -0.01085521 -0.01085521 -0.0218687 -0.0218687 -0.02691519 -0.01538862 -0.03321056 -0.0245098 -0.01085521 -0.02691519 -0.01538862 0.2443472 -0.0218687 -0.0245098 -0.0218687 -0.01085521 -0.0218687 -0.01889283 -0.01538862 -0.01889283 -0.0245098 -0.01085521 -0.01889283 -0.01889283 NA -0.01538862 -0.01538862 0.08329777 NA -0.0291436 NA -0.01085521 -0.01889283 -0.03690062 -0.01538862 -0.01538862 NA -0.01889283 -0.01085521 NA -0.01889283 -0.01085521 -0.01085521 -0.01538862 -0.01538862 -0.01085521 -0.01085521 -0.0245098 -0.01085521 -0.02691519 -0.02691519 -0.01085521 -0.01085521 -0.01085521 0.2443472 -0.01889283 NA NA -0.01085521 -0.01085521 -0.01085521 0.4428926 -0.01085521 NA NA -0.01085521 NA NA NA NA -0.01085521 -0.01085521 -0.01085521 -0.01085521 0.3361533 0.1156366 0.02469324 -0.03292432 -0.02786763 -0.02401489 -0.02786763 -0.05939384 0.3621871 0.2317553 0.3977967 0.1637349 0.05612297 -0.03292432 0.205777 0.07730207 0.3670537 -0.03884166 0.287122 -0.03597466 0.08159447 0.1156366 -0.0344755 0.745122 0.09204802 -0.04791192 0.06246814 -0.04417261 0.1919835 0.08159447 0.3816347 0.3305469 0.2317553 -0.04791192 0.0399596 -0.04543988 0.1310526 0.05922159 0.2224629 0.278289 NA -0.03742827 -0.05031214 -0.03597466 -0.02786763 -0.03292432 -0.03742827 -0.02963189 -0.04543988 0.06246814 -0.04668569 -0.01685699 -0.03292432 0.4417261 0.02273067 -0.0344755 0.3144273 -0.04288176 -0.02963189 -0.02600318 -0.0344755 -0.0195122 0.1156366 0.1687553 -0.03884166 0.132298 -0.02600318 0.0732718 -0.009685486 0.05315819 -0.04417261 -0.02963189 -0.009685486 -0.02600318 -0.02600318 -0.02401489 -0.03292432 -0.03884166 -0.0218687 -0.0218687 -0.0195122 -0.01685699 -0.02401489 -0.01685699 -0.0218687 -0.02963189 -0.0195122 -0.0218687 -0.01685699 -0.02401489 -0.02600318 -0.02786763 -0.01373039 -0.03131313 -0.0344755 -0.0344755 -0.0195122 -0.0218687 -0.01373039 -0.04417261 0.1234662 -0.0218687 -0.04288176 -0.03292432 -0.03292432 -0.0195122 -0.03742827 -0.02786763 NA -0.02963189 -0.03742827 -0.02786763 -0.03292432 -0.03131313 -0.04288176 -0.02600318 -0.03742827 0.0399596 -0.01373039 -0.02963189 -0.03742827 -0.0218687 0.132298 -0.01373039 -0.01373039 -0.009685486 -0.02786763 -0.02401489 -0.01373039 -0.01373039 -0.0195122 -0.01685699 0.132298 -0.03131313 -0.0218687 -0.009685486 -0.009685486 -0.0195122 -0.0195122 -0.02401489 -0.01373039 -0.02963189 -0.0218687 -0.009685486 -0.02401489 -0.01373039 -0.01685699 -0.0195122 -0.0218687 -0.0195122 -0.009685486 -0.0195122 -0.01685699 -0.01373039 -0.01685699 -0.0218687 -0.009685486 -0.01685699 -0.01685699 NA -0.01373039 -0.01373039 -0.03742827 NA -0.02600318 NA -0.009685486 -0.01685699 -0.03292432 -0.01373039 -0.01373039 NA -0.01685699 -0.009685486 NA -0.01685699 -0.009685486 -0.009685486 -0.01373039 -0.01373039 -0.009685486 -0.009685486 -0.0218687 -0.009685486 -0.02401489 -0.02401489 -0.009685486 -0.009685486 -0.009685486 -0.01685699 -0.01685699 NA NA -0.009685486 -0.009685486 -0.009685486 -0.009685486 -0.009685486 NA NA -0.009685486 NA NA NA NA -0.009685486 -0.009685486 -0.009685486 -0.009685486 0.3201875 0.3210531 0.6283058 0.3978355 0.3201875 0.3282035 0.3808576 0.5207788 0.22598 0.3955376 0.2988664 0.4884586 0.5243293 0.3978355 0.6584864 0.4822177 0.4406371 0.3504381 0.7808075 0.4434569 0.4615745 0.3710905 0.4211278 0.1817073 0.7773389 0.5410055 0.5597216 0.5227092 0.5023 0.4200825 0.4183946 0.3785904 0.3504381 0.3892844 0.5346751 0.5023 0.5712551 0.5050431 0.3307618 0.5415543 NA 0.278707 0.4685318 0.2988664 0.138177 0.3457054 0.4183946 0.2902828 0.5814411 0.5597216 0.4057209 0.1325147 0.3457054 0.4417261 0.6753438 0.3710905 0.2902828 0.4200825 0.2902828 0.2906784 0.4211278 0.2666667 0.3210531 0.5050431 0.3504381 0.3734091 0.2906784 0.5023 0.1323683 0.3316058 0.4012345 0.3476259 -0.03632057 0.2906784 0.22598 0.2584936 0.1371847 0.3955376 0.2226963 0.2988722 0.09674797 0.1325147 0.2584936 0.1325147 0.2226963 0.2902828 0.01178862 0.2988722 0.03465048 0.1887837 0.2906784 0.3201875 0.06807985 0.264335 0.3210531 0.2710157 0.09674797 0.2226963 0.1876487 0.3202514 0.1371847 0.07034432 0.4200825 0.2935752 0.3978355 0.1817073 0.3252695 0.138177 NA 0.2902828 0.1855818 0.3201875 0.3457054 0.209798 0.4615745 0.22598 0.3718321 0.3054167 0.06807985 0.1755964 0.278707 0.1465203 0.264335 0.06807985 0.1876487 0.1323683 0.2595173 0.3282035 0.1876487 0.1876487 0.1817073 0.2303789 0.3734091 0.3188721 0.2988722 0.1323683 0.1323683 0.1817073 0.09674797 0.1887837 0.06807985 0.1182532 0.2988722 0.1323683 0.3282035 0.06807985 0.2303789 0.2666667 0.07034432 0.2666667 -0.03632057 0.1817073 0.1325147 0.1876487 0.2303789 0.1465203 0.1323683 0.1325147 0.1325147 NA 0.06807985 0.06807985 0.4649572 NA 0.22598 NA 0.1323683 0.1325147 0.2935752 0.06807985 0.06807985 NA 0.03465048 0.1323683 NA 0.03465048 0.1323683 0.1323683 0.06807985 0.06807985 0.1323683 0.1323683 0.2226963 0.1323683 0.2584936 0.2584936 0.1323683 -0.03632057 0.1323683 0.1325147 0.2303789 NA NA 0.1323683 0.1323683 0.1323683 0.1323683 0.1323683 NA NA 0.1323683 NA NA NA NA 0.1323683 -0.03632057 -0.03632057 0.1323683 0.2566072 0.1834172 0.5659165 0.4079008 0.3378661 0.3144973 0.419125 0.5901993 0.1961121 0.2670505 0.2344282 0.594223 0.594223 0.6871843 0.6467617 0.5965588 0.3274547 0.387859 0.6653925 0.6862972 0.5060037 0.2504351 0.4514886 -0.04791192 0.5621085 0.8475936 0.6266688 0.7592566 0.5244118 0.3948584 0.2822784 0.3392857 0.387859 0.3903743 0.6464393 0.4714128 0.6210925 0.3654748 0.3703421 0.561081 NA 0.2822784 0.5121794 0.3635336 0.1753482 0.33808 0.5940976 0.5416629 0.6834091 0.6266688 0.4039556 0.2207579 0.4079008 0.3796283 0.5560421 0.2504351 0.3112541 0.5615764 0.1576482 0.1961121 0.3844707 0.1796697 0.3844707 0.561081 0.2066462 0.4344226 0.3694204 0.4714128 0.2021519 0.4848227 0.3253957 0.2344511 -0.02378257 0.1094579 0.1961121 0.3144973 0.1984382 0.4482633 0.252382 0.3544087 0.06587889 0.2207579 0.3144973 0.0896829 0.252382 0.388057 0.06587889 0.252382 0.0896829 0.3144973 0.1961121 0.2566072 0.1264304 0.3613781 0.3174529 0.1834172 0.1796697 0.3544087 0.2865757 0.2711631 0.1286174 0.1503552 0.3948584 0.1984382 0.2682591 0.1796697 0.2822784 0.1753482 NA 0.3112541 0.1575507 0.1753482 0.33808 0.06920007 0.3392857 0.1961121 0.3446423 0.207784 0.1264304 0.08084521 0.2822784 0.04832846 0.2152891 0.1264304 0.2865757 0.2021519 0.2566072 0.2211309 0.2865757 0.1264304 0.06587889 0.2207579 0.4344226 0.2883336 0.252382 -0.02378257 -0.02378257 -0.04791192 0.1796697 0.3144973 -0.03371478 0.00404226 0.3544087 -0.02378257 0.1277645 -0.03371478 0.0896829 0.1796697 0.1503552 0.2934605 -0.02378257 0.2934605 0.2207579 0.2865757 0.2207579 0.252382 0.2021519 0.0896829 -0.04139211 NA 0.1264304 -0.03371478 0.4693699 NA 0.2827662 NA 0.2021519 0.2207579 0.33808 0.1264304 -0.03371478 NA -0.04139211 0.2021519 NA 0.2207579 0.2021519 0.2021519 0.1264304 0.1264304 0.2021519 0.2021519 0.252382 0.2021519 0.03439814 0.2211309 -0.02378257 -0.02378257 -0.02378257 0.2207579 0.2207579 NA NA -0.02378257 -0.02378257 0.2021519 0.2021519 0.2021519 NA NA -0.02378257 NA NA NA NA 0.2021519 -0.02378257 -0.02378257 -0.02378257 0.4437398 0.05954569 0.4370415 0.4332078 0.1894209 0.2362862 0.4437398 0.5392163 0.3914515 0.6027267 0.5223209 0.682032 0.4815472 0.5060481 0.6057242 0.5194879 0.6027267 0.2876444 0.6273025 0.5223209 0.5958479 0.6188738 0.5489578 0.1919835 0.5260229 0.63041 0.7171813 0.5194879 0.612963 0.3639444 0.5634448 0.5958479 0.6027267 0.3124156 0.50492 0.4470899 0.6174321 0.4950289 0.5180703 0.6480778 NA 0.238141 0.2909637 0.2529438 0.019875 0.2875273 0.4333233 0.2514906 0.612963 0.5092883 0.2699913 0.2342302 0.2146871 0.46291 0.5121714 0.1993777 0.4117391 0.4219203 0.091242 0.02984547 0.5489578 0.0732718 0.2692937 0.5460452 0.03557866 0.384298 0.30105 0.3917989 -0.0225555 0.3209224 0.2931764 0.1713663 -0.0225555 0.02984547 0.120247 0.2362862 0.1418468 0.224628 0.05551119 0.2683889 -0.04543988 0.2342302 0.04147825 -0.03925646 0.1619501 0.2514906 -0.04543988 0.1619501 -0.03925646 0.04147825 0.02984547 0.1894209 -0.03197525 0.2318914 0.1294617 0.05954569 0.0732718 0.1619501 0.1350954 0.1234427 0.06900656 -0.05092769 0.3059685 0.1418468 0.2875273 -0.04543988 0.238141 0.104648 NA 0.2514906 0.04295877 0.104648 0.2146871 0.003281482 0.2479926 0.120247 0.1730803 0.04729519 -0.03197525 0.01111772 0.1080195 0.05551119 0.07948479 0.3021661 0.1350954 0.2131495 0.1894209 0.1388822 0.1350954 0.1350954 0.0732718 -0.03925646 0.384298 0.3080947 0.1619501 -0.0225555 -0.0225555 -0.04543988 0.0732718 0.04147825 -0.03197525 -0.06900656 0.1619501 -0.0225555 0.04147825 -0.03197525 0.09748687 0.0732718 0.05551119 0.1919835 -0.0225555 0.0732718 0.09748687 0.1350954 0.09748687 0.1619501 0.2131495 -0.03925646 -0.03925646 NA -0.03197525 -0.03197525 0.3032018 NA 0.2106485 NA -0.0225555 0.09748687 0.2146871 0.1350954 -0.03197525 NA -0.03925646 -0.0225555 NA 0.09748687 -0.0225555 -0.0225555 -0.03197525 -0.03197525 -0.0225555 -0.0225555 0.05551119 -0.0225555 -0.05592574 0.04147825 -0.0225555 -0.0225555 -0.0225555 0.09748687 0.09748687 NA NA -0.0225555 -0.0225555 -0.0225555 0.2131495 -0.0225555 NA NA -0.0225555 NA NA NA NA -0.0225555 -0.0225555 -0.0225555 -0.0225555 0.1301417 0.2383546 0.5641268 0.2544933 0.3177251 0.05826613 0.3177251 0.52724 0.1464394 0.3382617 0.2983919 0.6702175 0.5593106 0.5768515 0.5641268 0.5349205 0.4777029 0.2685411 0.5460829 0.4474097 0.4889047 0.4704172 0.4704172 -0.04021929 0.4914496 0.5462547 0.6462849 0.8479058 0.4568971 0.2964733 0.2827634 0.4247609 0.4777029 0.4876172 0.5886766 0.5180703 0.6155865 0.4607326 0.3908679 0.5736201 NA 0.3547458 0.5171763 0.3729008 0.2239334 0.3350828 0.570693 0.4708126 0.6404169 0.7037874 0.5622029 0.2678359 0.4156724 0.4097263 0.5087564 0.3157088 0.2048671 0.6171923 0.2048671 0.2464585 0.393063 0.2224629 0.3157088 0.5171763 0.2685411 0.2726977 0.4464967 0.5180703 -0.0199641 0.4912465 0.4723234 0.2935156 -0.0199641 0.1464394 0.2464585 0.3815658 0.3350828 0.4079823 0.3082113 0.3082113 0.2224629 0.419127 0.2737992 0.2678359 0.3082113 0.4708126 0.2224629 0.1904487 0.2678359 0.3815658 0.3464776 0.3177251 0.3413882 0.4413185 0.393063 0.2383546 0.2224629 0.425974 -0.02830161 0.3471292 0.1739038 0.1904487 0.4247609 0.3350828 0.3350828 0.2224629 0.3547458 0.2239334 NA 0.3821641 0.2827634 0.3177251 0.4156724 0.1040769 0.4889047 0.2464585 0.3547458 0.2342594 0.3413882 0.2048671 0.3547458 0.07268603 0.1040769 0.1565433 0.1565433 0.2408169 0.3177251 0.3815658 0.1565433 0.1565433 0.09112183 0.1165448 0.3570081 0.4413185 0.3082113 -0.0199641 -0.0199641 0.2224629 0.09112183 0.3815658 -0.02830161 0.1162186 0.3082113 -0.0199641 0.05826613 -0.02830161 0.1165448 0.09112183 -0.04507661 0.09112183 -0.0199641 -0.04021929 -0.03474628 -0.02830161 0.2678359 0.1904487 0.2408169 0.2678359 0.1165448 NA 0.3413882 -0.02830161 0.3547458 NA 0.4464967 NA -0.0199641 0.1165448 0.3350828 0.1565433 0.1565433 NA -0.03474628 0.2408169 NA 0.2678359 0.2408169 0.2408169 0.1565433 0.3413882 0.2408169 0.2408169 0.1904487 0.2408169 0.05826613 0.2737992 -0.0199641 -0.0199641 -0.0199641 0.2678359 0.1165448 NA NA -0.0199641 -0.0199641 0.2408169 0.2408169 0.2408169 NA NA -0.0199641 NA NA NA NA 0.2408169 0.2408169 -0.0199641 -0.0199641 0.4643885 0.1625407 0.4378803 0.3753259 0.3106954 0.2898155 0.3875419 0.4983983 0.4230754 0.6401201 0.5155444 0.591087 0.4547826 0.5073851 0.6290185 0.5501778 0.6972444 0.3544986 0.6077421 0.5155444 0.6226139 0.4794344 0.4794344 0.3789588 0.5430759 0.5461795 0.5770862 0.4476023 0.7822744 0.4649487 0.4910085 0.6226139 0.5258715 0.3540052 0.4684273 0.431426 0.5682137 0.42219 0.5038571 0.6071748 NA 0.1371438 0.3296977 0.3934495 0.003309181 0.2432668 0.3730536 0.2849697 0.5316684 0.5299725 0.269151 0.2034328 0.1112077 0.4476023 0.542508 0.09916196 0.4302347 0.3598386 0.1397047 0.01333139 0.5428132 0.1637349 0.2892982 0.4684362 0.1260014 0.3318396 0.2591778 0.431426 0.188108 0.3078019 0.1911635 0.1397047 -0.02555815 0.01333139 0.0952802 0.2015189 0.1112077 0.1831257 0.03877933 0.2317527 0.05612297 0.2034328 0.1132224 -0.04448239 0.135266 0.2123372 -0.05148896 0.135266 -0.04448239 0.1132224 0.0952802 0.2338488 -0.03623188 0.1936833 0.1625407 0.1625407 0.05612297 0.135266 -0.03623188 0.1911635 0.1112077 -0.05770733 0.3072836 0.1112077 0.2432668 -0.05148896 0.2550987 0.08015573 NA 0.2123372 0.01918884 0.08015573 0.2432668 0.05552695 0.3072836 0.0952802 0.2550987 0.1780421 -0.03623188 -0.005560384 0.1961212 0.03877933 0.1246051 0.2666667 0.1152174 0.188108 0.08015573 0.2898155 0.1152174 0.1152174 0.05612297 0.0794752 0.4009178 0.2627615 0.2317527 -0.02555815 -0.02555815 0.05612297 0.05612297 0.1132224 -0.03623188 -0.005560384 0.135266 -0.02555815 0.1132224 -0.03623188 0.0794752 0.1637349 -0.05770733 0.2713468 -0.02555815 0.05612297 -0.04448239 -0.03623188 0.2034328 0.135266 0.188108 -0.04448239 -0.04448239 NA -0.03623188 -0.03623188 0.3730536 NA 0.2591778 NA 0.188108 -0.04448239 0.3092964 0.1152174 0.1152174 NA -0.04448239 -0.02555815 NA 0.0794752 -0.02555815 -0.02555815 -0.03623188 -0.03623188 -0.02555815 -0.02555815 0.03877933 -0.02555815 -0.06337073 -0.06337073 -0.02555815 -0.02555815 -0.02555815 0.0794752 0.2034328 NA NA -0.02555815 -0.02555815 -0.02555815 0.188108 -0.02555815 NA NA -0.02555815 NA NA NA NA -0.02555815 -0.02555815 -0.02555815 -0.02555815 0.2033747 0.2515981 0.3888889 0.3722222 0.3262223 0.3869855 0.44907 0.4989051 0.3535234 0.3062917 0.3357321 0.4302347 0.5754998 0.5833333 0.3888889 0.4248529 0.3976112 0.2149722 0.3761181 0.6285055 0.4389686 0.352916 0.454234 0.1423977 0.3938355 0.5416629 0.4526192 0.5068421 0.4117391 0.6069987 0.3202881 0.4389686 0.3976112 0.388057 0.4420018 0.4117391 0.4898979 0.2932424 0.3821641 0.3671721 NA 0.1317241 0.5150313 0.6285055 0.2033747 0.2666667 0.508852 0.4194444 0.5719877 0.5279356 0.3211064 0.3707202 0.1611111 0.1788854 0.4428926 0.04896225 0.1872222 0.5229836 0.4194444 0.09151492 0.352916 -0.02963189 0.1502802 0.3671721 0.2149722 0.173305 0.3535234 0.3316148 0.3268602 0.3485393 0.3428638 -0.045 -0.01470871 0.09151492 0.2225192 0.3869855 0.2666667 0.3062917 0.121034 0.2752786 0.1423977 0.5688801 0.3869855 0.1725603 0.2752786 0.3033333 0.1423977 0.2752786 0.1725603 0.3869855 -0.03948931 0.3262223 0.221257 0.5045923 0.2515981 0.2515981 0.3144273 0.2752786 -0.02085144 0.2608746 0.05555556 0.121034 0.2709385 0.1611111 0.1611111 0.1423977 0.2260061 -0.04232074 NA 0.3033333 0.1317241 0.08052696 0.3722222 0.06287589 0.2709385 0.2225192 0.2260061 0.3093695 0.221257 0.07111111 0.2260061 0.121034 0.06287589 -0.02085144 0.221257 -0.01470871 -0.04232074 0.2458337 0.221257 0.221257 0.1423977 0.1725603 0.173305 0.173305 0.2752786 -0.01470871 -0.01470871 0.1423977 0.1423977 0.3869855 -0.02085144 0.07111111 0.121034 -0.01470871 -0.03646984 -0.02085144 0.1725603 -0.02963189 -0.03321056 -0.02963189 -0.01470871 0.1423977 -0.02559961 -0.02085144 0.1725603 0.2752786 0.3268602 0.1725603 0.1725603 NA 0.221257 -0.02085144 0.3202881 NA 0.4845276 NA 0.3268602 0.1725603 0.3722222 0.221257 -0.02085144 NA -0.02559961 -0.01470871 NA -0.02559961 -0.01470871 -0.01470871 -0.02085144 0.221257 -0.01470871 -0.01470871 0.121034 -0.01470871 -0.03646984 0.1046819 -0.01470871 -0.01470871 -0.01470871 0.1725603 -0.02559961 NA NA -0.01470871 -0.01470871 -0.01470871 0.3268602 -0.01470871 NA NA -0.01470871 NA NA NA NA -0.01470871 0.3268602 -0.01470871 -0.01470871 0.5991004 0.08364617 0.3308413 0.4962619 0.3177251 0.3815658 0.4115169 0.3773173 0.4464967 0.5474235 0.6709363 0.4484037 0.5038571 0.1739038 0.4708126 0.5349205 0.6171441 0.2685411 0.5003389 0.3729008 0.4247609 0.5477714 0.6251256 0.3538041 0.4483472 0.3117046 0.4737772 0.2219351 0.5180703 0.4247609 0.8586226 0.5530485 0.5474235 0.2530671 0.3861525 0.2733772 0.467534 0.4042888 0.4585492 0.5171763 NA 0.1387986 0.2349574 0.3729008 0.1301417 0.1739038 0.2827634 0.1162186 0.3345505 0.358772 0.1431999 0.2678359 0.09331421 0.5349205 0.2778049 0.1610004 0.5594611 0.2964733 0.2048671 0.04642035 0.6251256 -0.04021929 0.3157088 0.5171763 0.05937927 0.3570081 0.4464967 0.3345505 0.2408169 0.2731466 0.2845322 0.2048671 -0.0199641 0.04642035 0.1464394 0.1660327 0.09331421 0.05937927 0.07268603 0.1904487 -0.04021929 0.2678359 0.2737992 -0.03474628 0.1904487 0.1162186 -0.04021929 0.3082113 -0.03474628 0.05826613 -0.05359875 0.2239334 -0.02830161 0.1883873 0.006291968 0.006291968 0.2224629 0.1904487 0.1565433 0.03414386 -0.06786488 0.07268603 0.1681857 0.1739038 0.3350828 0.09112183 0.210781 -0.05744183 NA 0.2048671 -0.005166201 0.1301417 0.2544933 0.01976655 0.2323295 0.1464394 -0.005166201 0.03173524 -0.02830161 -0.06107839 -0.005166201 0.07268603 0.1883873 0.1565433 -0.02830161 -0.0199641 0.2239334 0.1660327 0.3413882 0.1565433 0.09112183 0.1165448 0.4413185 0.1883873 0.1904487 -0.0199641 -0.0199641 -0.04021929 0.2224629 0.1660327 -0.02830161 -0.06107839 0.07268603 -0.0199641 0.05826613 -0.02830161 0.1165448 0.09112183 0.07268603 0.2224629 -0.0199641 0.2224629 0.1165448 0.1565433 0.1165448 0.1904487 0.2408169 -0.03474628 -0.03474628 NA -0.02830161 -0.02830161 0.210781 NA 0.04642035 NA 0.2408169 0.1165448 0.1739038 0.1565433 -0.02830161 NA -0.03474628 -0.0199641 NA -0.03474628 -0.0199641 -0.0199641 -0.02830161 -0.02830161 -0.0199641 -0.0199641 0.1904487 -0.0199641 -0.04950043 0.05826613 -0.0199641 -0.0199641 -0.0199641 0.1165448 0.1165448 NA NA -0.0199641 -0.0199641 -0.0199641 0.2408169 -0.0199641 NA NA -0.0199641 NA NA NA NA -0.0199641 -0.0199641 -0.0199641 -0.0199641 0.5053086 0.3157088 0.4241555 0.3350828 0.2239334 0.1660327 0.5053086 0.4772657 0.5465158 0.6171441 0.6709363 0.5038571 0.5038571 0.4962619 0.5641268 0.5349205 0.7565853 0.2685411 0.5460829 0.4474097 0.6171923 0.6251256 0.6251256 0.4851452 0.4483472 0.4876172 0.5887823 0.4097263 0.5792436 0.4247609 0.6426754 0.8096237 0.5474235 0.3117046 0.5380456 0.3345505 0.5662357 0.4042888 0.6615933 0.6865077 NA 0.210781 0.347845 0.3729008 0.03634991 0.1739038 0.4987106 0.4708126 0.5180703 0.4737772 0.2629151 0.2678359 0.09331421 0.4723234 0.4625661 0.08364617 0.5594611 0.3606171 0.1162186 0.04642035 0.393063 0.09112183 0.2383546 0.5171763 0.05937927 0.2726977 0.2464585 0.2733772 -0.0199641 0.3276716 0.2219351 0.1162186 -0.0199641 -0.05359875 0.1464394 0.1660327 0.1739038 0.1988205 0.07268603 0.07268603 -0.04021929 0.2678359 0.05826613 -0.03474628 0.1904487 0.1162186 -0.04021929 0.1904487 -0.03474628 0.05826613 0.04642035 0.2239334 -0.02830161 0.3570081 0.08364617 0.006291968 0.09112183 0.1904487 -0.02830161 0.159338 0.09331421 -0.04507661 0.1681857 0.1739038 0.2544933 -0.04021929 0.1387986 0.1301417 NA 0.1162186 0.0668162 0.1301417 0.1739038 0.01976655 0.2323295 0.04642035 0.0668162 0.1836283 -0.02830161 0.02757011 0.0668162 0.07268603 0.01976655 0.3413882 0.3413882 0.2408169 0.1301417 0.1660327 0.1565433 0.1565433 0.09112183 -0.03474628 0.5256289 0.1883873 0.1904487 -0.0199641 -0.0199641 -0.04021929 0.09112183 0.1660327 -0.02830161 -0.06107839 -0.04507661 -0.0199641 0.05826613 -0.02830161 0.1165448 0.09112183 -0.04507661 0.2224629 -0.0199641 -0.04021929 -0.03474628 -0.02830161 0.1165448 0.07268603 0.2408169 -0.03474628 -0.03474628 NA -0.02830161 -0.02830161 0.1387986 NA 0.1464394 NA -0.0199641 -0.03474628 0.2544933 0.1565433 -0.02830161 NA -0.03474628 -0.0199641 NA 0.1165448 -0.0199641 -0.0199641 -0.02830161 -0.02830161 -0.0199641 -0.0199641 0.07268603 -0.0199641 -0.04950043 -0.04950043 -0.0199641 -0.0199641 -0.0199641 0.1165448 0.1165448 NA NA -0.0199641 -0.0199641 -0.0199641 0.2408169 -0.0199641 NA NA -0.0199641 NA NA NA NA -0.0199641 -0.0199641 -0.0199641 -0.0199641 0.4453047 0.2629489 0.4195323 0.3653991 0.2458006 0.1831646 0.5450568 0.4707209 0.5883717 0.6670064 0.7234314 0.549986 0.432031 0.45111 0.5187765 0.5810184 0.8153089 0.222099 0.5021061 0.4857 0.6681648 0.5920287 0.6742987 0.3816347 0.4057738 0.4693699 0.5785021 0.3812933 0.6935663 0.3952846 0.6937729 0.7363848 0.6670064 0.2822784 0.4805147 0.3682625 0.618794 0.383737 0.7146578 0.6238598 NA 0.2344322 0.3237063 0.4064562 0.04629642 0.1939773 0.4641026 0.4145701 0.5634448 0.3950318 0.2924161 0.2894758 0.1082664 0.3812933 0.4120442 0.09840903 0.508852 0.3270645 0.1317241 0.0564959 0.4274888 0.1022594 0.2629489 0.5037984 0.07379646 0.298608 0.2692462 0.3032018 -0.01857869 0.3049328 0.2481433 0.1317241 -0.01857869 -0.04987927 0.1628711 0.1831646 0.1939773 0.1479477 0.08329777 0.08329777 -0.03742827 0.2894758 0.06854962 -0.03233506 0.2085441 0.1317241 -0.03742827 0.2085441 -0.03233506 0.06854962 0.0564959 0.2458006 -0.02633762 0.298608 0.09840903 0.01613908 0.1022594 0.2085441 -0.02633762 0.1815683 0.1082664 -0.04194852 0.1906244 0.1939773 0.2796882 -0.03742827 0.1578755 0.1460485 NA 0.1317241 0.08131868 0.1460485 0.1939773 0.02960338 0.2588445 0.0564959 0.08131868 0.1574233 -0.02633762 0.03744213 0.08131868 0.08329777 0.02960338 0.3668454 0.1702539 0.2587746 0.1460485 0.1831646 0.1702539 0.1702539 0.1022594 -0.03233506 0.3882762 0.2089398 0.2085441 -0.01857869 -0.01857869 -0.03742827 0.1022594 0.1831646 -0.02633762 -0.05683986 -0.04194852 -0.01857869 0.06854962 -0.02633762 0.1285704 0.1022594 -0.04194852 0.241947 -0.01857869 -0.03742827 -0.03233506 -0.02633762 0.1285704 0.08329777 0.2587746 -0.03233506 -0.03233506 NA -0.02633762 -0.02633762 0.1578755 NA 0.1628711 NA -0.01857869 -0.03233506 0.2796882 0.1702539 -0.02633762 NA -0.03233506 -0.01857869 NA 0.1285704 -0.01857869 -0.01857869 -0.02633762 -0.02633762 -0.01857869 -0.01857869 0.08329777 -0.01857869 -0.04606534 -0.04606534 -0.01857869 -0.01857869 -0.01857869 0.1285704 0.1285704 NA NA -0.01857869 -0.01857869 -0.01857869 0.2587746 -0.01857869 NA NA -0.01857869 NA NA NA NA -0.01857869 -0.01857869 -0.01857869 -0.01857869 0.2143203 0.1522795 0.5404555 0.2434113 0.2143203 0.05366425 0.2143203 0.4567776 0.1391783 0.2563336 0.1407833 0.3218196 0.3757573 0.321798 0.4043102 0.2712196 0.1885188 0.3241484 0.4781469 0.2857278 0.282996 0.2275193 0.2275193 -0.04156492 0.3847398 0.2971807 0.3428101 0.4538776 0.2007096 0.1582151 0.06029983 0.2206055 0.1885188 0.7534582 0.3682927 0.3197119 0.3511714 0.2222306 0.2434814 0.2771315 NA 0.3403591 0.5516362 0.2857278 0.3055483 0.321798 0.3403591 0.2817795 0.379213 0.5106025 0.5409854 0.1112469 0.4001846 0.2712196 0.4415385 0.4532386 0.1093288 0.407777 0.1955541 0.5283188 0.2275193 0.2139371 0.1522795 0.3869334 0.3919633 0.01530252 0.1391783 0.4387142 -0.02063204 0.3651518 0.4538776 0.2817795 -0.02063204 0.4310337 0.3337485 0.3681267 0.321798 0.3919633 0.41159 0.41159 0.3416881 0.2584025 0.3681267 0.4055582 0.2970463 0.4542302 0.2139371 0.41159 0.2584025 0.4729475 0.4310337 0.3055483 0.3303361 0.4253316 0.6037182 0.5284784 0.2139371 0.2970463 0.1505438 0.5147637 0.2434113 0.2970463 0.5325579 0.4001846 0.321798 0.4694391 0.2703442 0.3055483 NA 0.3680048 0.2703442 0.3967764 0.4001846 0.3433258 0.4701674 0.4310337 0.5504035 0.2205515 0.3303361 0.3680048 0.4803887 0.2970463 0.09730834 0.1505438 -0.0292485 -0.02063204 0.2143203 0.2633059 0.1505438 0.1505438 0.2139371 0.2584025 0.3433258 0.3433258 0.41159 0.2330207 0.2330207 0.4694391 0.2139371 0.4729475 0.1505438 0.2817795 0.5261336 0.2330207 0.3681267 0.1505438 0.2584025 0.2139371 0.06795893 0.2139371 -0.02063204 0.08618608 0.1112469 0.1505438 0.2584025 0.2970463 0.2330207 0.4055582 0.4055582 NA 0.3303361 0.1505438 0.4103739 NA 0.5283188 NA -0.02063204 0.2584025 0.321798 0.1505438 0.1505438 NA 0.1112469 0.2330207 NA 0.4055582 0.2330207 0.2330207 0.1505438 0.3303361 0.2330207 0.2330207 0.41159 0.2330207 0.4729475 0.4729475 0.2330207 -0.02063204 0.2330207 0.1112469 0.1112469 NA NA 0.2330207 0.2330207 0.2330207 -0.02063204 0.2330207 NA NA 0.2330207 NA NA NA NA 0.2330207 0.2330207 -0.02063204 -0.02063204 0.3999472 0.4091066 0.729723 0.4353283 0.3306937 0.3247609 0.3999472 0.6310028 0.2901061 0.3965681 0.3306194 0.5393438 0.6212347 0.4353283 0.6952726 0.5588433 0.448048 0.3965681 0.7050992 0.4956658 0.3904548 0.3519901 0.466223 0.1345642 0.6302711 0.5901993 0.5722751 0.6050634 0.4940475 0.3430926 0.3112709 0.4851791 0.448048 0.5469028 0.7571742 0.5392163 0.6539916 0.4303267 0.4272915 0.5553568 NA 0.4175709 0.5553568 0.4406504 0.2614402 0.4353283 0.4707209 0.3679934 0.629554 0.657192 0.4766545 0.1721076 0.4353283 0.5126231 0.6489888 0.4091066 0.3679934 0.5799035 0.3025375 0.4378093 0.4091066 0.2315432 0.5233394 0.6387102 0.3450881 0.4027064 0.4378093 0.629554 0.1630722 0.6046687 0.466403 0.3679934 -0.02948198 0.3639577 0.3639577 0.4043331 0.3163177 0.551008 0.3681981 0.3681981 0.2315432 0.2838172 0.4043331 0.2838172 0.3681981 0.4334492 0.2315432 0.3681981 0.1721076 0.3247609 0.2901061 0.3999472 0.2311753 0.5272118 0.466223 0.3519901 0.2315432 0.3681981 0.2311753 0.466403 0.3163177 0.1942921 0.4851791 0.375823 0.4353283 0.3285222 0.4175709 0.2614402 NA 0.4334492 0.3112709 0.3999472 0.4353283 0.278201 0.5325413 0.3639577 0.4175709 0.4207119 0.2311753 0.3025375 0.3644209 0.1942921 0.1536956 0.09469046 0.2311753 0.1630722 0.3306937 0.1656166 0.2311753 0.2311753 0.2315432 0.2838172 0.4649591 0.3404537 0.3681981 0.1630722 0.1630722 0.1345642 0.1345642 0.3247609 0.2311753 0.2370817 0.3681981 0.1630722 0.3247609 0.2311753 0.2838172 0.2315432 0.1942921 0.3285222 -0.02948198 0.2315432 0.1721076 0.2311753 0.2838172 0.1942921 0.1630722 0.2838172 0.1721076 NA 0.2311753 0.09469046 0.4707209 NA 0.3639577 NA 0.1630722 0.2838172 0.375823 0.09469046 -0.04179441 NA 0.1721076 0.1630722 NA 0.1721076 0.1630722 0.1630722 0.09469046 0.2311753 0.1630722 0.1630722 0.2812451 0.1630722 0.2451888 0.4043331 0.1630722 0.1630722 0.1630722 0.1721076 0.1721076 NA NA 0.1630722 0.1630722 0.1630722 0.1630722 0.1630722 NA NA -0.02948198 NA NA NA NA 0.1630722 0.1630722 0.1630722 0.1630722 0.1753482 0.3174529 0.5254939 0.2682591 0.3378661 0.3144973 0.2566072 0.5901993 0.2827662 0.387859 0.2989809 0.594223 0.4981359 0.5475425 0.5659165 0.4338609 0.387859 0.2670505 0.5068664 0.492639 0.5060037 0.5185064 0.3174529 0.1796697 0.4874227 0.5935829 0.5270311 0.705024 0.5244118 0.3948584 0.2822784 0.4504311 0.387859 0.3903743 0.4709772 0.7364081 0.5355798 0.3165732 0.3703421 0.4632779 NA 0.2199146 0.4632779 0.2989809 0.09408929 0.33808 0.4693699 0.5416629 0.6834091 0.4772122 0.4039556 0.2207579 0.1984382 0.2169305 0.5560421 0.04938156 0.1576482 0.3948584 0.2344511 0.02280373 0.3844707 0.1796697 0.2504351 0.4632779 0.2066462 0.1422446 0.1961121 0.4714128 0.2021519 0.3903444 0.2711631 0.1576482 -0.02378257 0.1094579 0.02280373 0.1277645 0.1984382 0.2670505 0.04832846 0.252382 0.06587889 0.2207579 0.2211309 0.0896829 0.04832846 0.2344511 0.06587889 0.1503552 0.0896829 0.2211309 0.1961121 0.1753482 0.1264304 0.2883336 0.1834172 0.1834172 0.06587889 0.1503552 -0.03371478 0.2711631 0.05879652 0.04832846 0.3392857 0.1984382 0.1984382 0.06587889 0.1575507 0.09408929 NA 0.08084521 0.2199146 0.1753482 0.33808 -0.003844448 0.3392857 0.1094579 0.2822784 0.207784 0.1264304 0.00404226 0.2199146 0.04832846 0.2152891 0.1264304 0.1264304 0.2021519 0.09408929 0.4078636 0.1264304 0.1264304 0.06587889 0.2207579 0.2152891 0.2883336 0.252382 -0.02378257 -0.02378257 0.06587889 0.06587889 0.2211309 0.1264304 0.08084521 0.252382 -0.02378257 0.03439814 -0.03371478 0.0896829 0.06587889 0.04832846 -0.04791192 -0.02378257 0.06587889 -0.04139211 -0.03371478 0.2207579 0.1503552 0.2021519 0.0896829 -0.04139211 NA 0.1264304 -0.03371478 0.4070061 NA 0.2827662 NA 0.2021519 -0.04139211 0.4079008 0.1264304 0.1264304 NA 0.0896829 0.2021519 NA 0.2207579 0.2021519 0.2021519 0.1264304 0.1264304 0.2021519 0.2021519 0.1503552 0.2021519 0.03439814 0.1277645 -0.02378257 0.2021519 -0.02378257 0.2207579 0.0896829 NA NA -0.02378257 -0.02378257 0.2021519 0.2021519 0.2021519 NA NA -0.02378257 NA NA NA NA 0.2021519 -0.02378257 0.2021519 -0.02378257 0.2338488 0.2892982 0.6290185 0.4413555 0.3875419 0.2898155 0.4643885 0.7031256 0.3411266 0.4687472 0.5155444 0.591087 0.5456522 0.4413555 0.7054738 0.6014656 0.5258715 0.2973743 0.6452216 0.5765919 0.5175038 0.4794344 0.4794344 0.1637349 0.5430759 0.594223 0.7184272 0.6014656 0.5316684 0.4649487 0.432031 0.5700588 0.5829958 0.4020488 0.5928782 0.5316684 0.8512565 0.4684362 0.5038571 0.5609286 NA 0.3140761 0.5609286 0.3934495 0.3106954 0.3753259 0.549986 0.4302347 0.6319108 0.6241998 0.4162806 0.2034328 0.3092964 0.4476023 0.6181983 0.2259194 0.2849697 0.5175038 0.3576022 0.2591778 0.4160557 0.1637349 0.3526769 0.5609286 0.24025 0.3318396 0.3411266 0.431426 0.188108 0.4864981 0.3450268 0.1397047 -0.02555815 0.177229 0.2591778 0.378112 0.3092964 0.4116229 0.3282393 0.2317527 0.1637349 0.3273904 0.378112 0.3273904 0.2317527 0.2849697 0.1637349 0.2317527 0.2034328 0.2898155 0.2591778 0.3106954 0.2666667 0.4009178 0.2892982 0.1625407 0.1637349 0.3282393 0.1152174 0.3450268 0.2432668 0.135266 0.4123937 0.2432668 0.2432668 0.2713468 0.2550987 0.2338488 NA 0.2849697 0.2550987 0.2338488 0.3753259 0.1246051 0.4123937 0.177229 0.2550987 0.3854601 0.2666667 0.2123372 0.2550987 0.03877933 0.1246051 0.2666667 0.2666667 0.188108 0.2338488 0.2898155 0.1152174 0.1152174 0.1637349 0.2034328 0.3318396 0.3318396 0.2317527 -0.02555815 -0.02555815 0.2713468 0.05612297 0.2898155 0.1152174 0.06707214 0.135266 -0.02555815 0.1132224 -0.03623188 0.0794752 0.05612297 0.135266 0.1637349 -0.02555815 0.1637349 0.0794752 0.1152174 0.2034328 0.135266 0.188108 0.2034328 0.2034328 NA 0.2666667 -0.03623188 0.3140761 NA 0.2591778 NA 0.188108 0.2034328 0.3092964 0.1152174 0.1152174 NA 0.0794752 0.188108 NA 0.2034328 0.188108 0.188108 0.1152174 0.2666667 0.188108 0.188108 0.3282393 0.188108 0.1132224 0.2898155 -0.02555815 0.188108 -0.02555815 0.2034328 0.0794752 NA NA -0.02555815 -0.02555815 0.188108 0.188108 0.188108 NA NA -0.02555815 NA NA NA NA 0.188108 0.188108 0.188108 -0.02555815 0.3026009 0.09392357 0.461302 0.3656245 0.2270411 0.2824705 0.3026009 0.3228495 0.1715628 0.4006996 0.1430268 0.39715 0.2631279 0.1708526 0.5364771 0.4859523 0.3445318 0.2321962 0.4431053 0.1430268 0.297688 0.4055113 0.3431937 0.1589683 0.4567264 0.2958662 0.3770264 0.3346653 0.3209224 0.1426628 0.3049328 0.297688 0.288364 0.2958662 0.332167 0.2223584 0.4729068 0.8191459 0.3276716 0.2734838 NA 0.3049328 0.3189556 0.3231027 0.3781607 0.2357766 0.1889529 -0.008542629 0.2223584 0.5623256 0.3080211 0.07639498 0.3656245 0.6372393 0.4520575 0.4678288 0.3485393 0.5043883 0.2057065 0.3327161 0.4678288 0.1589683 0.4055113 0.5917867 0.288364 0.4588766 0.4132928 0.4687683 -0.02613542 0.3411097 0.3850943 0.2771229 -0.02613542 0.2521395 0.3327161 0.3692886 0.2357766 0.288364 0.4153448 0.3204737 0.2647784 0.1982771 0.3692886 0.3201591 0.3204737 0.2771229 0.2647784 0.2256026 0.1982771 0.1956523 0.1715628 0.3781607 0.2607766 0.1871905 0.2808762 0.1562411 0.2647784 0.4153448 0.2607766 0.1833782 0.1708526 0.2256026 0.3493631 0.2357766 0.4305485 0.3705885 0.3629228 0.1514812 NA 0.3485393 0.072973 0.3026009 0.2357766 0.1871905 0.3493631 0.3327161 0.2469429 0.1690109 0.2607766 0.1342901 0.1889529 -0.05901074 0.1192689 -0.03705023 -0.03705023 -0.02613542 0.3781607 0.3692886 0.2607766 0.1118632 0.1589683 -0.04548709 0.255112 0.4588766 0.2256026 -0.02613542 -0.02613542 0.3705885 0.2647784 0.1956523 -0.03705023 0.2057065 0.2256026 -0.02613542 0.1956523 0.1118632 0.07639498 0.1589683 0.1307315 0.2647784 -0.02613542 0.1589683 0.1982771 0.2607766 0.3201591 0.03586037 -0.02613542 0.1982771 0.3201591 NA 0.2607766 -0.03705023 0.1889529 NA 0.09098611 NA -0.02613542 0.3201591 0.04100462 -0.03705023 0.1118632 NA -0.04548709 0.1839531 NA 0.07639498 0.1839531 0.1839531 0.1118632 0.2607766 0.1839531 0.1839531 0.2256026 0.1839531 0.1956523 0.2824705 -0.02613542 -0.02613542 -0.02613542 0.1982771 0.1982771 NA NA -0.02613542 -0.02613542 0.1839531 0.1839531 0.1839531 NA NA 0.1839531 NA NA NA NA 0.1839531 0.1839531 -0.02613542 -0.02613542 0.5394581 0.3301131 0.3592908 0.2483334 0.1889501 0.2299497 0.5394581 0.4027064 0.4566438 0.4587711 0.5919757 0.4009178 0.469996 0.3487234 0.4174114 0.5529273 0.6324725 0.02451766 0.4607728 0.3135295 0.4106055 0.4264729 0.7155524 0.2959091 0.3624883 0.3613781 0.422587 0.3969735 0.612908 0.4106055 0.4779443 0.6503166 0.5456218 0.2152891 0.4740878 0.3080947 0.5176936 0.34113 0.6942497 0.5520654 NA 0.02960338 0.2005064 0.3135295 0.07211409 0.1479433 0.3882762 0.2837341 0.384298 0.422587 0.2979006 0.3498734 0.0475532 0.3189965 0.3529431 0.1373934 0.2837341 0.3307019 0.06287589 -0.04172985 0.3301131 -0.03131313 0.2337533 0.4114418 0.02451766 0.2648241 0.207457 0.3080947 -0.01554325 0.255112 0.2410196 0.173305 -0.01554325 -0.04172985 0.08286355 0.09570532 0.1479433 0.1113683 -0.03509485 0.1116016 -0.03131313 0.3498734 -0.03853906 -0.02705207 0.1116016 0.06287589 -0.03131313 0.2582981 -0.02705207 0.09570532 -0.04172985 0.07211409 -0.0220345 0.159799 0.04103361 0.04103361 0.132298 0.1116016 -0.0220345 0.08506574 0.0475532 -0.03509485 0.1708945 0.1479433 0.3487234 -0.03131313 0.2089398 -0.04472192 NA 0.173305 0.1192716 0.07211409 0.1479433 -0.05025126 0.2507982 0.08286355 0.02960338 0.09566253 -0.0220345 -0.0475532 0.02960338 0.1116016 0.05477387 0.2082261 0.2082261 0.3093106 0.1889501 0.09570532 0.2082261 0.2082261 0.132298 -0.02705207 0.159799 0.159799 0.2582981 -0.01554325 -0.01554325 -0.03131313 -0.03131313 0.2299497 -0.0220345 -0.0475532 -0.03509485 -0.01554325 -0.03853906 -0.0220345 0.1614107 -0.03131313 -0.03509485 0.132298 -0.01554325 -0.03131313 -0.02705207 -0.0220345 -0.02705207 0.1116016 0.3093106 -0.02705207 -0.02705207 NA -0.0220345 -0.0220345 0.1192716 NA 0.207457 NA -0.01554325 -0.02705207 0.1479433 0.2082261 -0.0220345 NA -0.02705207 -0.01554325 NA -0.02705207 -0.01554325 -0.01554325 -0.0220345 -0.0220345 -0.01554325 -0.01554325 0.1116016 -0.01554325 -0.03853906 -0.03853906 -0.01554325 -0.01554325 -0.01554325 0.1614107 -0.02705207 NA NA -0.01554325 -0.01554325 -0.01554325 0.3093106 -0.01554325 NA NA -0.01554325 NA NA NA NA -0.01554325 -0.01554325 -0.01554325 -0.01554325 0.2485903 0.3075351 0.4288351 0.2594633 0.2485903 0.03110386 0.3282765 0.4024412 0.3594241 0.4353357 0.605773 0.6241998 0.4357451 0.4648717 0.587396 0.4206287 0.6130412 0.1391601 0.6062111 0.4791664 0.5460135 0.4389765 0.4389765 0.2856449 0.4697535 0.4273933 0.5603086 0.4738116 0.457315 0.3280253 0.5785021 0.5460135 0.553806 0.2779368 0.4984974 0.3533685 0.5605221 0.3049391 0.4737772 0.7844897 NA 0.2115615 0.3528942 0.2259533 0.08921799 0.2594633 0.4561886 0.3773028 0.5092883 0.511454 0.2893163 0.2146401 0.1909938 0.4206287 0.420226 0.110373 0.3773028 0.3825223 0.0007207313 0.1044932 0.2418144 0.1740565 0.2418144 0.4008492 0.1391601 0.2076948 0.1894702 0.3013952 -0.02438236 0.2843767 0.2610799 0.1513536 -0.02438236 0.01951624 0.1044932 0.2142224 0.2594633 0.2576303 0.1450515 0.1450515 0.06246814 0.2146401 0.1226631 0.08610203 0.1450515 0.1513536 0.06246814 0.1450515 0.08610203 0.2142224 0.1044932 0.1689041 0.1224805 0.3509563 0.1760937 0.04465234 0.06246814 0.2451035 -0.03456506 0.2078969 0.1225243 0.04499947 0.2190312 0.1909938 0.1909938 0.06246814 0.1504047 0.1689041 NA 0.1513536 0.08924792 0.1689041 0.2594633 0.06443338 0.2190312 0.01951624 0.1504047 0.2834149 0.1224805 0.0007207313 0.08924792 0.04499947 0.2076948 0.2795261 0.2795261 0.1971791 0.1689041 0.2142224 0.1224805 0.1224805 0.06246814 -0.042436 0.3509563 0.1360641 0.2451035 -0.02438236 -0.02438236 -0.04912024 0.06246814 0.2142224 -0.03456506 0.0007207313 0.1450515 -0.02438236 0.03110386 -0.03456506 0.08610203 0.06246814 -0.05505254 0.1740565 -0.02438236 -0.04912024 -0.042436 -0.03456506 0.2146401 0.1450515 0.1971791 0.08610203 -0.042436 NA 0.1224805 -0.03456506 0.1504047 NA 0.1894702 NA -0.02438236 -0.042436 0.2594633 0.1224805 0.1224805 NA -0.042436 0.1971791 NA 0.2146401 0.1971791 0.1971791 0.1224805 0.1224805 0.1971791 0.1971791 0.04499947 0.1971791 0.03110386 0.03110386 -0.02438236 -0.02438236 -0.02438236 0.2146401 0.08610203 NA NA -0.02438236 -0.02438236 0.1971791 0.1971791 0.1971791 NA NA -0.02438236 NA NA NA NA 0.1971791 -0.02438236 -0.02438236 -0.02438236 -0.01383297 0.2809382 0.1470871 -0.01634301 -0.01383297 -0.01192054 0.3475533 0.1630722 -0.01290749 -0.01928027 -0.01785714 0.188108 0.188108 0.2941742 0.1470871 0.2192645 0.2493582 -0.01928027 0.1425219 0.2692308 0.2258649 -0.01711299 0.2809382 -0.009685486 0.1287292 0.2021519 -0.02438236 0.2192645 0.2131495 0.2258649 -0.01857869 0.2258649 -0.01928027 0.2021519 0.1661489 -0.0225555 0.1601282 0.1925079 0.2408169 0.1925079 NA -0.01857869 0.1925079 0.2692308 -0.01383297 -0.01634301 0.2587746 0.3268602 0.2131495 0.1971791 0.2074615 -0.008367493 -0.01634301 -0.02192645 0.144764 -0.01711299 -0.01470871 0.2258649 -0.01470871 -0.01290749 -0.01711299 -0.009685486 -0.01711299 -0.024974 -0.01928027 -0.01554325 -0.01290749 -0.0225555 -0.004807692 -0.02613542 -0.02192645 -0.01470871 -0.004807692 -0.01290749 -0.01290749 -0.01192054 -0.01634301 -0.01928027 -0.01085521 -0.01085521 -0.009685486 -0.008367493 -0.01192054 -0.008367493 -0.01085521 -0.01470871 -0.009685486 -0.01085521 -0.008367493 0.4033116 -0.01290749 -0.01383297 -0.006815507 -0.01554325 0.2809382 0.2809382 -0.009685486 -0.01085521 -0.006815507 0.2192645 -0.01634301 -0.01085521 -0.0212857 -0.01634301 -0.01634301 -0.009685486 -0.01857869 -0.01383297 NA -0.01470871 -0.01857869 -0.01383297 -0.01634301 -0.01554325 -0.0212857 -0.01290749 0.2587746 0.1661489 -0.006815507 -0.01470871 0.2587746 -0.01085521 -0.01554325 -0.006815507 -0.006815507 -0.004807692 -0.01383297 -0.01192054 -0.006815507 -0.006815507 -0.009685486 -0.008367493 -0.01554325 -0.01554325 -0.01085521 -0.004807692 -0.004807692 -0.009685486 -0.009685486 0.4033116 -0.006815507 -0.01470871 -0.01085521 -0.004807692 -0.01192054 -0.006815507 -0.008367493 -0.009685486 -0.01085521 -0.009685486 -0.004807692 -0.009685486 -0.008367493 -0.006815507 -0.008367493 -0.01085521 -0.004807692 -0.008367493 -0.008367493 NA -0.006815507 -0.006815507 -0.01857869 NA 0.3724732 NA -0.004807692 -0.008367493 0.2941742 -0.006815507 -0.006815507 NA -0.008367493 -0.004807692 NA -0.008367493 -0.004807692 -0.004807692 -0.006815507 -0.006815507 -0.004807692 -0.004807692 -0.01085521 -0.004807692 -0.01192054 -0.01192054 -0.004807692 -0.004807692 -0.004807692 -0.008367493 -0.008367493 NA NA -0.004807692 -0.004807692 -0.004807692 -0.004807692 -0.004807692 NA NA -0.004807692 NA NA NA NA -0.004807692 -0.004807692 -0.004807692 -0.004807692 0.05187362 0.1919099 0.2895048 0.205455 0.1551268 0.07436147 0.1551268 0.1655729 0.06216667 0.1586491 0.0977237 0.2713545 0.1492596 0.02801659 0.1867773 0.2631174 0.1586491 0.1586491 0.327933 -0.06632653 0.06216775 0.1067524 0.1919099 0.1086158 0.2408847 0.1053228 0.16265 0.125294 0.05091098 0.06216775 0.1687248 0.2033967 0.08189524 0.2344282 0.05973893 0.1182553 0.3774449 0.2179279 0.2238831 -0.03062288 NA 0.5649438 0.3422032 0.1797488 0.25838 0.205455 0.01023724 -0.05463235 0.2529438 0.2892566 0.3093006 -0.03107926 0.5603318 0.3320291 0.2834454 0.7028549 0.04295877 0.2740111 0.238141 0.6127105 0.1919099 0.3977967 0.3622249 0.3422032 0.3121567 0.2207141 0.2823842 0.3202881 -0.01785714 0.2630774 0.4009408 0.4333233 -0.01785714 0.3924929 0.3924929 0.311637 0.205455 0.3121567 0.4782496 0.08932288 0.2532063 0.1354737 0.311637 0.4685796 0.3486073 0.238141 0.2532063 0.2189651 0.3020266 0.1929992 0.3924929 0.3616332 0.3816684 0.3135295 0.5325399 0.3622249 0.1086158 0.3486073 -0.02531474 0.5387642 0.649051 0.2189651 0.4152401 0.4716126 0.2941742 0.3977967 0.5649438 0.3616332 NA 0.4333233 0.2479686 0.5681397 0.3828934 0.4063449 0.4858545 0.3924929 0.4064562 0.171216 0.3816684 0.5309144 0.3272124 0.3486073 0.03508333 -0.02531474 -0.02531474 -0.01785714 0.3616332 0.07436147 -0.02531474 0.1781768 0.2532063 0.1354737 0.1278987 0.3135295 0.2189651 0.2692308 0.2692308 0.2532063 -0.03597466 0.311637 0.1781768 0.3357321 0.2189651 0.2692308 0.4302747 0.1781768 0.3020266 0.2532063 -0.04031935 0.1086158 -0.01785714 -0.03597466 -0.03107926 -0.02531474 0.1354737 0.08932288 -0.01785714 0.4685796 0.3020266 NA 0.3816684 0.1781768 0.2479686 NA 0.2823842 NA -0.01785714 0.1354737 0.205455 0.1781768 -0.02531474 NA 0.3020266 0.2692308 NA 0.1354737 0.2692308 0.2692308 0.1781768 0.3816684 0.2692308 0.2692308 0.08932288 0.2692308 0.5489125 0.311637 0.2692308 -0.01785714 0.2692308 0.1354737 0.1354737 NA NA 0.2692308 0.2692308 0.2692308 -0.01785714 0.2692308 NA NA -0.01785714 NA NA NA NA 0.2692308 0.2692308 -0.01785714 -0.01785714 0.2033747 0.2515981 0.3888889 0.2666667 0.2033747 0.1046819 0.2033747 0.3025375 0.09151492 0.2149722 0.238141 0.4302347 0.3576022 0.2666667 0.2666667 0.3428638 0.3062917 0.03233322 0.3761181 0.238141 0.1029084 0.2515981 0.352916 -0.02963189 0.3373803 0.1576482 0.3019864 0.5068421 0.1713663 0.2709385 0.2260061 0.2709385 0.3062917 0.388057 0.3756856 0.2514906 0.3606193 0.2193128 0.2935156 0.2932424 NA 0.3202881 0.5150313 0.238141 0.3262223 0.2666667 0.2260061 0.07111111 0.3316148 0.5279356 0.5563093 0.3707202 0.3722222 0.3428638 0.3218932 0.5555519 0.07111111 0.5229836 0.07111111 0.3535234 0.2515981 0.1423977 0.2515981 0.4411017 0.3976112 0.173305 0.3535234 0.5719877 -0.01470871 0.4199556 0.6708204 0.4194444 -0.01470871 0.2225192 0.2225192 0.3869855 0.3722222 0.3976112 0.2752786 0.2752786 0.3144273 0.5688801 0.2458337 0.3707202 0.2752786 0.3033333 0.3144273 0.2752786 0.3707202 0.3869855 0.2225192 0.2033747 0.4633654 0.5045923 0.352916 0.2515981 0.3144273 0.4295232 -0.02085144 0.2608746 0.2666667 0.2752786 0.4389686 0.4777778 0.5833333 0.3144273 0.508852 0.2033747 NA 0.4194444 0.3202881 0.44907 0.5833333 0.173305 0.5229836 0.2225192 0.3202881 0.04410499 0.4633654 0.1872222 0.2260061 0.2752786 0.06287589 -0.02085144 -0.02085144 -0.01470871 0.3262223 0.3869855 0.221257 0.4633654 0.1423977 0.1725603 0.06287589 0.2837341 0.5837678 0.3268602 -0.01470871 0.3144273 -0.02963189 0.3869855 0.221257 0.3033333 0.2752786 -0.01470871 0.1046819 -0.02085144 0.3707202 -0.02963189 -0.03321056 -0.02963189 -0.01470871 -0.02963189 -0.02559961 -0.02085144 0.1725603 0.2752786 0.3268602 0.3707202 0.3707202 NA 0.4633654 0.221257 0.2260061 NA 0.4845276 NA -0.01470871 0.1725603 0.1611111 0.221257 -0.02085144 NA 0.1725603 0.3268602 NA 0.1725603 0.3268602 0.3268602 0.221257 0.4633654 0.3268602 0.3268602 0.121034 0.3268602 0.3869855 0.2458337 0.3268602 -0.01470871 0.3268602 0.3707202 -0.02559961 NA NA -0.01470871 0.3268602 0.3268602 0.3268602 0.3268602 NA NA 0.3268602 NA NA NA NA 0.3268602 0.3268602 -0.01470871 -0.01470871 0.2643839 0.08073711 0.3646984 0.2161176 0.1150427 0.1420361 0.4137251 0.3247609 0.4457666 0.3962495 0.311637 0.378112 0.378112 0.4727572 0.290408 0.3443182 0.5072631 0.1742223 0.2077061 0.4302747 0.3557581 0.3270737 0.450242 0.1851148 0.3191804 0.4078636 0.3057816 0.3443182 0.3336902 0.457892 0.2977795 0.3557581 0.2852359 0.4078636 0.2507257 0.4310942 0.3184538 0.2076979 0.2737992 0.2975712 NA 0.06854962 0.2975712 0.5489125 -0.03429846 0.2161176 0.2977795 0.3869855 0.4310942 0.3057816 0.2284681 0.2201484 -0.04052204 0.04530502 0.3589383 -0.04243118 0.1046819 0.3557581 0.2458337 -0.03200376 0.2039054 -0.02401489 0.08073711 0.2076979 0.06320869 0.09570532 0.127253 0.2362862 -0.01192054 0.1088342 0.2446471 -0.03646984 -0.01192054 -0.03200376 -0.03200376 0.1420361 0.08779776 0.06320869 -0.02691519 0.160594 0.1851148 0.2201484 0.1420361 -0.02074697 -0.02691519 0.1046819 -0.02401489 0.160594 -0.02074697 0.3136289 -0.03200376 0.1150427 -0.01689886 0.2299497 0.2039054 0.2039054 -0.02401489 -0.02691519 -0.01689886 0.2446471 -0.04052204 -0.02691519 0.1514904 0.08779776 0.08779776 -0.02401489 0.06854962 -0.03429846 NA 0.1046819 -0.04606534 -0.03429846 0.2161176 -0.03853906 0.2536243 -0.03200376 0.1831646 0.2507257 -0.01689886 -0.03646984 0.1831646 0.160594 -0.03853906 -0.01689886 -0.01689886 -0.01192054 -0.03429846 0.1420361 -0.01689886 -0.01689886 -0.02401489 -0.02074697 0.09570532 -0.03853906 0.3481032 -0.01192054 -0.01192054 -0.02401489 0.1851148 0.3136289 -0.01689886 -0.03646984 0.160594 -0.01192054 -0.02955665 -0.01689886 -0.02074697 -0.02401489 -0.02691519 0.1851148 -0.01192054 -0.02401489 -0.02074697 -0.01689886 0.4610437 0.3481032 0.4033116 -0.02074697 -0.02074697 NA -0.01689886 -0.01689886 0.1831646 NA 0.4457666 NA -0.01192054 -0.02074697 0.3444374 0.277423 -0.01689886 NA -0.02074697 -0.01192054 NA -0.02074697 -0.01192054 -0.01192054 -0.01689886 -0.01689886 -0.01192054 -0.01192054 0.160594 -0.01192054 -0.02955665 -0.02955665 -0.01192054 -0.01192054 -0.01192054 -0.02074697 -0.02074697 NA NA -0.01192054 -0.01192054 -0.01192054 -0.01192054 -0.01192054 NA NA -0.01192054 NA NA NA NA -0.01192054 -0.01192054 -0.01192054 -0.01192054 0.06465668 0.1260414 0.3333333 0.2323232 0.1763364 0.2161176 0.1763364 0.2568124 -0.04387702 0.1835129 0.1167358 0.2432668 0.1772373 0.1363636 0.3333333 0.2236068 0.1835129 0.1004951 0.2121398 0.205455 0.1567745 0.1260414 0.1260414 -0.03292432 0.2836264 0.1286174 0.1909938 0.2236068 0.06900656 0.08039718 0.1082664 0.2331518 0.1835129 0.4079008 0.2030733 0.2146871 0.368042 0.1839398 0.2544933 0.04952224 NA 0.3653991 0.4527748 0.2941742 0.8464147 0.3282828 0.2796882 0.05555556 0.06900656 0.2594633 0.277592 0.1517014 0.3282828 0.2981424 0.3271037 0.3102559 0.1611111 0.4622838 0.1611111 0.432502 0.2181486 0.1234662 0.2181486 0.3183573 0.1004951 0.0475532 0.1943125 0.3603676 -0.01634301 0.3656245 0.372678 0.1611111 0.2941742 0.3134073 0.432502 0.4727572 0.6161616 0.2665306 0.5239888 0.3837665 0.4362472 0.3318467 0.4727572 0.5119921 0.3837665 0.2666667 0.2798567 0.3837665 0.3318467 0.3444374 0.07521774 0.3996958 0.4170288 0.3487234 0.3102559 0.2181486 0.4362472 0.5239888 0.1969303 0.2981424 0.2323232 0.3837665 0.3859065 0.2323232 0.2323232 0.5926378 0.2796882 0.2880161 NA 0.3722222 0.2796882 0.2880161 0.2323232 0.2483334 0.2331518 0.432502 0.2796882 0.2030733 0.4170288 0.1611111 0.1939773 -0.03690062 0.0475532 0.1969303 -0.02316827 -0.01634301 0.2880161 0.2161176 0.4170288 0.1969303 0.2798567 -0.02844401 0.2483334 0.4491135 0.3837665 -0.01634301 -0.01634301 0.2798567 0.1234662 0.3444374 0.1969303 0.1611111 0.2435441 -0.01634301 0.2161176 -0.02316827 0.1517014 0.1234662 0.2435441 0.2798567 0.2941742 0.1234662 0.1517014 0.1969303 0.3318467 0.1033217 -0.01634301 0.3318467 0.3318467 NA 0.4170288 -0.02316827 0.1939773 NA 0.07521774 NA -0.01634301 0.3318467 0.04040404 -0.02316827 -0.02316827 NA 0.1517014 0.2941742 NA 0.3318467 0.2941742 0.2941742 0.1969303 0.4170288 0.2941742 0.2941742 0.3837665 0.2941742 0.2161176 0.3444374 -0.01634301 0.2941742 -0.01634301 0.3318467 0.1517014 NA NA -0.01634301 -0.01634301 0.2941742 0.2941742 0.2941742 NA NA -0.01634301 NA NA NA NA 0.2941742 0.2941742 0.2941742 -0.01634301 0.1014667 0.182683 0.2569939 0.1943125 0.1014667 0.127253 0.3786765 0.2162545 0.1131542 0.2573353 0.1722754 0.3411266 0.3411266 0.432502 0.2569939 0.2186496 0.360368 0.05126986 0.2474363 0.2823842 0.3220184 0.2969965 0.2969965 -0.02600318 0.2819101 0.3694204 0.2744471 0.4036608 0.30105 0.2272271 0.1628711 0.2272271 0.2573353 0.3694204 0.296425 0.30105 0.2111142 0.1831878 0.2464585 0.3500124 NA 0.0564959 0.1831878 0.3924929 0.1014667 0.3134073 0.3756214 0.2225192 0.3914515 0.3594241 0.2916124 0.4246895 0.3134073 0.0336384 0.3203963 -0.04594422 0.09151492 0.3220184 -0.03948931 -0.03465347 0.06836937 -0.02600318 -0.04594422 0.1831878 0.05126986 -0.04172985 -0.03465347 0.3914515 -0.01290749 0.1715628 0.126144 -0.03948931 -0.01290749 0.1131542 0.1131542 0.127253 0.1943125 0.05126986 -0.0291436 0.3189143 0.168092 0.4246895 -0.03200376 -0.02246469 0.1448853 0.2225192 -0.02600318 0.3189143 -0.02246469 0.127253 -0.03465347 0.1014667 -0.01829798 0.207457 0.2969965 0.2969965 0.168092 0.1448853 -0.01829798 0.126144 -0.04387702 -0.0291436 0.2272271 0.07521774 0.1943125 -0.02600318 0.1628711 -0.03713815 NA 0.09151492 0.0564959 -0.03713815 0.07521774 -0.04172985 0.1324357 0.4087694 0.1628711 0.2216027 -0.01829798 0.09151492 0.2692462 0.1448853 0.207457 -0.01829798 -0.01829798 -0.01290749 -0.03713815 0.127253 0.2548647 0.2548647 0.168092 -0.02246469 0.08286355 0.207457 0.4929432 -0.01290749 -0.01290749 -0.02600318 -0.02600318 0.4457666 -0.01829798 -0.03948931 0.1448853 -0.01290749 -0.03200376 -0.01829798 0.2011124 -0.02600318 -0.0291436 0.168092 -0.01290749 -0.02600318 -0.02246469 -0.01829798 0.2011124 0.3189143 0.3724732 -0.02246469 -0.02246469 NA -0.01829798 -0.01829798 0.3756214 NA 0.5565771 NA -0.01290749 -0.02246469 0.3134073 0.5280274 -0.01829798 NA -0.02246469 -0.01290749 NA -0.02246469 -0.01290749 -0.01290749 -0.01829798 -0.01829798 -0.01290749 -0.01290749 0.1448853 -0.01290749 -0.03200376 0.127253 -0.01290749 -0.01290749 -0.01290749 0.2011124 -0.02246469 NA NA -0.01290749 -0.01290749 -0.01290749 0.3724732 -0.01290749 NA NA -0.01290749 NA NA NA NA -0.01290749 -0.01290749 -0.01290749 -0.01290749 0.1377611 0.2501115 0.3976112 0.2665306 0.2343789 0.2852359 0.524232 0.551008 0.2573353 0.3536082 0.3889106 0.4116229 0.5258715 0.5986015 0.493737 0.4279336 0.4254296 0.2099656 0.4773105 0.6959259 0.6414793 0.5688511 0.4094813 0.0964568 0.4274399 0.6294761 0.6722763 0.621383 0.4766938 0.4432498 0.2962502 0.4432498 0.4254296 0.3274547 0.4055235 0.5397102 0.5404858 0.3650025 0.4079823 0.4812914 NA 0.1479477 0.3068581 0.3121567 0.04114343 0.2665306 0.7411577 0.4889307 0.6027267 0.4353357 0.2153713 0.278143 0.1004951 0.170001 0.5805464 -0.06862815 0.1236527 0.3771734 0.2149722 -0.05176284 0.3297964 -0.03884166 0.01105676 0.2487136 -0.005498282 0.1113683 0.05126986 0.224628 -0.01928027 0.2321962 0.2344842 -0.05898628 -0.01928027 0.05126986 0.05126986 0.1742223 0.1835129 0.2817869 -0.04353261 0.1990891 -0.03884166 0.278143 0.06320869 -0.03355612 0.07777826 0.1236527 -0.03884166 0.1990891 -0.03355612 0.1742223 0.05126986 0.1377611 -0.0273322 0.3719204 0.09074166 0.09074166 0.0964568 0.07777826 0.1630821 0.170001 -0.06554031 -0.04353261 0.2450204 0.01747742 0.1004951 -0.03884166 -0.0003547907 0.04114343 NA 0.1236527 0.1479477 -0.05547429 0.1004951 -0.06233303 0.1128675 0.05126986 0.1479477 0.1968973 -0.0273322 -0.05898628 0.07379646 0.07777826 0.1113683 0.3534965 0.3534965 0.2493582 -0.05547429 0.2852359 0.1630821 0.1630821 0.0964568 -0.03355612 0.198219 0.198219 0.1990891 -0.01928027 -0.01928027 0.0964568 0.0964568 0.1742223 -0.0273322 -0.05898628 0.07777826 -0.01928027 -0.0478049 -0.0273322 0.1222934 -0.03884166 0.07777826 -0.03884166 -0.01928027 0.0964568 0.1222934 0.1630821 0.1222934 0.1990891 0.2493582 -0.03355612 -0.03355612 NA -0.0273322 -0.0273322 0.222099 NA 0.2573353 NA -0.01928027 0.1222934 0.3495483 0.1630821 0.1630821 NA -0.03355612 -0.01928027 NA 0.1222934 -0.01928027 -0.01928027 -0.0273322 -0.0273322 -0.01928027 -0.01928027 0.07777826 -0.01928027 -0.0478049 0.06320869 -0.01928027 -0.01928027 -0.01928027 0.1222934 -0.03355612 NA NA -0.01928027 -0.01928027 -0.01928027 0.2493582 -0.01928027 NA NA -0.01928027 NA NA NA NA -0.01928027 -0.01928027 -0.01928027 -0.01928027 0.09017413 0.165154 0.4232074 0.06465668 0.09017413 -0.03429846 0.2201493 0.4692007 0.2400716 0.2343789 0.25838 0.3106954 0.3875419 0.734735 0.3585507 0.2838961 0.3309966 0.3309966 0.3466809 0.5681397 0.4720924 0.2723502 0.2723502 -0.02786763 0.3106562 0.5816429 0.4079626 0.6308803 0.3589669 0.2943135 0.1460485 0.3832029 0.3309966 0.3378661 0.4780531 0.4437398 0.3923402 0.1628001 0.3177251 0.4756758 NA 0.1460485 0.3974569 0.25838 -0.039801 0.06465668 0.6448089 0.9404608 0.6132857 0.3282765 0.2651215 0.1855814 0.06465668 0.02365801 0.3525133 -0.04923846 0.08052696 0.2943135 0.2033747 -0.03713815 0.165154 -0.02786763 0.05795777 0.319238 0.1377611 0.07211409 0.1014667 0.104648 -0.01383297 0.3026009 0.1104041 -0.04232074 -0.01383297 -0.03713815 -0.03713815 -0.03429846 0.1763364 0.2343789 -0.03123323 -0.03123323 -0.02786763 0.1855814 0.1150427 -0.02407543 -0.03123323 0.08052696 -0.02786763 0.1319604 -0.02407543 0.1150427 0.1014667 0.09017413 -0.01960996 0.4226221 0.05795777 0.05795777 -0.02786763 -0.03123323 -0.01960996 0.1971501 -0.04702304 -0.03123323 0.1165345 0.06465668 0.06465668 -0.02786763 -0.05345566 0.09017413 NA -0.04232074 0.1460485 -0.039801 0.06465668 -0.04472192 0.2943135 -0.03713815 0.04629642 0.267562 -0.01960996 0.08052696 0.1460485 0.1319604 0.07211409 0.2365452 0.4927003 0.3475533 -0.039801 0.1150427 -0.01960996 -0.01960996 -0.02786763 0.1855814 0.3057861 -0.04472192 0.1319604 -0.01383297 -0.01383297 -0.02786763 0.1541428 0.2643839 -0.01960996 -0.04232074 -0.03123323 -0.01383297 -0.03429846 -0.01960996 -0.02407543 -0.02786763 -0.03123323 -0.02786763 -0.01383297 -0.02786763 -0.02407543 -0.01960996 0.1855814 0.1319604 0.3475533 -0.02407543 -0.02407543 NA -0.01960996 -0.01960996 0.1460485 NA 0.2400716 NA -0.01383297 -0.02407543 0.3996958 0.2365452 -0.01960996 NA -0.02407543 -0.01383297 NA 0.1855814 -0.01383297 -0.01383297 -0.01960996 -0.01960996 -0.01383297 -0.01383297 0.295154 -0.01383297 -0.03429846 0.1150427 -0.01383297 -0.01383297 -0.01383297 -0.02407543 -0.02407543 NA NA -0.01383297 -0.01383297 -0.01383297 -0.01383297 -0.01383297 NA NA -0.01383297 NA NA NA NA -0.01383297 -0.01383297 -0.01383297 -0.01383297 0.05187362 0.4473824 0.4949598 0.205455 0.4648865 0.07436147 0.25838 0.5506813 0.1722754 0.3889106 0.3437991 0.3934495 0.4544969 0.5603318 0.443596 0.4698525 0.3889106 0.3121567 0.4790086 0.5078493 0.4858545 0.4473824 0.3622249 -0.03597466 0.4306864 0.4280863 0.4791664 0.6765876 0.3876324 0.2033967 0.2479686 0.4152401 0.3121567 0.492639 0.3941703 0.5223209 0.4861033 0.2800656 0.3729008 0.4664786 NA 0.4064562 0.5286163 0.2617739 0.1551268 0.205455 0.5649438 0.6285055 0.6570094 0.4791664 0.5069881 0.3020266 0.3828934 0.2631174 0.4868449 0.2770674 0.1405499 0.4152401 0.238141 0.2823842 0.3622249 0.2532063 0.2770674 0.3422032 0.3121567 0.1278987 0.1722754 0.3876324 -0.01785714 0.5031786 0.4009408 0.3357321 -0.01785714 0.1722754 0.1722754 0.07436147 0.2941742 0.4656644 0.08932288 0.08932288 0.1086158 0.3020266 0.1929992 0.1354737 0.2189651 0.238141 0.1086158 0.3486073 0.1354737 0.1929992 0.5026017 0.25838 0.1781768 0.6847911 0.2770674 0.1919099 0.1086158 0.2189651 -0.02531474 0.3320291 0.205455 0.08932288 0.3446256 0.3828934 0.2941742 0.1086158 0.3272124 0.3616332 NA 0.1405499 0.4064562 0.3616332 0.2941742 0.1278987 0.4858545 0.1722754 0.2479686 0.2269546 0.1781768 0.238141 0.1687248 0.3486073 0.03508333 0.1781768 0.3816684 0.2692308 0.25838 0.4302747 0.1781768 0.3816684 0.2532063 0.3020266 0.4063449 0.2207141 0.4782496 0.2692308 0.2692308 0.1086158 0.1086158 0.311637 0.1781768 0.238141 0.2189651 0.2692308 0.1929992 0.1781768 0.4685796 0.1086158 -0.04031935 -0.03597466 -0.01785714 -0.03597466 -0.03107926 -0.02531474 0.3020266 0.08932288 0.2692308 0.3020266 -0.03107926 NA 0.1781768 0.1781768 0.2479686 NA 0.2823842 NA -0.01785714 -0.03107926 0.4716126 0.1781768 0.1781768 NA 0.1354737 0.2692308 NA 0.3020266 0.2692308 0.2692308 0.1781768 0.1781768 0.2692308 0.2692308 0.2189651 0.2692308 0.311637 0.1929992 0.2692308 -0.01785714 0.2692308 0.3020266 -0.03107926 NA NA 0.2692308 0.2692308 0.2692308 0.2692308 0.2692308 NA NA -0.01785714 NA NA NA NA 0.2692308 -0.01785714 -0.01785714 -0.01785714 0.02764505 0.2907889 0.5627802 0.2331518 0.2943135 0.04935655 0.3832029 0.4378169 0.1324357 0.2450204 0.2740111 0.5700588 0.4123937 0.3859065 0.4743434 0.3775245 0.3771734 0.1128675 0.544299 0.3446256 0.5136707 0.4374111 0.4374111 -0.04288176 0.4473902 0.3948584 0.5460135 0.6148256 0.3059685 0.3312973 0.3270645 0.3312973 0.3771734 0.4504311 0.4956885 0.4219203 0.4750986 0.3708719 0.2964733 0.4243655 NA 0.2588445 0.4778591 0.3446256 0.2943135 0.3859065 0.4635046 0.1869234 0.4798962 0.7095046 0.4646889 0.2497205 0.3095291 0.3775245 0.5096035 0.3641 0.1869234 0.6352531 0.1029084 0.3220184 0.2174778 0.2060707 0.2174778 0.4243655 0.2450204 0.1708945 0.3220184 0.537872 -0.0212857 0.3493631 0.496175 0.1869234 -0.0212857 0.2272271 0.3220184 0.457892 0.3095291 0.2450204 0.3983692 0.3983692 0.2060707 0.393104 0.3557581 0.393104 0.2867618 0.3549535 0.2060707 0.2867618 0.2497205 0.3557581 0.2272271 0.3832029 0.3201918 0.3307019 0.4374111 0.2907889 0.2060707 0.3983692 -0.03017515 0.3775245 0.1567745 0.1751543 0.5136707 0.3095291 0.3859065 0.3305469 0.2588445 0.1165345 NA 0.3549535 0.1224044 0.2943135 0.3859065 0.2507982 0.3920884 0.3220184 0.4635046 0.2557652 0.3201918 0.1869234 0.3270645 0.06354684 0.0909908 0.1450083 -0.03017515 -0.0212857 0.205424 0.457892 0.1450083 0.1450083 0.2060707 -0.03704645 0.1708945 0.5704129 0.2867618 -0.0212857 -0.0212857 0.4550232 0.08159447 0.3557581 -0.03017515 0.1029084 0.2867618 -0.0212857 0.1514904 -0.03017515 0.106337 0.08159447 -0.04806063 0.08159447 -0.0212857 -0.04288176 -0.03704645 -0.03017515 0.2497205 0.1751543 0.2258649 0.2497205 0.393104 NA 0.3201918 -0.03017515 0.4635046 NA 0.4168098 NA -0.0212857 0.106337 0.2331518 0.1450083 0.3201918 NA -0.03704645 0.2258649 NA 0.106337 0.2258649 0.2258649 0.1450083 0.3201918 0.2258649 0.2258649 0.1751543 0.2258649 0.2536243 0.2536243 -0.0212857 -0.0212857 -0.0212857 0.2497205 0.106337 NA NA -0.0212857 -0.0212857 0.2258649 0.2258649 0.2258649 NA NA 0.2258649 NA NA NA NA 0.2258649 0.2258649 -0.0212857 0.2258649 0.07211409 0.1373934 0.4174114 0.1479433 0.1889501 -0.03853906 0.1889501 0.4027064 0.207457 0.1113683 0.1278987 0.469996 0.3318396 0.4491135 0.3011702 0.2410196 0.198219 0.198219 0.3468065 0.4063449 0.3307019 0.1373934 0.2337533 -0.03131313 0.3624883 0.4344226 0.3509563 0.5529273 0.2318914 0.2507982 0.1192716 0.1708945 0.198219 0.5074672 0.3479461 0.3080947 0.2717892 0.1301946 0.1040769 0.34113 NA 0.2089398 0.4817536 0.2207141 0.07211409 0.1479433 0.3882762 0.3941632 0.5367047 0.422587 0.5215936 0.1614107 0.2483334 0.08506574 0.3529431 0.2337533 0.06287589 0.4905092 0.173305 0.207457 0.04103361 0.132298 0.1373934 0.2708182 0.3719204 0.05477387 0.08286355 0.4605014 -0.01554325 0.3909551 0.3969735 0.173305 -0.01554325 0.08286355 -0.04172985 0.09570532 0.1479433 0.2850697 0.1116016 0.2582981 0.132298 0.1614107 0.2299497 0.1614107 -0.03509485 0.2837341 0.132298 0.1116016 0.1614107 0.3641941 0.3320504 0.07211409 0.2082261 0.3698492 0.4264729 0.3301131 -0.03131313 0.1116016 -0.0220345 0.3189965 0.1479433 0.1116016 0.4905092 0.2483334 0.2483334 0.132298 0.1192716 0.1889501 NA 0.06287589 0.2089398 0.1889501 0.3487234 0.05477387 0.4106055 0.08286355 0.4779443 0.1587334 0.2082261 0.173305 0.3882762 0.2582981 0.05477387 -0.0220345 -0.0220345 -0.01554325 0.07211409 0.3641941 -0.0220345 0.2082261 -0.03131313 0.3498734 0.159799 0.159799 0.4049946 0.3093106 -0.01554325 0.132298 0.132298 0.3641941 0.2082261 0.173305 0.4049946 -0.01554325 0.09570532 -0.0220345 0.1614107 -0.03131313 -0.03509485 -0.03131313 -0.01554325 -0.03131313 -0.02705207 -0.0220345 0.3498734 0.2582981 0.3093106 0.1614107 0.1614107 NA 0.2082261 0.2082261 0.3882762 NA 0.5812372 NA -0.01554325 -0.02705207 0.3487234 0.2082261 -0.0220345 NA 0.1614107 0.3093106 NA 0.1614107 0.3093106 0.3093106 0.2082261 0.2082261 0.3093106 0.3093106 0.2582981 0.3093106 0.3641941 0.2299497 0.3093106 -0.01554325 0.3093106 0.1614107 -0.02705207 NA NA -0.01554325 0.3093106 0.3093106 -0.01554325 0.3093106 NA NA 0.3093106 NA NA NA NA 0.3093106 -0.01554325 -0.01554325 -0.01554325 0.2365452 -0.02425981 0.2085144 0.1969303 -0.01960996 -0.01689886 0.2365452 0.2311753 0.2548647 0.3534965 0.3816684 0.2666667 0.2666667 0.4170288 0.08108894 0.3108349 0.3534965 0.3534965 0.2020427 0.3816684 0.3201918 0.3982652 0.1870027 -0.01373039 0.06477259 0.2865757 0.2795261 0.3108349 0.3021661 0.1450083 0.1702539 0.3201918 0.3534965 0.2865757 0.2355369 0.3021661 0.2270017 -0.03540378 0.3413882 0.2729041 NA 0.1702539 0.2729041 0.1781768 -0.01960996 0.1969303 0.3668454 0.4633654 0.3021661 0.1224805 0.1306254 0.40133 -0.02316827 -0.03108349 0.2052211 -0.02425981 -0.02085144 0.1450083 -0.02085144 -0.01829798 0.1870027 -0.01373039 -0.02425981 0.2729041 0.1630821 -0.0220345 -0.01829798 0.1350954 -0.006815507 0.2607766 0.1398757 -0.02085144 -0.006815507 -0.01829798 -0.01829798 -0.01689886 0.4170288 -0.0273322 -0.01538862 -0.01538862 -0.01373039 0.40133 -0.01689886 -0.01186197 -0.01538862 -0.02085144 -0.01373039 0.3062336 -0.01186197 -0.01689886 -0.01829798 -0.01960996 -0.009661836 0.4384866 -0.02425981 -0.02425981 -0.01373039 -0.01538862 -0.009661836 0.1398757 -0.02316827 -0.01538862 0.1450083 0.1969303 0.1969303 -0.01373039 -0.02633762 0.2365452 NA -0.02085144 -0.02633762 -0.01960996 0.1969303 -0.0220345 0.1450083 -0.01829798 -0.02633762 0.09725822 -0.009661836 -0.02085144 -0.02633762 0.3062336 -0.0220345 0.4951691 -0.009661836 -0.006815507 -0.01960996 -0.01689886 -0.009661836 -0.009661836 -0.01373039 -0.01186197 0.2082261 -0.0220345 0.3062336 -0.006815507 -0.006815507 -0.01373039 -0.01373039 0.277423 -0.009661836 -0.02085144 -0.01538862 -0.006815507 -0.01689886 -0.009661836 -0.01186197 -0.01373039 -0.01538862 -0.01373039 -0.006815507 -0.01373039 -0.01186197 -0.009661836 -0.01186197 0.3062336 0.705405 -0.01186197 -0.01186197 NA -0.009661836 -0.009661836 0.1702539 NA 0.2548647 NA -0.006815507 -0.01186197 0.4170288 0.4951691 -0.009661836 NA -0.01186197 -0.006815507 NA 0.40133 -0.006815507 -0.006815507 -0.009661836 -0.009661836 -0.006815507 -0.006815507 0.3062336 -0.006815507 -0.01689886 -0.01689886 -0.006815507 -0.006815507 -0.006815507 -0.01186197 -0.01186197 NA NA -0.006815507 -0.006815507 -0.006815507 -0.006815507 -0.006815507 NA NA -0.006815507 NA NA NA NA -0.006815507 -0.006815507 -0.006815507 -0.006815507 -0.03713815 0.2969965 0.3259435 0.3134073 0.3786765 0.127253 0.2400716 0.2162545 -0.03465347 0.05126986 0.06216667 0.3411266 0.2591778 0.07521774 0.3259435 0.2186496 0.1543026 0.1543026 0.3826368 0.06216667 0.1324357 0.182683 0.182683 -0.02600318 0.3456065 0.1961121 0.2744471 0.3111552 0.02984547 0.1324357 0.1628711 0.1324357 0.2573353 0.3694204 0.2216027 0.2106485 0.2840445 0.2666001 0.1464394 0.09977548 NA 0.4819966 0.3500124 0.2823842 0.3786765 0.432502 0.2692462 -0.03948931 0.3914515 0.3594241 0.4685267 0.2011124 0.7897863 0.3111552 0.3886561 0.5256237 0.2225192 0.3220184 0.2225192 0.7043847 0.06836937 0.5562822 0.2969965 0.3500124 0.4634007 0.08286355 0.2609618 0.5722545 -0.01290749 0.4132928 0.4961663 0.4845276 -0.01290749 0.5565771 0.5565771 0.4457666 0.3134073 0.5664334 0.4929432 0.1448853 0.3621871 0.4246895 0.2865098 0.4246895 0.6669722 0.4845276 0.3621871 0.3189143 0.4246895 0.2865098 0.5565771 0.5172814 0.5280274 0.5812372 0.5256237 0.2969965 0.3621871 0.6669722 -0.01829798 0.4036608 0.5515968 0.3189143 0.5116011 0.5515968 0.3134073 0.3621871 0.5883717 0.5172814 NA 0.4845276 0.4819966 0.6558863 0.432502 0.4566438 0.4168098 0.4087694 0.4819966 0.2216027 0.5280274 0.4845276 0.2692462 0.3189143 0.08286355 -0.01829798 -0.01829798 -0.01290749 0.3786765 0.2865098 0.2548647 0.5280274 0.3621871 0.2011124 0.3320504 0.3320504 0.4929432 0.3724732 0.3724732 0.168092 -0.02600318 0.2865098 0.2548647 0.4845276 0.3189143 0.3724732 0.4457666 0.2548647 0.6482667 0.3621871 -0.0291436 0.168092 -0.01290749 -0.02600318 -0.02246469 -0.01829798 0.2011124 -0.0291436 -0.01290749 0.6482667 0.2011124 NA 0.5280274 0.2548647 0.2692462 NA 0.2609618 NA -0.01290749 0.2011124 0.3134073 -0.01829798 -0.01829798 NA 0.2011124 0.3724732 NA 0.2011124 0.3724732 0.3724732 0.2548647 0.5280274 0.3724732 0.3724732 -0.0291436 0.3724732 0.4457666 0.4457666 0.3724732 -0.01290749 0.3724732 0.4246895 0.2011124 NA NA 0.3724732 0.3724732 0.3724732 0.3724732 0.3724732 NA NA -0.01290749 NA NA NA NA 0.3724732 0.3724732 -0.01290749 -0.01290749 0.2201493 0.2723502 0.293894 0.2880161 0.4800995 0.1150427 0.09017413 0.3999472 0.1014667 0.4276143 0.25838 0.3875419 0.3106954 0.1763364 0.4232074 0.4573882 0.3309966 0.1377611 0.3466809 0.1551268 0.205424 0.4867427 0.3795465 -0.02786763 0.3703868 0.09408929 0.3282765 0.5441343 0.2741939 0.205424 0.2458006 0.3832029 0.3309966 0.3378661 0.3377257 0.2741939 0.3923402 0.4756758 0.2239334 0.319238 NA 0.3455526 0.319238 0.25838 0.3501244 0.06465668 0.2458006 0.08052696 0.1894209 0.5673349 0.2651215 0.1855814 0.2880161 0.6308803 0.3525133 0.3795465 0.3262223 0.4720924 0.2033747 0.2400716 0.5939389 0.1541428 0.3795465 0.4756758 0.1377611 0.3057861 0.5172814 0.4437398 -0.01383297 0.3781607 0.4573882 0.3262223 -0.01383297 0.1014667 0.2400716 0.2643839 0.2880161 0.2343789 0.295154 0.1319604 0.3361533 0.3952382 0.4137251 0.3952382 0.295154 0.2033747 0.3361533 0.1319604 0.3952382 0.2643839 0.2400716 0.3501244 0.4927003 0.4226221 0.165154 0.05795777 0.3361533 0.4583476 -0.01960996 0.1104041 0.1763364 0.295154 0.205424 0.2880161 0.2880161 0.3361533 0.4453047 0.09017413 NA 0.3262223 0.2458006 0.3501244 0.2880161 0.07211409 0.3832029 0.2400716 0.1460485 0.05707094 0.4927003 0.08052696 0.04629642 -0.03123323 -0.04472192 -0.01960996 -0.01960996 -0.01383297 0.3501244 0.5630663 0.2365452 0.2365452 0.1541428 -0.02407543 0.3057861 0.4226221 0.295154 -0.01383297 -0.01383297 0.3361533 0.1541428 0.2643839 -0.01960996 0.2033747 0.1319604 -0.01383297 -0.03429846 -0.01960996 0.1855814 -0.02786763 -0.03123323 -0.02786763 -0.01383297 -0.02786763 -0.02407543 -0.01960996 0.3952382 -0.03123323 -0.01383297 0.3952382 0.1855814 NA 0.4927003 -0.01960996 0.04629642 NA 0.1014667 NA -0.01383297 0.1855814 0.06465668 -0.01960996 0.2365452 NA -0.02407543 0.3475533 NA 0.1855814 0.3475533 0.3475533 0.2365452 0.4927003 0.3475533 0.3475533 -0.03123323 0.3475533 0.1150427 0.1150427 -0.01383297 -0.01383297 -0.01383297 0.3952382 -0.02407543 NA NA -0.01383297 -0.01383297 0.3475533 0.3475533 0.3475533 NA NA -0.01383297 NA NA NA NA 0.3475533 0.3475533 -0.01383297 -0.01383297 0.2244937 0.3569124 0.6021023 0.3821034 0.2885035 0.2853911 0.4165231 0.5807773 0.115617 0.2950542 0.2325956 0.4289724 0.542508 0.3821034 0.6339443 0.4893435 0.3902182 0.3426362 0.6098868 0.4868449 0.4658275 0.4097041 0.4097041 0.02273067 0.6244911 0.4760058 0.5379569 0.5320639 0.3451764 0.2907233 0.2646673 0.3782754 0.2950542 0.4760058 0.5257503 0.595669 0.5335672 0.4823424 0.3239952 0.3667793 NA 0.4120442 0.4053004 0.3851452 0.2244937 0.3271037 0.5102955 0.3218932 0.5539202 0.5379569 0.4118312 0.1487015 0.3271037 0.3184616 0.8108597 0.3041207 0.2008938 0.5096035 0.3218932 0.3203963 0.4097041 0.2020027 0.3569124 0.4053004 0.1998901 0.3529431 0.3886561 0.5539202 0.144764 0.4892691 0.446623 0.3218932 -0.03321056 0.2521366 0.2521366 0.2853911 0.1621045 0.3902182 0.2464911 0.2464911 0.2020027 0.2519528 0.2853911 0.1487015 0.3268602 0.3218932 0.1123667 0.2464911 0.1487015 0.2853911 0.2521366 0.2885035 0.2052211 0.4104822 0.3569124 0.251329 0.2020027 0.3268602 0.2052211 0.3184616 0.2171042 0.1661219 0.4220514 0.3271037 0.2721039 0.2020027 0.3629186 0.2885035 NA 0.3218932 0.2646673 0.3525133 0.3821034 0.2378649 0.3782754 0.2521366 0.4120442 0.2838721 0.2052211 0.1403941 0.2155417 0.1661219 0.1803259 0.2052211 0.2052211 0.144764 0.3525133 0.211844 0.2052211 0.2052211 0.1123667 0.1487015 0.295404 0.3529431 0.3268602 0.144764 0.144764 0.1123667 0.1123667 0.2853911 0.2052211 0.1403941 0.3268602 0.144764 0.211844 0.07907048 0.2519528 0.2020027 0.1661219 0.2020027 -0.03321056 0.2020027 0.1487015 0.2052211 0.2519528 0.1661219 0.144764 0.2519528 0.04545031 NA 0.2052211 0.07907048 0.3629186 NA 0.3203963 NA 0.144764 0.2519528 0.3271037 0.07907048 0.07907048 NA 0.1487015 0.144764 NA 0.1487015 0.144764 0.144764 0.07907048 0.2052211 0.144764 0.144764 0.1661219 0.144764 0.1382968 0.211844 0.144764 0.144764 0.144764 0.1487015 0.1487015 NA NA 0.144764 0.144764 0.144764 0.144764 0.144764 NA NA -0.03321056 NA NA NA NA 0.144764 0.144764 0.144764 0.144764 0.05795777 0.1159052 0.3635811 0.1260414 0.165154 -0.04243118 0.05795777 0.1235245 -0.04594422 0.01105676 -0.06356253 0.2892982 0.1625407 0.1260414 0.2036054 0.208126 0.09074166 0.1704266 0.3504621 0.02159496 -0.002455395 -0.06091371 0.1159052 -0.0344755 0.2611618 0.1163994 0.110373 0.208126 0.05954569 0.07085568 0.01613908 0.07085568 0.09074166 0.3174529 0.1863376 0.05954569 0.2879568 0.1691474 0.08364617 0.04012621 NA 0.4274888 0.4271898 0.1067524 0.2723502 0.3102559 0.01613908 -0.05235568 0.1993777 0.4389765 0.3963983 -0.0297841 0.4944703 0.3512125 0.251329 0.823181 0.04896225 0.3641 0.1502802 0.6399373 0.1159052 0.4158607 0.3811337 0.3626792 0.4094813 0.2337533 0.2969965 0.4091258 -0.01711299 0.2808762 0.6373857 0.454234 -0.01711299 0.4113101 0.4113101 0.450242 0.2181486 0.4094813 0.4997329 0.2305469 0.2657486 0.1431292 0.3270737 0.4889557 0.3651399 0.352916 0.2657486 0.2305469 0.3160424 0.3270737 0.4113101 0.3795465 0.3982652 0.3301131 0.5579526 0.3811337 0.1156366 0.3651399 -0.02425981 0.4942991 0.5865775 0.2305469 0.5107222 0.4023631 0.4023631 0.4158607 0.6742987 0.3795465 NA 0.5555519 0.3452189 0.4867427 0.4023631 0.4264729 0.5840332 0.2969965 0.5097588 0.1284705 0.3982652 0.454234 0.3452189 0.4997329 0.04103361 -0.02425981 -0.02425981 -0.01711299 0.3795465 0.2039054 -0.02425981 0.1870027 0.2657486 0.1431292 0.1373934 0.2337533 0.2305469 0.2809382 0.2809382 0.4158607 -0.0344755 0.2039054 0.1870027 0.352916 0.3651399 0.2809382 0.450242 0.1870027 0.3160424 0.2657486 -0.03863914 0.1156366 -0.01711299 -0.0344755 -0.0297841 -0.02425981 0.1431292 0.09595386 -0.01711299 0.4889557 0.4889557 NA 0.3982652 0.1870027 0.2629489 NA 0.2969965 NA -0.01711299 0.1431292 0.2181486 -0.02425981 -0.02425981 NA 0.1431292 0.2809382 NA 0.1431292 0.2809382 0.2809382 0.1870027 0.3982652 0.2809382 0.2809382 0.09595386 0.2809382 0.5734103 0.3270737 0.2809382 -0.01711299 0.2809382 0.1431292 0.1431292 NA NA 0.2809382 0.2809382 0.2809382 -0.01711299 0.2809382 NA NA 0.2809382 NA NA NA NA 0.2809382 0.2809382 -0.01711299 -0.01711299 0.6100746 0.165154 0.293894 0.1763364 0.2201493 0.1150427 0.09017413 0.2614402 0.6558863 0.7174674 0.4648865 0.3106954 0.2338488 0.06465668 0.4232074 0.3706422 0.524232 0.1377611 0.2832895 0.05187362 0.205424 0.4867427 0.3795465 0.5181637 0.3106562 0.1753482 0.2485903 0.1104041 0.3589669 0.205424 0.4453047 0.5609819 0.4276143 0.1753482 0.267562 0.2741939 0.3239507 0.319238 0.4115169 0.3974569 NA 0.1460485 0.08458122 0.25838 -0.039801 -0.04702304 0.04629642 0.08052696 0.1894209 0.2485903 0.01627242 -0.02407543 -0.04702304 0.4573882 0.2885035 0.05795777 0.5719177 0.1165345 0.2033747 -0.03713815 0.3795465 -0.02786763 0.2723502 0.4756758 -0.05547429 0.3057861 0.2400716 0.2741939 -0.01383297 0.1514812 0.1104041 0.08052696 -0.01383297 -0.03713815 -0.03713815 -0.03429846 -0.04702304 -0.05547429 -0.03123323 -0.03123323 0.1541428 -0.02407543 0.1150427 -0.02407543 -0.03123323 -0.04232074 -0.02786763 -0.03123323 -0.02407543 -0.03429846 -0.03713815 0.09017413 -0.01960996 0.07211409 -0.04923846 -0.04923846 -0.02786763 -0.03123323 -0.01960996 0.02365801 0.06465668 -0.03123323 -0.06124442 0.06465668 0.06465668 -0.02786763 0.1460485 -0.039801 NA -0.04232074 -0.05345566 0.09017413 0.06465668 -0.04472192 0.205424 -0.03713815 -0.05345566 0.1272346 -0.01960996 -0.04232074 -0.05345566 -0.03123323 -0.04472192 -0.01960996 -0.01960996 -0.01383297 0.09017413 0.1150427 -0.01960996 -0.01960996 -0.02786763 -0.02407543 0.3057861 0.07211409 0.1319604 -0.01383297 -0.01383297 -0.02786763 0.1541428 -0.03429846 -0.01960996 -0.04232074 -0.03123323 -0.01383297 -0.03429846 -0.01960996 -0.02407543 -0.02786763 -0.03123323 0.3361533 -0.01383297 -0.02786763 -0.02407543 -0.01960996 0.3952382 -0.03123323 -0.01383297 -0.02407543 -0.02407543 NA -0.01960996 -0.01960996 -0.05345566 NA -0.03713815 NA -0.01383297 -0.02407543 0.06465668 -0.01960996 -0.01960996 NA -0.02407543 -0.01383297 NA -0.02407543 -0.01383297 -0.01383297 -0.01960996 -0.01960996 -0.01383297 -0.01383297 -0.03123323 -0.01383297 -0.03429846 -0.03429846 -0.01383297 -0.01383297 -0.01383297 -0.02407543 -0.02407543 NA NA -0.01383297 -0.01383297 -0.01383297 -0.01383297 -0.01383297 NA NA -0.01383297 NA NA NA NA -0.01383297 -0.01383297 -0.01383297 -0.01383297 0.1551268 0.2770674 0.3922323 0.205455 0.25838 0.07436147 0.1551268 0.3856349 0.1722754 0.2354029 0.2617739 0.4544969 0.3934495 0.2941742 0.3408685 0.3320291 0.3121567 0.1586491 0.4286501 0.3437991 0.2740111 0.2770674 0.3622249 -0.03597466 0.4306864 0.2989809 0.4158631 0.6076759 0.1855995 0.2033967 0.2479686 0.2740111 0.3889106 0.4280863 0.3384317 0.3202881 0.4317741 0.2800656 0.2238831 0.3422032 NA 0.3272124 0.590754 0.2617739 0.4648865 0.205455 0.4857 0.3357321 0.4549766 0.4791664 0.3751964 0.3020266 0.3828934 0.4009408 0.3342953 0.4473824 0.1405499 0.6976979 0.238141 0.3924929 0.2770674 0.1086158 0.2770674 0.4664786 0.3121567 0.2207141 0.3924929 0.5223209 -0.01785714 0.5632039 0.5387642 0.3357321 0.2692308 0.2823842 0.2823842 0.311637 0.4716126 0.3889106 0.3486073 0.2189651 0.2532063 0.4685796 0.4302747 0.4685796 0.2189651 0.238141 0.2532063 0.3486073 0.3020266 0.1929992 0.2823842 0.3616332 0.3816684 0.5919757 0.2770674 0.1919099 0.2532063 0.3486073 -0.02531474 0.2631174 0.205455 0.2189651 0.4858545 0.3828934 0.4716126 0.3977967 0.4064562 0.1551268 NA 0.3357321 0.3272124 0.3616332 0.3828934 0.2207141 0.556469 0.2823842 0.3272124 0.2269546 0.3816684 0.3357321 0.2479686 0.2189651 -0.05773207 -0.02531474 0.1781768 -0.01785714 0.25838 0.311637 0.1781768 0.3816684 0.2532063 0.3020266 0.2207141 0.4991603 0.4782496 0.2692308 -0.01785714 0.2532063 0.1086158 0.311637 0.1781768 0.238141 0.08932288 -0.01785714 0.1929992 -0.02531474 0.3020266 -0.03597466 -0.04031935 -0.03597466 0.2692308 -0.03597466 -0.03107926 -0.02531474 0.3020266 0.08932288 0.2692308 0.3020266 0.3020266 NA 0.3816684 0.1781768 0.3272124 NA 0.2823842 NA -0.01785714 0.1354737 0.205455 0.1781768 -0.02531474 NA 0.1354737 0.2692308 NA 0.1354737 0.2692308 0.2692308 0.1781768 0.3816684 0.2692308 0.2692308 0.3486073 0.2692308 0.311637 0.4302747 0.2692308 -0.01785714 0.2692308 0.3020266 -0.03107926 NA NA -0.01785714 0.2692308 0.2692308 0.2692308 0.2692308 NA NA -0.01785714 NA NA NA NA 0.2692308 0.2692308 -0.01785714 -0.01785714 0.05795777 0.3811337 0.2569306 0.1260414 0.3795465 0.08073711 -0.04923846 0.2948737 0.182683 0.1704266 0.1067524 0.09916196 0.2259194 0.03393423 0.3102559 0.208126 0.1704266 0.2501115 0.1413355 0.1067524 -0.002455395 0.02749577 0.02749577 0.1156366 0.3596867 0.1163994 0.04465234 0.1365827 0.1294617 0.1441668 0.01613908 0.07085568 0.1704266 0.2504351 0.1863376 0.2692937 0.2315529 0.1046368 0.006291968 0.1046368 NA 0.3452189 0.1691474 0.1919099 0.165154 0.03393423 0.180679 0.1502802 0.1993777 0.1760937 0.1911615 -0.0297841 0.3102559 0.1365827 0.3041207 0.1159052 0.1502802 0.1441668 0.6568698 0.182683 0.1159052 0.2657486 0.3811337 0.233658 0.3297964 0.2337533 0.182683 0.3392097 0.2809382 0.3431937 0.208126 0.1502802 -0.01711299 0.06836937 0.06836937 -0.04243118 0.1260414 0.1704266 0.09595386 -0.03863914 0.2657486 -0.0297841 0.3270737 0.1431292 0.09595386 0.1502802 0.1156366 0.09595386 0.1431292 0.08073711 0.2969965 0.165154 0.1870027 0.3301131 0.2043147 0.1159052 -0.0344755 0.09595386 -0.02425981 0.208126 0.2181486 0.09595386 0.2174778 0.1260414 -0.05817297 0.1156366 0.2629489 0.2723502 NA 0.04896225 0.2629489 0.165154 0.1260414 0.04103361 0.3641 0.182683 0.09840903 0.4756731 0.1870027 0.2515981 0.09840903 0.09595386 0.1373934 -0.02425981 -0.02425981 -0.01711299 0.2723502 0.2039054 -0.02425981 -0.02425981 0.1156366 0.3160424 0.2337533 -0.05532622 0.2305469 -0.01711299 0.2809382 -0.0344755 0.1156366 0.2039054 -0.02425981 0.1502802 0.2305469 0.2809382 0.08073711 0.1870027 0.1431292 0.1156366 -0.03863914 0.1156366 -0.01711299 0.1156366 -0.0297841 -0.02425981 0.4889557 0.09595386 -0.01711299 0.3160424 -0.0297841 NA 0.1870027 -0.02425981 0.2629489 NA 0.06836937 NA 0.2809382 -0.0297841 0.2181486 0.1870027 -0.02425981 NA -0.0297841 0.2809382 NA 0.1431292 0.2809382 0.2809382 0.1870027 0.1870027 0.2809382 0.2809382 0.2305469 0.2809382 0.2039054 0.08073711 -0.01711299 -0.01711299 -0.01711299 0.1431292 -0.0297841 NA NA 0.2809382 -0.01711299 0.2809382 -0.01711299 0.2809382 NA NA -0.01711299 NA NA NA NA 0.2809382 -0.01711299 -0.01711299 -0.01711299 0.1541428 0.1156366 0.2963189 -0.03292432 -0.02786763 -0.02401489 -0.02786763 0.1345642 -0.02600318 0.0964568 0.1086158 0.2713468 0.2713468 -0.03292432 0.205777 0.1987767 0.2317553 -0.03884166 0.287122 -0.03597466 -0.04288176 0.1156366 0.2657486 -0.0195122 0.2593353 -0.04791192 0.1740565 0.3202514 0.0732718 0.08159447 0.1022594 0.2060707 0.2317553 0.1796697 0.2364668 0.0732718 0.2268219 0.278289 0.2224629 0.1687553 NA 0.3816347 0.278289 0.1086158 0.1541428 -0.03292432 0.1022594 -0.02963189 0.1919835 0.2856449 0.3017896 -0.01685699 0.2798567 0.3202514 0.2020027 0.5659728 -0.02963189 0.3305469 0.1423977 0.3621871 0.2657486 -0.0195122 0.2657486 0.278289 0.2317553 0.2959091 0.5562822 0.4294069 -0.009685486 0.3705885 0.4417261 0.4864568 -0.009685486 0.3621871 0.168092 0.1851148 0.1234662 0.2317553 0.2066592 -0.0218687 0.2353659 0.2767356 0.1851148 0.2767356 0.2066592 0.1423977 0.2353659 -0.0218687 0.2767356 0.1851148 0.168092 0.1541428 0.3449761 0.2959091 0.2657486 0.2657486 0.2353659 0.2066592 -0.01373039 0.1987767 0.2798567 0.2066592 0.2060707 0.4362472 0.4362472 0.2353659 0.5213224 0.1541428 NA 0.3144273 0.241947 0.5181637 0.4362472 0.2959091 0.4550232 0.168092 0.241947 0.0399596 0.3449761 0.3144273 0.241947 0.2066592 -0.03131313 -0.01373039 -0.01373039 -0.009685486 0.3361533 -0.02401489 -0.01373039 0.3449761 -0.0195122 0.2767356 -0.03131313 0.2959091 0.2066592 0.4963811 -0.009685486 0.2353659 -0.0195122 0.1851148 0.3449761 0.3144273 -0.0218687 -0.009685486 0.1851148 -0.01373039 0.2767356 -0.0195122 -0.0218687 -0.0195122 -0.009685486 -0.0195122 -0.01685699 -0.01373039 -0.01685699 -0.0218687 -0.009685486 0.2767356 0.2767356 NA 0.3449761 0.3449761 -0.03742827 NA 0.3621871 NA -0.009685486 0.2767356 0.1234662 -0.01373039 -0.01373039 NA 0.2767356 -0.009685486 NA -0.01685699 -0.009685486 -0.009685486 -0.01373039 0.3449761 -0.009685486 -0.009685486 -0.0218687 -0.009685486 0.1851148 0.3942445 0.4963811 -0.009685486 0.4963811 -0.01685699 -0.01685699 NA NA -0.009685486 0.4963811 -0.009685486 -0.009685486 -0.009685486 NA NA -0.009685486 NA NA NA NA -0.009685486 0.4963811 -0.009685486 -0.009685486 0.2880161 0.1260414 0.3888889 0.4242424 0.3996958 0.3444374 0.2880161 0.3163177 0.07521774 0.5155838 0.2941742 0.3092964 0.3753259 0.2323232 0.5 0.5962848 0.5155838 0.4325661 0.3755448 0.3828934 0.3859065 0.4944703 0.4944703 -0.03292432 0.3862721 0.33808 0.3964022 0.372678 0.3603676 0.1567745 0.3653991 0.3095291 0.2665306 0.33808 0.4442229 0.4332078 0.426805 0.4527748 0.2544933 0.3183573 NA 0.3653991 0.385566 0.4716126 0.1763364 0.2323232 0.2796882 0.1611111 0.3603676 0.5333411 0.2063184 0.1517014 0.2323232 0.5217492 0.4371031 0.3102559 0.4777778 0.3859065 0.1611111 0.1943125 0.7707919 0.1234662 0.4944703 0.5199835 0.1004951 0.5495036 0.6706915 0.5060481 0.2941742 0.4305485 0.372678 0.3722222 -0.01634301 0.07521774 0.3134073 0.3444374 0.1363636 0.1835129 0.2435441 0.2435441 0.1234662 0.1517014 0.3444374 -0.02844401 0.3837665 0.2666667 -0.03292432 0.2435441 -0.02844401 0.08779776 0.1943125 0.3996958 -0.02316827 0.2483334 0.1260414 0.03393423 0.2798567 0.3837665 0.1969303 0.1490712 0.04040404 0.1033217 0.1567745 0.2323232 0.4242424 0.1234662 0.45111 0.1763364 NA 0.3722222 0.0225555 0.2880161 0.3282828 0.1479433 0.3859065 0.1943125 0.1082664 0.1427859 -0.02316827 0.05555556 0.1082664 -0.03690062 0.1479433 0.1969303 -0.02316827 -0.01634301 0.3996958 0.3444374 0.4170288 0.1969303 0.1234662 0.1517014 0.5495036 0.4491135 0.2435441 -0.01634301 -0.01634301 0.1234662 0.2798567 0.08779776 -0.02316827 -0.05 0.1033217 -0.01634301 0.2161176 -0.02316827 0.1517014 0.2798567 0.1033217 0.4362472 -0.01634301 0.2798567 0.1517014 0.1969303 0.3318467 0.1033217 -0.01634301 -0.02844401 -0.02844401 NA -0.02316827 -0.02316827 0.2796882 NA -0.04387702 NA 0.2941742 0.1517014 0.2323232 -0.02316827 0.1969303 NA -0.02844401 -0.01634301 NA 0.1517014 -0.01634301 -0.01634301 -0.02316827 -0.02316827 -0.01634301 -0.01634301 0.1033217 -0.01634301 -0.04052204 0.08779776 -0.01634301 -0.01634301 -0.01634301 0.1517014 0.3318467 NA NA -0.01634301 -0.01634301 -0.01634301 0.2941742 -0.01634301 NA NA -0.01634301 NA NA NA NA -0.01634301 -0.01634301 -0.01634301 -0.01634301 -0.01383297 0.2809382 0.1470871 0.2941742 0.3475533 -0.01192054 -0.01383297 0.1630722 -0.01290749 -0.01928027 -0.01785714 0.188108 -0.02555815 -0.01634301 0.1470871 0.2192645 -0.01928027 -0.01928027 0.1425219 -0.01785714 -0.0212857 -0.01711299 -0.01711299 -0.009685486 0.1287292 -0.02378257 -0.02438236 0.2192645 -0.0225555 -0.0212857 -0.01857869 -0.0212857 -0.01928027 0.2021519 -0.02893605 -0.0225555 0.1601282 -0.024974 -0.0199641 -0.024974 NA 0.2587746 0.1925079 -0.01785714 0.3475533 -0.01634301 -0.01857869 -0.01470871 -0.0225555 0.1971791 0.2074615 -0.008367493 0.2941742 0.2192645 0.144764 0.2809382 -0.01470871 0.2258649 -0.01470871 0.3724732 -0.01711299 0.4963811 0.2809382 0.1925079 0.2493582 -0.01554325 -0.01290749 0.2131495 -0.004807692 0.1839531 0.2192645 0.3268602 -0.004807692 -0.01290749 -0.01290749 -0.01192054 0.2941742 0.2493582 0.4428926 -0.01085521 0.4963811 -0.008367493 0.4033116 0.5745678 -0.01085521 -0.01470871 0.4963811 -0.01085521 0.5745678 0.4033116 0.3724732 -0.01383297 0.705405 0.3093106 0.2809382 -0.01711299 -0.009685486 0.4428926 -0.006815507 0.2192645 0.2941742 0.4428926 0.2258649 0.2941742 -0.01634301 0.4963811 0.2587746 0.3475533 NA -0.01470871 0.2587746 0.3475533 0.2941742 -0.01554325 0.2258649 -0.01290749 0.2587746 -0.02893605 0.705405 -0.01470871 -0.01857869 -0.01085521 -0.01554325 -0.006815507 -0.006815507 -0.004807692 0.3475533 0.4033116 -0.006815507 -0.006815507 -0.009685486 -0.008367493 -0.01554325 -0.01554325 0.4428926 -0.004807692 -0.004807692 -0.009685486 -0.009685486 0.4033116 -0.006815507 0.3268602 0.4428926 -0.004807692 -0.01192054 -0.006815507 -0.008367493 -0.009685486 -0.01085521 -0.009685486 -0.004807692 -0.009685486 -0.008367493 -0.006815507 0.5745678 -0.01085521 -0.004807692 0.5745678 -0.008367493 NA 0.705405 -0.006815507 -0.01857869 NA -0.01290749 NA -0.004807692 -0.008367493 -0.01634301 -0.006815507 -0.006815507 NA -0.008367493 1 NA 0.5745678 1 1 0.705405 0.705405 1 1 -0.01085521 1 0.4033116 -0.01192054 -0.004807692 -0.004807692 -0.004807692 0.5745678 -0.008367493 NA NA -0.004807692 -0.004807692 1 -0.004807692 1 NA NA -0.004807692 NA NA NA NA 1 -0.004807692 -0.004807692 -0.004807692 0.3057861 0.3301131 0.3592908 0.2483334 0.1889501 0.09570532 0.1889501 0.1536956 0.08286355 0.198219 0.1278987 0.3318396 0.1936833 0.0475532 0.3592908 0.4749504 0.2850697 0.198219 0.4037896 0.03508333 0.0909908 0.04103361 0.3301131 0.132298 0.3087959 0.1422446 0.1360641 0.1630427 0.1556881 -0.06881657 0.2089398 0.2507982 0.1113683 0.2152891 0.2848752 0.1556881 0.4562175 0.2708182 0.2726977 0.1301946 NA 0.5676125 0.4114418 0.1278987 0.3057861 0.4491135 0.02960338 -0.0475532 0.1556881 0.4942177 0.2979006 -0.02705207 0.4491135 0.5529273 0.3529431 0.7155524 0.2837341 0.4106055 0.06287589 0.5812372 0.3301131 0.4595202 0.8119122 0.4817536 0.198219 0.5798995 0.4566438 0.5367047 -0.01554325 0.4588766 0.4749504 0.6150213 -0.01554325 0.3320504 0.4566438 0.3641941 0.1479433 0.2850697 0.551691 0.2582981 0.132298 -0.02705207 0.3641941 0.3498734 0.4049946 0.2837341 0.132298 0.4049946 0.1614107 0.2299497 0.3320504 0.4226221 0.2082261 0.159799 0.4264729 0.2337533 0.132298 0.4049946 0.2082261 0.3189965 0.5495036 0.2582981 0.3307019 0.4491135 0.4491135 0.4595202 0.4779443 0.3057861 NA 0.5045923 0.2089398 0.5394581 0.3487234 0.3698492 0.4106055 0.3320504 0.3882762 0.2218043 0.2082261 0.2837341 0.2089398 0.1116016 0.05477387 -0.0220345 -0.0220345 -0.01554325 0.6562942 0.09570532 0.2082261 -0.0220345 0.2959091 -0.02705207 0.2648241 0.3698492 0.1116016 -0.01554325 0.3093106 0.132298 0.132298 0.2299497 0.2082261 0.173305 0.4049946 0.3093106 0.4984385 0.2082261 0.1614107 0.4595202 0.2582981 0.2959091 -0.01554325 0.132298 0.1614107 0.2082261 0.1614107 0.1116016 -0.01554325 0.3498734 0.1614107 NA 0.2082261 -0.0220345 0.298608 NA -0.04172985 NA -0.01554325 0.1614107 0.0475532 -0.0220345 -0.0220345 NA 0.1614107 0.3093106 NA 0.1614107 0.3093106 0.3093106 0.2082261 0.2082261 0.3093106 0.3093106 0.2582981 0.3093106 0.3641941 0.2299497 -0.01554325 0.3093106 -0.01554325 0.1614107 0.3498734 NA NA 0.3093106 -0.01554325 0.3093106 -0.01554325 0.3093106 NA NA -0.01554325 NA NA NA NA 0.3093106 -0.01554325 0.3093106 -0.01554325 0.4436146 0.2728611 0.5951404 0.3564118 0.3692638 0.2754981 0.3692638 0.4700808 0.4040242 0.4455904 0.4323885 0.6932513 0.6053329 0.4202969 0.6321265 0.6225318 0.5561286 0.3350523 0.6829111 0.3733237 0.4410901 0.3955019 0.5181427 0.362666 0.5442392 0.6581051 0.5483114 0.5729097 0.5051205 0.3902419 0.4674174 0.5427865 0.5561286 0.4256888 0.5617168 0.456627 0.6156487 0.4429467 0.5329312 0.4876909 NA 0.4103553 0.5324352 0.4323885 0.294913 0.3564118 0.4674174 0.3399361 0.6021073 0.6394786 0.440676 0.1933829 0.484182 0.5729097 0.5112237 0.5181427 0.4102098 0.5427865 0.3399361 0.4040242 0.4568223 0.258549 0.5181427 0.8009007 0.3350523 0.4483363 0.4833115 0.6506007 0.1800206 0.5463903 0.4736655 0.3399361 -0.02670635 0.3247368 0.4040242 0.3609271 0.2925266 0.2797832 0.4064655 0.3131125 0.154432 0.3133147 0.446356 0.3133147 0.4064655 0.4102098 0.154432 0.4064655 0.1933829 0.2754981 0.2454494 0.4436146 0.2552017 0.3815016 0.3955019 0.2728611 0.258549 0.4064655 0.1086711 0.3744213 0.2925266 0.2197594 0.4410901 0.3564118 0.4202969 0.362666 0.4103553 0.2205622 NA 0.4102098 0.1821071 0.3692638 0.3564118 0.2478321 0.4919383 0.4040242 0.4103553 0.2807624 0.2552017 0.2696625 0.2962312 0.1264063 0.1809974 0.1086711 -0.0378596 -0.02670635 0.3692638 0.2754981 0.2552017 0.1086711 0.258549 0.1933829 0.515171 0.4483363 0.2197594 -0.02670635 0.1800206 0.258549 0.154432 0.3609271 -0.0378596 0.1291152 0.3131125 0.1800206 0.2754981 0.1086711 0.1933829 0.258549 0.03305324 0.258549 -0.02670635 0.154432 0.07345107 0.1086711 0.1933829 0.1264063 0.1800206 0.3133147 0.3133147 NA 0.2552017 -0.0378596 0.4674174 NA 0.2454494 NA 0.1800206 0.1933829 0.3564118 0.1086711 -0.0378596 NA -0.04648076 0.1800206 NA 0.1933829 0.1800206 0.1800206 0.1086711 0.2552017 0.1800206 0.1800206 0.3131125 0.1800206 0.2754981 0.3609271 -0.02670635 -0.02670635 -0.02670635 0.1933829 0.1933829 NA NA 0.1800206 -0.02670635 0.1800206 0.1800206 0.1800206 NA NA 0.1800206 NA NA NA NA 0.1800206 0.1800206 -0.02670635 -0.02670635 0.1541428 0.1156366 0.2963189 0.2798567 0.1541428 -0.02401489 0.1541428 0.2315432 0.168092 0.0964568 0.1086158 0.2713468 0.1637349 0.1234662 0.1152351 0.1987767 0.0964568 0.0964568 0.287122 0.1086158 0.08159447 0.1156366 0.1156366 -0.0195122 0.2593353 0.06587889 0.1740565 0.3202514 0.0732718 0.2060707 0.1022594 0.2060707 0.2317553 0.4072513 0.1382132 0.0732718 0.2268219 0.05922159 0.2224629 0.05922159 NA 0.3816347 0.3878228 0.2532063 0.3361533 0.1234662 0.241947 0.1423977 0.1919835 0.2856449 0.4179481 0.2767356 0.4362472 0.1987767 0.2916387 0.4158607 -0.02963189 0.3305469 0.1423977 0.5562822 -0.0344755 0.2353659 0.1156366 0.278289 0.5023522 -0.03131313 0.168092 0.4294069 -0.009685486 0.3705885 0.4417261 0.3144273 -0.009685486 0.3621871 0.168092 0.1851148 0.4362472 0.3670537 0.4351871 -0.0218687 0.4902439 0.5703282 0.3942445 0.5703282 0.2066592 0.1423977 0.4902439 0.2066592 0.5703282 0.3942445 0.3621871 0.1541428 0.7036825 0.6231314 0.4158607 0.2657486 0.2353659 0.4351871 -0.01373039 0.3202514 0.4362472 0.4351871 0.4550232 0.5926378 0.2798567 0.4902439 0.3816347 0.3361533 NA 0.1423977 0.3816347 0.5181637 0.5926378 0.2959091 0.4550232 0.168092 0.3816347 0.1382132 0.7036825 0.3144273 0.241947 0.4351871 -0.03131313 -0.01373039 -0.01373039 -0.009685486 0.1541428 0.1851148 -0.01373039 0.3449761 -0.0195122 0.2767356 -0.03131313 0.132298 0.6637151 0.4963811 -0.009685486 0.2353659 -0.0195122 0.6033742 0.3449761 0.4864568 0.2066592 -0.009685486 0.1851148 -0.01373039 0.2767356 -0.0195122 -0.0218687 -0.0195122 -0.009685486 -0.0195122 -0.01685699 -0.01373039 0.2767356 0.2066592 0.4963811 0.5703282 0.2767356 NA 0.7036825 0.3449761 0.1022594 NA 0.5562822 NA -0.009685486 0.2767356 0.2798567 0.3449761 -0.01373039 NA 0.2767356 0.4963811 NA 0.2767356 0.4963811 0.4963811 0.3449761 0.7036825 0.4963811 0.4963811 0.2066592 0.4963811 0.3942445 0.3942445 0.4963811 -0.009685486 0.4963811 0.2767356 -0.01685699 NA NA -0.009685486 0.4963811 0.4963811 -0.009685486 0.4963811 NA NA -0.009685486 NA NA NA NA 0.4963811 0.4963811 -0.009685486 -0.009685486 0.1319604 0.09595386 0.3321056 0.1033217 0.295154 0.160594 -0.03123323 0.1942921 0.1448853 0.1990891 0.2189651 0.3282393 0.424726 0.1033217 0.3321056 0.3861575 0.3204 0.1990891 0.2422053 0.2189651 0.06354684 0.3651399 0.3651399 -0.0218687 0.2906555 0.252382 0.2451035 0.3861575 0.2683889 0.1751543 0.2085441 0.1751543 0.3204 0.04832846 0.3751449 0.3748278 0.3615508 0.3364507 0.07268603 0.3364507 NA 0.2085441 0.2382409 0.2189651 -0.03123323 0.1033217 0.2085441 0.121034 0.3748278 0.4452075 0.05182564 -0.01889283 0.1033217 0.2772413 0.2464911 0.2305469 0.121034 0.2867618 0.2752786 -0.0291436 0.4997329 -0.0218687 0.4997329 0.4346605 0.07777826 0.551691 0.6669722 0.4812667 0.4428926 0.3204737 0.2772413 0.2752786 -0.01085521 0.1448853 -0.0291436 -0.02691519 -0.03690062 -0.04353261 -0.0245098 -0.0245098 -0.0218687 -0.01889283 0.3481032 -0.01889283 -0.0245098 -0.03321056 -0.0218687 -0.0245098 -0.01889283 -0.02691519 -0.0291436 0.1319604 -0.01538862 0.1116016 -0.03863914 -0.03863914 -0.0218687 -0.0245098 -0.01538862 -0.04950738 -0.03690062 -0.0245098 -0.04806063 0.1033217 0.2435441 -0.0218687 0.3337904 -0.03123323 NA 0.121034 -0.04194852 0.1319604 0.2435441 -0.03509485 0.3983692 -0.0291436 -0.04194852 0.1989533 -0.01538862 -0.03321056 -0.04194852 -0.0245098 0.2582981 -0.01538862 -0.01538862 -0.01085521 0.295154 0.160594 -0.01538862 -0.01538862 -0.0218687 0.2443472 0.1116016 0.1116016 -0.0245098 -0.01085521 -0.01085521 -0.0218687 0.2066592 -0.02691519 -0.01538862 -0.03321056 -0.0245098 -0.01085521 -0.02691519 -0.01538862 -0.01889283 -0.0218687 -0.0245098 -0.0218687 -0.01085521 0.2066592 -0.01889283 -0.01538862 0.2443472 -0.0245098 -0.01085521 -0.01889283 -0.01889283 NA -0.01538862 -0.01538862 0.08329777 NA -0.0291436 NA 0.4428926 -0.01889283 0.3837665 -0.01538862 -0.01538862 NA -0.01889283 -0.01085521 NA -0.01889283 -0.01085521 -0.01085521 -0.01538862 -0.01538862 -0.01085521 -0.01085521 -0.0245098 -0.01085521 -0.02691519 0.160594 -0.01085521 -0.01085521 -0.01085521 -0.01889283 -0.01889283 NA NA -0.01085521 -0.01085521 -0.01085521 -0.01085521 -0.01085521 NA NA -0.01085521 NA NA NA NA -0.01085521 -0.01085521 -0.01085521 -0.01085521 0.1150427 0.08073711 0.3646984 0.08779776 0.4137251 0.1420361 -0.03429846 0.3247609 0.127253 0.2852359 0.1929992 0.2898155 0.378112 0.08779776 0.3646984 0.4439892 0.2852359 0.1742223 0.2805426 0.1929992 0.1514904 0.3270737 0.3270737 -0.02401489 0.3191804 0.1277645 0.3057816 0.4439892 0.3336902 0.2536243 0.1831646 0.2536243 0.2852359 0.1277645 0.3313437 0.3336902 0.3970333 0.3874446 0.1660327 0.2076979 NA 0.2977795 0.2975712 0.311637 0.1150427 -0.04052204 0.1831646 0.1046819 0.2362862 0.4889001 0.133159 -0.02074697 0.08779776 0.4439892 0.2853911 0.3270737 0.1046819 0.3557581 0.3869855 0.127253 0.5734103 -0.02401489 0.450242 0.3874446 0.1742223 0.4984385 0.7642802 0.4310942 0.4033116 0.3692886 0.3443182 0.2458337 -0.01192054 0.127253 0.127253 0.1420361 0.08779776 0.06320869 0.160594 -0.02691519 0.1851148 0.2201484 0.4852217 0.2201484 0.160594 0.1046819 0.1851148 -0.02691519 0.2201484 0.1420361 0.127253 0.2643839 0.277423 0.2299497 0.08073711 0.08073711 0.1851148 0.160594 -0.01689886 0.04530502 0.08779776 0.160594 0.04935655 0.2161176 0.2161176 0.1851148 0.4123945 -0.03429846 NA 0.2458337 0.06854962 0.2643839 0.3444374 0.09570532 0.457892 0.127253 0.06854962 0.1701077 0.277423 0.1046819 0.06854962 -0.02691519 0.09570532 -0.01689886 -0.01689886 -0.01192054 0.2643839 0.3136289 -0.01689886 -0.01689886 -0.02401489 0.2201484 0.09570532 0.3641941 -0.02691519 -0.01192054 -0.01192054 0.3942445 0.1851148 0.1420361 -0.01689886 0.1046819 -0.02691519 -0.01192054 -0.02955665 -0.01689886 -0.02074697 -0.02401489 -0.02691519 -0.02401489 -0.01192054 0.1851148 -0.02074697 -0.01689886 0.2201484 -0.02691519 -0.01192054 0.2201484 0.2201484 NA 0.277423 -0.01689886 0.06854962 NA 0.127253 NA 0.4033116 0.2201484 0.2161176 -0.01689886 0.277423 NA -0.02074697 -0.01192054 NA -0.02074697 -0.01192054 -0.01192054 -0.01689886 0.277423 -0.01192054 -0.01192054 -0.02691519 -0.01192054 -0.02955665 0.1420361 -0.01192054 -0.01192054 -0.01192054 -0.02074697 -0.02074697 NA NA -0.01192054 -0.01192054 -0.01192054 -0.01192054 -0.01192054 NA NA -0.01192054 NA NA NA NA -0.01192054 0.4033116 -0.01192054 -0.01192054 0.2143203 0.2275193 0.5404555 0.4001846 0.3055483 0.2633059 0.3055483 0.3595612 0.04189312 0.1885188 0.1407833 0.4836326 0.4296949 0.1650246 0.4950738 0.3929916 0.3241484 0.2563336 0.4781469 0.2857278 0.282996 0.2275193 0.3779989 -0.04156492 0.5105124 0.3542154 0.3987409 0.4538776 0.2007096 0.1582151 0.2703442 0.2206055 0.2563336 0.4112501 0.4667868 0.4387142 0.3991732 0.2771315 0.2434814 0.2222306 NA 0.4803887 0.4967352 0.4306722 0.3055483 0.4785713 0.3403591 0.02310344 0.4982153 0.5665332 0.5409854 0.2584025 0.556958 0.3321056 0.531394 0.6037182 0.1955541 0.5325579 0.1955541 0.5283188 0.3027591 0.3416881 0.5284784 0.4967352 0.4597781 0.3433258 0.5283188 0.9147233 0.2330207 0.6303247 0.5756497 0.5404555 -0.02063204 0.4310337 0.4310337 0.3681267 0.2434113 0.3919633 0.41159 0.2970463 0.3416881 0.4055582 0.3681267 0.2584025 0.5261336 0.4542302 0.2139371 0.41159 0.2584025 0.2633059 0.3337485 0.3967764 0.3303361 0.4253316 0.4532386 0.3027591 0.3416881 0.5261336 0.1505438 0.2712196 0.4001846 0.2970463 0.5325579 0.556958 0.556958 0.3416881 0.6204183 0.3055483 NA 0.4542302 0.3403591 0.5792324 0.556958 0.3433258 0.5949484 0.4310337 0.4803887 0.2697985 0.3303361 0.2817795 0.2703442 0.2970463 0.26132 -0.0292485 -0.0292485 -0.02063204 0.4880044 0.2633059 0.3303361 0.3303361 0.2139371 0.2584025 0.26132 0.5073374 0.5261336 0.2330207 0.2330207 0.2139371 0.08618608 0.3681267 0.3303361 0.2817795 0.41159 0.2330207 0.3681267 0.1505438 0.4055582 0.3416881 0.1825026 0.3416881 -0.02063204 0.2139371 0.1112469 0.1505438 0.2584025 0.1825026 0.2330207 0.4055582 0.2584025 NA 0.3303361 0.1505438 0.4803887 NA 0.3337485 NA 0.2330207 0.2584025 0.321798 0.1505438 -0.0292485 NA 0.2584025 0.2330207 NA 0.1112469 0.2330207 0.2330207 0.1505438 0.3303361 0.2330207 0.2330207 0.1825026 0.2330207 0.3681267 0.3681267 0.2330207 0.2330207 0.2330207 0.2584025 0.2584025 NA NA 0.2330207 0.2330207 0.2330207 0.2330207 0.2330207 NA NA 0.2330207 NA NA NA NA 0.2330207 0.2330207 0.2330207 -0.02063204 -0.01383297 -0.01711299 0.1470871 0.2941742 0.3475533 0.4033116 -0.01383297 0.1630722 -0.01290749 -0.01928027 -0.01785714 -0.02555815 0.188108 -0.01634301 0.1470871 0.2192645 -0.01928027 0.2493582 0.1425219 0.2692308 -0.0212857 -0.01711299 -0.01711299 -0.009685486 0.1287292 0.2021519 -0.02438236 -0.02192645 0.2131495 0.2258649 -0.01857869 -0.0212857 -0.01928027 -0.02378257 0.1661489 0.2131495 0.1601282 -0.024974 -0.0199641 -0.024974 NA -0.01857869 0.1925079 0.2692308 -0.01383297 -0.01634301 -0.01857869 -0.01470871 0.2131495 0.1971791 -0.0231739 -0.008367493 -0.01634301 -0.02192645 0.144764 -0.01711299 -0.01470871 -0.0212857 0.3268602 -0.01290749 0.2809382 -0.009685486 0.2809382 0.1925079 0.2493582 0.3093106 0.3724732 0.2131495 1 0.1839531 -0.02192645 -0.01470871 -0.004807692 -0.01290749 -0.01290749 -0.01192054 -0.01634301 -0.01928027 -0.01085521 -0.01085521 -0.009685486 -0.008367493 0.4033116 -0.008367493 -0.01085521 -0.01470871 -0.009685486 -0.01085521 -0.008367493 -0.01192054 -0.01290749 -0.01383297 -0.006815507 -0.01554325 -0.01711299 -0.01711299 -0.009685486 -0.01085521 -0.006815507 -0.02192645 -0.01634301 -0.01085521 -0.0212857 -0.01634301 -0.01634301 -0.009685486 0.2587746 -0.01383297 NA -0.01470871 -0.01857869 -0.01383297 0.2941742 -0.01554325 0.2258649 -0.01290749 -0.01857869 0.1661489 -0.006815507 -0.01470871 -0.01857869 -0.01085521 0.3093106 -0.006815507 -0.006815507 -0.004807692 -0.01383297 -0.01192054 -0.006815507 -0.006815507 -0.009685486 0.5745678 -0.01554325 -0.01554325 -0.01085521 -0.004807692 -0.004807692 -0.009685486 -0.009685486 -0.01192054 -0.006815507 -0.01470871 -0.01085521 -0.004807692 -0.01192054 -0.006815507 -0.008367493 -0.009685486 -0.01085521 -0.009685486 -0.004807692 0.4963811 -0.008367493 -0.006815507 -0.008367493 -0.01085521 -0.004807692 -0.008367493 -0.008367493 NA -0.006815507 -0.006815507 0.2587746 NA -0.01290749 NA 1 -0.008367493 0.2941742 -0.006815507 -0.006815507 NA -0.008367493 -0.004807692 NA -0.008367493 -0.004807692 -0.004807692 -0.006815507 -0.006815507 -0.004807692 -0.004807692 -0.01085521 -0.004807692 -0.01192054 -0.01192054 -0.004807692 -0.004807692 -0.004807692 -0.008367493 -0.008367493 NA NA -0.004807692 -0.004807692 -0.004807692 -0.004807692 -0.004807692 NA NA -0.004807692 NA NA NA NA -0.004807692 -0.004807692 -0.004807692 -0.004807692 -0.03713815 0.2969965 0.3259435 0.1943125 0.3786765 0.127253 0.1014667 0.3639577 0.1131542 0.360368 0.3924929 0.4230754 0.3411266 0.3134073 0.3259435 0.4036608 0.360368 0.1543026 0.3150365 0.2823842 0.2272271 0.4113101 0.2969965 -0.02600318 0.2819101 0.1961121 0.3594241 0.4961663 0.2106485 0.2272271 0.2692462 0.4168098 0.360368 0.4560745 0.296425 0.30105 0.3569749 0.2666001 0.3464776 0.2666001 NA 0.5883717 0.516837 0.2823842 0.3786765 0.07521774 0.3756214 0.2225192 0.3914515 0.3594241 0.3800695 0.2011124 0.432502 0.4036608 0.3886561 0.4113101 0.2225192 0.4168098 0.2225192 0.4087694 0.4113101 0.168092 0.2969965 0.4334247 0.2573353 0.207457 0.4087694 0.481853 -0.01290749 0.4938695 0.4961663 0.3535234 -0.01290749 0.2609618 0.2609618 0.2865098 0.432502 0.360368 0.3189143 0.1448853 0.3621871 0.4246895 0.4457666 0.4246895 0.3189143 0.2225192 0.3621871 0.1448853 0.4246895 0.2865098 0.2609618 0.3786765 0.5280274 0.7058306 0.2969965 0.182683 0.3621871 0.4929432 -0.01829798 0.3111552 0.3134073 0.3189143 0.3220184 0.432502 0.3134073 0.3621871 0.4819966 0.3786765 NA 0.2225192 0.3756214 0.5172814 0.432502 0.207457 0.4168098 0.2609618 0.2692462 0.07195824 0.5280274 0.2225192 0.1628711 0.1448853 -0.04172985 0.2548647 -0.01829798 -0.01290749 0.2400716 0.4457666 0.2548647 0.5280274 0.168092 0.2011124 0.3320504 0.3320504 0.4929432 0.3724732 -0.01290749 0.168092 0.168092 0.2865098 0.2548647 0.3535234 0.1448853 -0.01290749 0.127253 -0.01829798 0.4246895 -0.02600318 -0.0291436 -0.02600318 -0.01290749 -0.02600318 -0.02246469 -0.01829798 0.4246895 -0.0291436 -0.01290749 0.4246895 0.2011124 NA 0.5280274 0.2548647 0.0564959 NA 0.2609618 NA -0.01290749 0.2011124 0.3134073 -0.01829798 -0.01829798 NA 0.2011124 0.3724732 NA 0.4246895 0.3724732 0.3724732 0.2548647 0.5280274 0.3724732 0.3724732 -0.0291436 0.3724732 0.2865098 0.2865098 0.3724732 -0.01290749 0.3724732 0.4246895 -0.02246469 NA NA -0.01290749 0.3724732 0.3724732 0.3724732 0.3724732 NA NA -0.01290749 NA NA NA NA 0.3724732 0.3724732 -0.01290749 -0.01290749 0.08052696 0.1502802 0.3277778 0.2666667 0.3262223 0.1046819 0.2033747 0.2370817 0.2225192 0.2149722 0.238141 0.2849697 0.2123372 0.2666667 0.1444444 0.2608746 0.2149722 0.1236527 0.2562878 0.238141 0.1869234 0.2515981 0.2515981 -0.02963189 0.22447 0.1576482 0.22667 0.3428638 0.1713663 0.2709385 0.2260061 0.2709385 0.3062917 0.4648599 0.2430534 0.1713663 0.29598 0.1453832 0.2048671 0.1453832 NA 0.3202881 0.5150313 0.3357321 0.44907 0.2666667 0.3202881 0.1872222 0.2514906 0.4526192 0.3995074 0.3707202 0.3722222 0.3428638 0.2613935 0.454234 0.1872222 0.4389686 0.1872222 0.4845276 0.1502802 0.1423977 0.1502802 0.4411017 0.3976112 0.06287589 0.2225192 0.4918634 -0.01470871 0.3485393 0.6708204 0.1872222 -0.01470871 0.3535234 0.3535234 0.3869855 0.4777778 0.3062917 0.4295232 0.2752786 0.3144273 0.5688801 0.5281373 0.5688801 0.2752786 0.1872222 0.3144273 0.4295232 0.3707202 0.2458337 0.2225192 0.44907 0.4633654 0.6150213 0.352916 0.2515981 0.3144273 0.4295232 -0.02085144 0.2608746 0.2666667 0.2752786 0.4389686 0.3722222 0.4777778 0.4864568 0.4145701 0.2033747 NA 0.3033333 0.4145701 0.3262223 0.3722222 0.2837341 0.6069987 0.3535234 0.3202881 0.1767373 0.4633654 0.3033333 0.2260061 0.4295232 0.06287589 -0.02085144 -0.02085144 -0.01470871 0.08052696 0.5281373 0.221257 0.4633654 0.3144273 0.1725603 0.173305 0.2837341 0.5837678 0.3268602 -0.01470871 0.4864568 0.1423977 0.3869855 0.221257 0.3033333 0.121034 -0.01470871 0.2458337 -0.02085144 0.3707202 -0.02963189 -0.03321056 -0.02963189 -0.01470871 -0.02963189 -0.02559961 -0.02085144 0.3707202 0.121034 0.3268602 0.3707202 0.5688801 NA 0.4633654 0.221257 0.2260061 NA 0.3535234 NA -0.01470871 0.1725603 0.2666667 0.221257 -0.02085144 NA 0.1725603 0.3268602 NA 0.1725603 0.3268602 0.3268602 0.221257 0.4633654 0.3268602 0.3268602 0.2752786 0.3268602 0.5281373 0.3869855 0.3268602 -0.01470871 0.3268602 0.3707202 -0.02559961 NA NA -0.01470871 0.3268602 0.3268602 0.3268602 0.3268602 NA NA 0.3268602 NA NA NA NA 0.3268602 0.3268602 -0.01470871 -0.01470871 -0.03123323 0.3651399 0.2509242 0.3837665 0.4583476 0.3481032 0.1319604 0.2812451 -0.0291436 0.1990891 0.2189651 0.2317527 0.2317527 0.1033217 0.2509242 0.3861575 0.1990891 0.07777826 0.321798 0.2189651 0.06354684 0.2305469 0.2305469 -0.0218687 0.2906555 0.1503552 0.1450515 0.2772413 0.1619501 0.1751543 0.2085441 0.1751543 0.07777826 0.252382 0.1989533 0.2683889 0.2756825 0.1400312 0.1904487 0.1400312 NA 0.3337904 0.4346605 0.2189651 0.295154 0.1033217 0.08329777 -0.03321056 0.3748278 0.3451555 0.3642745 0.2443472 0.3837665 0.2772413 0.3268602 0.3651399 0.121034 0.2867618 0.121034 0.3189143 0.3651399 0.2066592 0.3651399 0.3364507 0.3204 0.2582981 0.3189143 0.4812667 0.4428926 0.4153448 0.3861575 0.4295232 -0.01085521 0.1448853 0.1448853 0.160594 0.2435441 0.3204 0.1803922 0.1803922 0.2066592 0.2443472 0.3481032 0.2443472 0.1803922 0.121034 0.2066592 0.1803922 0.2443472 0.160594 0.3189143 0.1319604 0.3062336 0.4049946 0.2305469 0.09595386 0.2066592 0.3852941 -0.01538862 0.1683251 0.2435441 0.1803922 0.2867618 0.3837665 0.3837665 0.2066592 0.5842829 0.295154 NA 0.121034 0.3337904 0.4583476 0.5239888 0.1116016 0.3983692 0.1448853 0.2085441 0.0227616 0.3062336 0.121034 0.08329777 0.1803922 0.1116016 -0.01538862 -0.01538862 -0.01085521 0.295154 0.3481032 0.3062336 0.6278558 0.2066592 0.5075873 0.1116016 0.2582981 0.5901961 0.4428926 -0.01085521 -0.0218687 -0.0218687 0.160594 0.3062336 0.2752786 0.1803922 -0.01085521 0.160594 -0.01538862 0.5075873 -0.0218687 -0.0245098 -0.0218687 -0.01085521 0.2066592 -0.01889283 -0.01538862 0.2443472 -0.0245098 -0.01085521 0.2443472 -0.01889283 NA 0.3062336 0.3062336 0.2085441 NA 0.1448853 NA 0.4428926 -0.01889283 0.2435441 -0.01538862 -0.01538862 NA 0.2443472 0.4428926 NA 0.2443472 0.4428926 0.4428926 0.3062336 0.3062336 0.4428926 0.4428926 -0.0245098 0.4428926 0.3481032 0.160594 0.4428926 -0.01085521 0.4428926 0.5075873 -0.01889283 NA NA -0.01085521 0.4428926 0.4428926 0.4428926 0.4428926 NA NA -0.01085521 NA NA NA NA 0.4428926 -0.01085521 -0.01085521 -0.01085521 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 0.1319604 0.09595386 0.3321056 0.1033217 -0.03123323 -0.02691519 0.295154 0.1942921 0.1448853 0.07777826 0.08932288 0.3282393 0.3282393 0.2435441 0.1697429 0.1683251 0.1990891 0.07777826 0.321798 0.2189651 0.1751543 0.2305469 0.2305469 -0.0218687 0.2906555 0.252382 0.2451035 0.3861575 0.1619501 0.2867618 0.08329777 0.2867618 0.3204 0.3544087 0.2870491 0.1619501 0.2756825 0.2382409 0.3082113 0.2382409 NA 0.2085441 0.3364507 0.3486073 0.1319604 0.2435441 0.4590366 0.2752786 0.3748278 0.3451555 0.3642745 0.2443472 0.3837665 0.05940885 0.3268602 0.2305469 -0.03321056 0.2867618 0.121034 0.3189143 -0.03863914 -0.0218687 -0.03863914 0.2382409 0.3204 -0.03509485 0.1448853 0.3748278 -0.01085521 0.2256026 0.2772413 0.121034 -0.01085521 0.4929432 0.1448853 0.160594 0.2435441 0.1990891 0.1803922 -0.0245098 0.2066592 0.5075873 0.160594 0.2443472 0.1803922 0.121034 0.2066592 0.1803922 0.2443472 0.3481032 0.1448853 0.1319604 0.3062336 0.4049946 0.3651399 0.3651399 0.2066592 0.1803922 -0.01538862 0.2772413 0.2435441 0.1803922 0.2867618 0.3837665 0.2435441 0.2066592 0.2085441 0.1319604 NA 0.121034 0.2085441 0.295154 0.3837665 0.2582981 0.2867618 0.1448853 0.3337904 0.2870491 0.3062336 0.2752786 0.3337904 0.3852941 0.1116016 -0.01538862 -0.01538862 -0.01085521 -0.03123323 -0.02691519 -0.01538862 0.3062336 -0.0218687 0.2443472 -0.03509485 0.1116016 0.3852941 0.4428926 -0.01085521 0.2066592 -0.0218687 0.5356124 0.3062336 0.2752786 -0.0245098 -0.01085521 0.160594 -0.01538862 0.2443472 -0.0218687 -0.0245098 -0.0218687 -0.01085521 -0.0218687 -0.01889283 -0.01538862 -0.01889283 0.1803922 0.4428926 0.2443472 0.2443472 NA 0.3062336 0.3062336 0.08329777 NA 0.6669722 NA -0.01085521 0.2443472 0.5239888 0.3062336 -0.01538862 NA 0.2443472 -0.01085521 NA -0.01889283 -0.01085521 -0.01085521 -0.01538862 0.3062336 -0.01085521 -0.01085521 0.1803922 -0.01085521 0.160594 0.5356124 0.4428926 -0.01085521 0.4428926 -0.01889283 -0.01889283 NA NA -0.01085521 0.4428926 -0.01085521 -0.01085521 -0.01085521 NA NA -0.01085521 NA NA NA NA -0.01085521 0.4428926 -0.01085521 -0.01085521 -0.01960996 0.1870027 -0.04633654 0.1969303 0.2365452 0.277423 0.2365452 0.09469046 -0.01829798 0.1630821 0.1781768 0.1152174 0.1152174 0.1969303 0.08108894 0.1398757 0.1630821 -0.0273322 0.07711097 0.1781768 0.1450083 0.1870027 0.1870027 -0.01373039 0.06477259 0.1264304 0.1224805 0.1398757 0.1350954 0.1450083 0.1702539 0.1450083 0.1630821 0.1264304 0.09725822 0.1350954 0.09221946 0.1187502 0.1565433 0.1187502 NA -0.02633762 0.1187502 0.1781768 0.2365452 0.1969303 0.1702539 -0.02085144 0.1350954 0.1224805 0.1306254 0.40133 0.1969303 0.1398757 0.07907048 -0.02425981 0.221257 0.1450083 -0.02085144 -0.01829798 0.1870027 -0.01373039 -0.02425981 0.1187502 -0.0273322 -0.0220345 -0.01829798 0.1350954 -0.006815507 0.1118632 0.1398757 -0.02085144 -0.006815507 -0.01829798 0.2548647 0.277423 0.1969303 0.1630821 -0.01538862 0.3062336 -0.01373039 0.40133 -0.01689886 -0.01186197 0.3062336 0.221257 -0.01373039 0.3062336 -0.01186197 -0.01689886 -0.01829798 0.2365452 -0.009661836 0.2082261 -0.02425981 -0.02425981 0.7036825 0.3062336 -0.009661836 -0.03108349 -0.02316827 -0.01538862 0.1450083 -0.02316827 0.1969303 -0.01373039 0.1702539 -0.01960996 NA 0.221257 0.1702539 -0.01960996 -0.02316827 -0.0220345 -0.03017515 0.2548647 -0.02633762 0.09725822 -0.009661836 -0.02085144 -0.02633762 -0.01538862 -0.0220345 -0.009661836 -0.009661836 -0.006815507 -0.01960996 0.277423 0.4951691 0.4951691 0.3449761 -0.01186197 0.2082261 0.2082261 0.3062336 -0.006815507 -0.006815507 -0.01373039 -0.01373039 -0.01689886 -0.009661836 -0.02085144 -0.01538862 -0.006815507 -0.01689886 -0.009661836 0.40133 -0.01373039 -0.01538862 -0.01373039 -0.006815507 -0.01373039 -0.01186197 -0.009661836 -0.01186197 -0.01538862 -0.006815507 -0.01186197 -0.01186197 NA -0.009661836 -0.009661836 0.1702539 NA -0.01829798 NA -0.006815507 -0.01186197 -0.02316827 -0.009661836 -0.009661836 NA -0.01186197 -0.006815507 NA -0.01186197 -0.006815507 -0.006815507 -0.009661836 -0.009661836 -0.006815507 -0.006815507 -0.01538862 -0.006815507 -0.01689886 -0.01689886 -0.006815507 -0.006815507 -0.006815507 0.40133 -0.01186197 NA NA -0.006815507 -0.006815507 -0.006815507 0.705405 -0.006815507 NA NA -0.006815507 NA NA NA NA -0.006815507 -0.006815507 -0.006815507 -0.006815507 0.09017413 0.2723502 0.293894 0.2880161 0.2201493 0.1150427 0.3501244 0.3999472 0.1014667 0.1377611 0.1551268 0.4643885 0.3106954 0.3996958 0.293894 0.2838961 0.2343789 0.04114343 0.4100722 0.3616332 0.3832029 0.165154 0.2723502 -0.02786763 0.3106562 0.3378661 0.3282765 0.5441343 0.2741939 0.2943135 0.1460485 0.2943135 0.2343789 0.500384 0.267562 0.1894209 0.3239507 0.1628001 0.3177251 0.241019 NA 0.1460485 0.3974569 0.3616332 0.4800995 0.2880161 0.4453047 0.2033747 0.3589669 0.4876488 0.4310208 0.3952382 0.2880161 0.2838961 0.3525133 0.2723502 0.08052696 0.6498714 0.08052696 0.3786765 0.05795777 0.1541428 0.05795777 0.319238 0.2343789 -0.04472192 0.1014667 0.4437398 -0.01383297 0.3781607 0.3706422 0.08052696 -0.01383297 0.2400716 0.3786765 0.4137251 0.5113756 0.2343789 0.4583476 0.4583476 0.3361533 0.6048951 0.4137251 0.6048951 0.295154 0.3262223 0.3361533 0.4583476 0.3952382 0.4137251 0.1014667 0.3501244 0.4927003 0.4226221 0.4867427 0.3795465 0.3361533 0.4583476 -0.01960996 0.2838961 0.1763364 0.295154 0.5609819 0.2880161 0.2880161 0.5181637 0.2458006 0.09017413 NA 0.3262223 0.2458006 0.2201493 0.2880161 0.1889501 0.2943135 0.5172814 0.5450568 0.1973983 0.4927003 0.2033747 0.3455526 0.1319604 -0.04472192 -0.01960996 -0.01960996 -0.01383297 0.09017413 0.2643839 0.2365452 0.2365452 0.3361533 -0.02407543 0.07211409 0.5394581 0.4583476 -0.01383297 -0.01383297 0.3361533 -0.02786763 0.5630663 -0.01960996 0.2033747 0.295154 -0.01383297 0.1150427 -0.01960996 0.1855814 -0.02786763 -0.03123323 -0.02786763 -0.01383297 -0.02786763 -0.02407543 -0.01960996 0.1855814 0.1319604 0.3475533 0.3952382 0.3952382 NA 0.4927003 -0.01960996 0.4453047 NA 0.5172814 NA -0.01383297 0.1855814 0.1763364 0.2365452 -0.01960996 NA -0.02407543 0.3475533 NA 0.1855814 0.3475533 0.3475533 0.2365452 0.4927003 0.3475533 0.3475533 0.295154 0.3475533 0.2643839 0.2643839 -0.01383297 -0.01383297 -0.01383297 0.3952382 -0.02407543 NA NA -0.01383297 -0.01383297 0.3475533 0.3475533 0.3475533 NA NA -0.01383297 NA NA NA NA 0.3475533 0.3475533 -0.01383297 -0.01383297 0.1551268 0.1919099 0.2895048 0.2941742 0.1551268 0.1929992 0.25838 0.2756039 0.1722754 0.2354029 0.2617739 0.332402 0.2103071 0.205455 0.238141 0.2631174 0.2354029 0.08189524 0.327933 0.1797488 0.2740111 0.2770674 0.1919099 0.1086158 0.2883351 0.1698755 0.2259533 0.2631174 0.1855995 0.2033967 0.1687248 0.2740111 0.3889106 0.3635336 0.171216 0.1855995 0.2687865 0.1557902 0.2983919 0.2179279 NA 0.2479686 0.4043409 0.2617739 0.5681397 0.205455 0.2479686 0.1405499 0.2529438 0.2892566 0.2434047 0.3020266 0.2941742 0.1942057 0.2325956 0.2770674 0.04295877 0.3446256 0.1405499 0.3924929 0.1919099 0.1086158 0.02159496 0.3422032 0.3121567 -0.05773207 0.06216667 0.2529438 -0.01785714 0.2630774 0.4009408 0.1405499 0.2692308 0.2823842 0.2823842 0.311637 0.8264894 0.2354029 0.3486073 0.2189651 0.2532063 0.4685796 0.311637 0.4685796 0.2189651 0.1405499 0.2532063 0.3486073 0.3020266 0.1929992 0.1722754 0.25838 0.3816684 0.5919757 0.2770674 0.1919099 0.2532063 0.3486073 -0.02531474 0.4009408 0.205455 0.2189651 0.3446256 0.2941742 0.2941742 0.3977967 0.2479686 0.25838 NA 0.238141 0.2479686 0.25838 0.2941742 0.3135295 0.2740111 0.2823842 0.2479686 0.171216 0.3816684 0.238141 0.1687248 0.2189651 -0.05773207 0.1781768 -0.02531474 -0.01785714 0.05187362 0.1929992 0.1781768 0.3816684 0.2532063 0.1354737 0.1278987 0.3135295 0.4782496 0.2692308 -0.01785714 0.2532063 -0.03597466 0.311637 0.1781768 0.238141 0.08932288 -0.01785714 0.1929992 -0.02531474 0.3020266 -0.03597466 -0.04031935 -0.03597466 0.2692308 -0.03597466 -0.03107926 -0.02531474 0.1354737 0.08932288 0.2692308 0.3020266 0.3020266 NA 0.3816684 0.1781768 0.1687248 NA 0.2823842 NA -0.01785714 0.1354737 0.205455 0.1781768 0.1781768 NA 0.1354737 0.2692308 NA 0.3020266 0.2692308 0.2692308 0.1781768 0.3816684 0.2692308 0.2692308 0.2189651 0.2692308 0.311637 0.311637 0.2692308 -0.01785714 0.2692308 0.3020266 -0.03107926 NA NA -0.01785714 0.2692308 0.2692308 0.2692308 0.2692308 NA NA -0.01785714 NA NA NA NA 0.2692308 0.2692308 -0.01785714 -0.01785714 0.08052696 0.2515981 0.3277778 0.3722222 0.2033747 0.3869855 0.3262223 0.3025375 -0.03948931 0.03233322 0.04295877 0.2123372 0.2849697 0.1611111 0.3277778 0.2608746 0.03233322 0.2149722 0.3761181 0.3357321 0.1869234 0.04896225 0.1502802 -0.02963189 0.2809252 0.3112541 0.3773028 0.3428638 0.091242 0.1869234 0.1317241 0.1029084 0.2149722 0.388057 0.3093695 0.091242 0.3606193 0.3671721 0.2048671 0.1453832 NA 0.3202881 0.4411017 0.238141 0.44907 0.1611111 0.4145701 0.1872222 0.2514906 0.3019864 0.3995074 0.1725603 0.5833333 0.4248529 0.3218932 0.352916 0.1872222 0.4389686 0.1872222 0.4845276 0.1502802 0.1423977 0.2515981 0.3671721 0.3976112 0.173305 0.2225192 0.3316148 -0.01470871 0.491372 0.3428638 0.3033333 -0.01470871 0.3535234 0.3535234 0.3869855 0.2666667 0.7628892 0.4295232 0.2752786 0.3144273 0.3707202 0.3869855 0.3707202 0.4295232 0.4194444 0.4864568 0.2752786 0.3707202 0.3869855 0.3535234 0.3262223 0.4633654 0.5045923 0.352916 0.2515981 0.4864568 0.5837678 0.4633654 0.3428638 0.2666667 0.4295232 0.5229836 0.3722222 0.3722222 0.4864568 0.3202881 0.2033747 NA 0.3033333 0.4145701 0.44907 0.3722222 0.2837341 0.2709385 0.3535234 0.3202881 0.1767373 0.4633654 0.3033333 0.3202881 0.121034 0.06287589 -0.02085144 0.221257 -0.01470871 0.2033747 0.2458337 0.4633654 0.4633654 0.1423977 0.3707202 0.2837341 0.2837341 0.4295232 0.3268602 -0.01470871 0.1423977 0.1423977 0.3869855 0.221257 0.4194444 0.2752786 -0.01470871 0.2458337 0.221257 0.3707202 0.1423977 0.2752786 0.1423977 -0.01470871 0.3144273 0.3707202 0.4633654 0.1725603 0.121034 -0.01470871 0.3707202 0.1725603 NA 0.4633654 0.221257 0.2260061 NA 0.2225192 NA -0.01470871 0.5688801 0.05555556 -0.02085144 -0.02085144 NA 0.1725603 0.3268602 NA 0.1725603 0.3268602 0.3268602 0.221257 0.4633654 0.3268602 0.3268602 0.2752786 0.3268602 0.2458337 0.5281373 0.3268602 -0.01470871 0.3268602 0.3707202 0.1725603 NA NA -0.01470871 0.3268602 0.3268602 0.3268602 0.3268602 NA NA -0.01470871 NA NA NA NA 0.3268602 0.3268602 -0.01470871 -0.01470871 -0.039801 0.165154 0.3585507 0.2880161 0.2201493 0.1150427 0.2201493 0.2614402 -0.03713815 0.2343789 0.1551268 0.3875419 0.1570023 0.1763364 0.3585507 0.2838961 0.3309966 0.1377611 0.2832895 0.1551268 0.205424 0.165154 0.165154 -0.02786763 0.2509256 0.1753482 0.2485903 0.2838961 0.104648 0.1165345 0.1460485 0.2943135 0.2343789 0.419125 0.267562 0.2741939 0.3923402 0.1628001 0.2239334 0.08458122 NA 0.4453047 0.4756758 0.3616332 0.4800995 0.3996958 0.2458006 0.08052696 0.1894209 0.3282765 0.2651215 0.1855814 0.3996958 0.3706422 0.3525133 0.3795465 0.2033747 0.3832029 0.08052696 0.5172814 0.165154 0.3361533 0.2723502 0.3974569 0.2343789 0.07211409 0.2400716 0.4437398 -0.01383297 0.3781607 0.3706422 0.2033747 -0.01383297 0.2400716 0.5172814 0.5630663 0.5113756 0.3309966 0.6215413 0.295154 0.5181637 0.3952382 0.4137251 0.6048951 0.4583476 0.3262223 0.3361533 0.295154 0.3952382 0.2643839 0.2400716 0.4800995 0.4927003 0.4226221 0.3795465 0.165154 0.3361533 0.6215413 -0.01960996 0.3706422 0.3996958 0.295154 0.3832029 0.2880161 0.2880161 0.5181637 0.4453047 0.3501244 NA 0.44907 0.3455526 0.3501244 0.2880161 0.3057861 0.3832029 0.3786765 0.3455526 0.267562 0.4927003 0.3262223 0.2458006 -0.03123323 -0.04472192 0.2365452 -0.01960996 -0.01383297 0.2201493 0.2643839 0.2365452 0.2365452 0.3361533 -0.02407543 0.3057861 0.4226221 0.4583476 -0.01383297 -0.01383297 0.3361533 -0.02786763 0.2643839 0.2365452 0.2033747 0.1319604 -0.01383297 0.2643839 -0.01960996 0.1855814 0.1541428 0.1319604 0.3361533 -0.01383297 -0.02786763 -0.02407543 -0.01960996 0.3952382 -0.03123323 -0.01383297 0.3952382 0.3952382 NA 0.4927003 -0.01960996 0.2458006 NA 0.1014667 NA -0.01383297 0.1855814 0.06465668 -0.01960996 -0.01960996 NA 0.1855814 0.3475533 NA 0.3952382 0.3475533 0.3475533 0.2365452 0.4927003 0.3475533 0.3475533 0.1319604 0.3475533 0.2643839 0.2643839 -0.01383297 0.3475533 -0.01383297 0.3952382 0.1855814 NA NA -0.01383297 -0.01383297 0.3475533 0.3475533 0.3475533 NA NA -0.01383297 NA NA NA NA 0.3475533 0.3475533 0.3475533 -0.01383297 -0.03123323 0.2305469 0.1697429 0.1033217 0.1319604 0.160594 0.295154 0.3681981 -0.0291436 0.07777826 0.08932288 0.424726 0.3282393 0.5239888 0.3321056 0.1683251 0.1990891 -0.04353261 0.321798 0.4782496 0.3983692 0.09595386 0.2305469 -0.0218687 0.2906555 0.4564355 0.3451555 0.4950738 0.2683889 0.2867618 0.08329777 0.1751543 0.07777826 0.3544087 0.2870491 0.2683889 0.1898142 0.1400312 0.1904487 0.3364507 NA -0.04194852 0.2382409 0.2189651 0.1319604 0.2435441 0.3337904 0.121034 0.4812667 0.3451555 0.3642745 0.2443472 0.1033217 0.05940885 0.3268602 -0.03863914 0.121034 0.5099767 -0.03321056 -0.0291436 0.09595386 -0.0218687 -0.03863914 0.04182139 -0.04353261 -0.03509485 -0.0291436 0.2683889 -0.01085521 0.2256026 0.1683251 -0.03321056 -0.01085521 -0.0291436 0.1448853 0.3481032 0.1033217 0.1990891 -0.0245098 0.5901961 -0.0218687 0.2443472 -0.02691519 -0.01889283 0.1803922 0.4295232 -0.0218687 0.1803922 -0.01889283 0.3481032 -0.0291436 0.1319604 -0.01538862 0.1116016 0.3651399 0.3651399 0.2066592 0.1803922 -0.01538862 0.1683251 -0.03690062 -0.0245098 0.3983692 -0.03690062 0.1033217 -0.0218687 0.08329777 -0.03123323 NA 0.2752786 0.08329777 -0.03123323 0.1033217 -0.03509485 -0.04806063 0.3189143 0.4590366 0.0227616 -0.01538862 -0.03321056 0.3337904 -0.0245098 -0.03509485 -0.01538862 -0.01538862 -0.01085521 -0.03123323 0.160594 0.3062336 0.3062336 0.2066592 -0.01889283 0.1116016 0.4049946 0.1803922 -0.01085521 -0.01085521 -0.0218687 -0.0218687 0.160594 -0.01538862 -0.03321056 0.3852941 -0.01085521 -0.02691519 -0.01538862 0.2443472 -0.0218687 -0.0245098 -0.0218687 -0.01085521 -0.0218687 -0.01889283 -0.01538862 -0.01889283 0.1803922 -0.01085521 -0.01889283 -0.01889283 NA -0.01538862 -0.01538862 0.4590366 NA 0.4929432 NA -0.01085521 -0.01889283 0.1033217 -0.01538862 -0.01538862 NA -0.01889283 -0.01085521 NA -0.01889283 -0.01085521 -0.01085521 -0.01538862 -0.01538862 -0.01085521 -0.01085521 -0.0245098 -0.01085521 -0.02691519 -0.02691519 -0.01085521 -0.01085521 -0.01085521 0.2443472 -0.01889283 NA NA -0.01085521 -0.01085521 -0.01085521 0.4428926 -0.01085521 NA NA -0.01085521 NA NA NA NA -0.01085521 -0.01085521 -0.01085521 -0.01085521 -0.02407543 0.1431292 0.2559961 0.1517014 0.3952382 -0.02074697 -0.02407543 0.2838172 0.2011124 0.1222934 0.1354737 0.3273904 0.2034328 0.1517014 0.2559961 0.2416904 0.1222934 0.1222934 0.145797 0.1354737 0.106337 0.1431292 0.1431292 -0.01685699 0.2240452 0.0896829 0.2146401 0.3816164 0.09748687 0.2497205 0.1285704 0.2497205 0.278143 0.3518329 0.1759942 0.09748687 0.2786932 0.2088769 0.1165448 0.08270559 NA 0.4503813 0.3350482 0.3020266 0.3952382 -0.02844401 0.2894758 0.1725603 0.09748687 0.3431781 0.2272718 -0.01456311 0.3318467 0.3816164 0.2519528 0.3160424 0.1725603 0.393104 0.3707202 0.4246895 0.1431292 0.2767356 0.3160424 0.3350482 0.278143 0.1614107 0.4246895 0.3709735 -0.008367493 0.3201591 0.3816164 0.1725603 -0.008367493 0.2011124 0.2011124 0.2201484 0.3318467 0.278143 0.5075873 -0.01889283 0.5703282 0.3236246 0.7019391 0.6618123 0.2443472 0.1725603 0.5703282 -0.01889283 0.6618123 0.4610437 0.2011124 0.3952382 0.814522 0.5383362 0.3160424 0.1431292 0.2767356 0.5075873 -0.01186197 0.2416904 0.3318467 0.5075873 0.2497205 0.3318467 -0.02844401 0.5703282 0.2894758 0.1855814 NA 0.1725603 0.2894758 0.3952382 0.3318467 0.1614107 0.393104 0.2011124 0.2894758 0.1759942 0.814522 0.1725603 0.1285704 -0.01889283 -0.02705207 -0.01186197 -0.01186197 -0.008367493 0.1855814 0.4610437 -0.01186197 -0.01186197 -0.01685699 -0.01456311 0.1614107 0.1614107 0.2443472 -0.008367493 -0.008367493 0.2767356 0.2767356 0.4610437 -0.01186197 0.3707202 0.2443472 -0.008367493 -0.02074697 -0.01186197 -0.01456311 -0.01685699 -0.01889283 -0.01685699 -0.008367493 -0.01685699 -0.01456311 -0.01186197 0.6618123 -0.01889283 -0.008367493 0.6618123 0.3236246 NA 0.814522 -0.01186197 -0.03233506 NA 0.2011124 NA -0.008367493 0.3236246 0.1517014 -0.01186197 -0.01186197 NA -0.01456311 0.5745678 NA 0.3236246 0.5745678 0.5745678 0.40133 0.814522 0.5745678 0.5745678 -0.01889283 0.5745678 0.2201484 0.2201484 -0.008367493 -0.008367493 -0.008367493 0.3236246 -0.01456311 NA NA -0.008367493 -0.008367493 0.5745678 -0.008367493 0.5745678 NA NA -0.008367493 NA NA NA NA 0.5745678 0.5745678 -0.008367493 -0.008367493 0.2365452 0.1870027 0.08108894 0.4170288 0.2365452 0.277423 0.4927003 0.2311753 0.2548647 0.3534965 0.3816684 0.2666667 0.2666667 0.4170288 0.08108894 0.3108349 0.3534965 0.1630821 0.2020427 0.3816684 0.3201918 0.3982652 0.3982652 -0.01373039 0.1824897 0.2865757 0.2795261 0.3108349 0.3021661 0.3201918 0.3668454 0.3201918 0.3534965 0.2865757 0.2355369 0.3021661 0.2270017 0.1187502 0.3413882 0.2729041 NA -0.02633762 0.2729041 0.3816684 0.2365452 0.4170288 0.3668454 0.221257 0.3021661 0.2795261 0.2941028 0.814522 0.1969303 0.1398757 0.2052211 -0.02425981 0.221257 0.3201918 -0.02085144 -0.01829798 0.1870027 -0.01373039 -0.02425981 0.2729041 0.1630821 -0.0220345 -0.01829798 0.3021661 -0.006815507 0.2607766 0.3108349 -0.02085144 -0.006815507 -0.01829798 0.2548647 0.277423 0.4170288 0.1630821 -0.01538862 0.3062336 -0.01373039 0.814522 -0.01689886 -0.01186197 0.3062336 0.221257 -0.01373039 0.6278558 -0.01186197 -0.01689886 -0.01829798 0.2365452 -0.009661836 0.4384866 -0.02425981 -0.02425981 0.3449761 0.3062336 -0.009661836 -0.03108349 -0.02316827 -0.01538862 0.3201918 0.1969303 0.4170288 -0.01373039 0.1702539 -0.01960996 NA 0.221257 0.1702539 -0.01960996 0.1969303 -0.0220345 0.1450083 0.2548647 -0.02633762 0.09725822 -0.009661836 -0.02085144 -0.02633762 0.3062336 -0.0220345 -0.009661836 -0.009661836 -0.006815507 -0.01960996 0.277423 0.4951691 0.4951691 0.3449761 -0.01186197 0.2082261 0.2082261 0.6278558 -0.006815507 -0.006815507 -0.01373039 -0.01373039 0.277423 -0.009661836 -0.02085144 -0.01538862 -0.006815507 -0.01689886 -0.009661836 0.40133 -0.01373039 -0.01538862 -0.01373039 -0.006815507 -0.01373039 -0.01186197 -0.009661836 -0.01186197 0.3062336 0.705405 -0.01186197 -0.01186197 NA -0.009661836 -0.009661836 0.3668454 NA 0.2548647 NA -0.006815507 -0.01186197 0.1969303 0.4951691 -0.009661836 NA -0.01186197 -0.006815507 NA -0.01186197 -0.006815507 -0.006815507 -0.009661836 -0.009661836 -0.006815507 -0.006815507 0.3062336 -0.006815507 -0.01689886 -0.01689886 -0.006815507 -0.006815507 -0.006815507 0.40133 -0.01186197 NA NA -0.006815507 -0.006815507 -0.006815507 0.705405 -0.006815507 NA NA -0.006815507 NA NA NA NA -0.006815507 -0.006815507 -0.006815507 -0.006815507 -0.01960996 0.1870027 0.2085144 0.1969303 0.2365452 -0.01689886 -0.01960996 0.2311753 -0.01829798 -0.0273322 -0.02531474 0.2666667 0.1152174 -0.02316827 0.2085144 0.1398757 -0.0273322 -0.0273322 0.2020427 -0.02531474 -0.03017515 -0.02425981 -0.02425981 -0.01373039 0.1824897 -0.03371478 0.1224805 0.3108349 -0.03197525 0.1450083 -0.02633762 0.1450083 0.1630821 0.2865757 0.09725822 -0.03197525 0.2270017 0.1187502 0.1565433 -0.03540378 NA 0.3668454 0.2729041 0.1781768 0.4927003 -0.02316827 0.1702539 -0.02085144 -0.03197525 0.2795261 0.2941028 -0.01186197 0.4170288 0.3108349 0.2052211 0.3982652 -0.02085144 0.3201918 0.221257 0.5280274 -0.02425981 0.3449761 0.1870027 0.2729041 0.3534965 -0.0220345 0.2548647 0.3021661 -0.006815507 0.2607766 0.3108349 0.221257 -0.006815507 0.2548647 0.2548647 0.277423 0.4170288 0.3534965 0.6278558 -0.01538862 0.7036825 0.40133 0.5717448 0.814522 0.3062336 0.221257 0.7036825 -0.01538862 0.814522 0.5717448 0.2548647 0.2365452 1 0.4384866 0.3982652 0.1870027 0.3449761 0.6278558 -0.009661836 0.3108349 0.4170288 0.6278558 0.3201918 0.4170288 -0.02316827 0.7036825 0.3668454 0.2365452 NA 0.221257 0.3668454 0.4927003 0.4170288 0.2082261 0.3201918 0.2548647 0.3668454 0.09725822 1 0.221257 0.1702539 -0.01538862 -0.0220345 -0.009661836 -0.009661836 -0.006815507 0.2365452 0.277423 -0.009661836 -0.009661836 -0.01373039 -0.01186197 -0.0220345 0.2082261 0.3062336 -0.006815507 -0.006815507 0.3449761 -0.01373039 0.5717448 -0.009661836 0.4633654 0.3062336 -0.006815507 -0.01689886 -0.009661836 -0.01186197 -0.01373039 -0.01538862 -0.01373039 -0.006815507 -0.01373039 -0.01186197 -0.009661836 0.40133 -0.01538862 -0.006815507 0.814522 0.40133 NA 1 -0.009661836 -0.02633762 NA 0.2548647 NA -0.006815507 0.40133 -0.02316827 -0.009661836 -0.009661836 NA -0.01186197 0.705405 NA 0.40133 0.705405 0.705405 0.4951691 1 0.705405 0.705405 -0.01538862 0.705405 0.277423 0.277423 -0.006815507 -0.006815507 -0.006815507 0.40133 -0.01186197 NA NA -0.006815507 -0.006815507 0.705405 -0.006815507 0.705405 NA NA -0.006815507 NA NA NA NA 0.705405 0.705405 -0.006815507 -0.006815507 -0.02786763 0.1156366 0.2963189 0.1234662 0.1541428 -0.02401489 -0.02786763 0.1345642 -0.02600318 -0.03884166 -0.03597466 0.1637349 0.05612297 -0.03292432 0.1152351 0.07730207 -0.03884166 -0.03884166 0.198352 -0.03597466 -0.04288176 -0.0344755 -0.0344755 -0.0195122 0.09204802 -0.04791192 0.06246814 0.1987767 -0.04543988 0.08159447 -0.03742827 0.08159447 0.0964568 0.2934605 0.1382132 -0.04543988 0.2268219 0.05922159 0.09112183 -0.05031214 NA 0.241947 0.3878228 0.1086158 0.5181637 0.1234662 0.1022594 -0.02963189 -0.04543988 0.3972333 0.3017896 -0.01685699 0.2798567 0.3202514 0.1123667 0.5659728 -0.02963189 0.3305469 0.1423977 0.5562822 -0.0344755 0.2353659 0.1156366 0.3878228 0.3670537 -0.03131313 0.168092 0.3106952 -0.009685486 0.1589683 0.4417261 0.1423977 -0.009685486 0.3621871 0.3621871 0.3942445 0.4362472 0.2317553 0.6637151 0.2066592 0.4902439 0.2767356 0.6033742 0.8639208 0.2066592 0.1423977 0.4902439 0.2066592 0.5703282 0.3942445 0.168092 0.3361533 0.7036825 0.2959091 0.4158607 0.2657486 0.2353659 0.4351871 -0.01373039 0.3202514 0.2798567 0.4351871 0.3305469 0.2798567 0.2798567 0.745122 0.241947 0.1541428 NA 0.3144273 0.241947 0.3361533 0.2798567 0.2959091 0.4550232 0.3621871 0.3816347 0.1382132 0.7036825 0.3144273 0.241947 -0.0218687 0.132298 -0.01373039 -0.01373039 -0.009685486 0.1541428 0.3942445 -0.01373039 -0.01373039 0.2353659 -0.01685699 -0.03131313 0.2959091 0.2066592 -0.009685486 -0.009685486 0.745122 -0.0195122 0.3942445 -0.01373039 0.3144273 0.2066592 -0.009685486 0.1851148 -0.01373039 -0.01685699 -0.0195122 -0.0218687 -0.0195122 -0.009685486 -0.0195122 -0.01685699 -0.01373039 0.2767356 -0.0218687 -0.009685486 0.5703282 0.8639208 NA 0.7036825 -0.01373039 0.1022594 NA 0.168092 NA -0.009685486 0.2767356 -0.03292432 -0.01373039 -0.01373039 NA -0.01685699 0.4963811 NA 0.2767356 0.4963811 0.4963811 0.3449761 0.7036825 0.4963811 0.4963811 0.2066592 0.4963811 0.6033742 0.3942445 -0.009685486 -0.009685486 -0.009685486 0.2767356 -0.01685699 NA NA -0.009685486 -0.009685486 0.4963811 -0.009685486 0.4963811 NA NA 0.4963811 NA NA NA NA 0.4963811 0.4963811 -0.009685486 -0.009685486 -0.01960996 0.1870027 0.08108894 0.1969303 0.2365452 0.277423 0.2365452 0.2311753 -0.01829798 0.1630821 0.1781768 0.2666667 0.2666667 0.1969303 0.2085144 0.1398757 0.1630821 -0.0273322 0.2020427 0.1781768 0.1450083 0.1870027 0.1870027 -0.01373039 0.1824897 0.1264304 0.2795261 0.3108349 0.1350954 0.3201918 0.1702539 0.3201918 0.3534965 0.2865757 0.2355369 0.1350954 0.2270017 0.2729041 0.3413882 0.1187502 NA 0.1702539 0.2729041 0.3816684 0.4927003 0.1969303 0.3668454 -0.02085144 0.1350954 0.2795261 0.2941028 0.40133 0.4170288 0.3108349 0.2052211 0.1870027 0.221257 0.3201918 0.221257 0.2548647 0.1870027 -0.01373039 -0.02425981 0.2729041 0.1630821 -0.0220345 0.2548647 0.3021661 -0.006815507 0.2607766 0.3108349 -0.02085144 -0.006815507 0.2548647 0.5280274 0.5717448 0.4170288 0.3534965 0.3062336 0.3062336 0.3449761 0.814522 0.277423 0.40133 0.6278558 0.4633654 0.3449761 0.3062336 0.40133 0.277423 -0.01829798 0.4927003 0.4951691 0.4384866 0.1870027 0.1870027 0.7036825 0.6278558 -0.009661836 0.1398757 0.1969303 0.3062336 0.3201918 0.1969303 0.1969303 0.3449761 0.3668454 -0.01960996 NA 0.4633654 0.3668454 0.2365452 0.1969303 0.2082261 0.1450083 0.5280274 0.1702539 0.09725822 0.4951691 0.221257 0.1702539 -0.01538862 -0.0220345 -0.009661836 -0.009661836 -0.006815507 -0.01960996 0.277423 0.4951691 0.4951691 0.3449761 -0.01186197 0.2082261 0.4384866 0.3062336 -0.006815507 -0.006815507 0.3449761 -0.01373039 0.277423 -0.009661836 0.221257 -0.01538862 -0.006815507 -0.01689886 -0.009661836 0.40133 -0.01373039 -0.01538862 -0.01373039 -0.006815507 -0.01373039 -0.01186197 -0.009661836 -0.01186197 -0.01538862 -0.006815507 0.40133 0.40133 NA 0.4951691 -0.009661836 0.1702539 NA 0.2548647 NA -0.006815507 0.40133 -0.02316827 -0.009661836 -0.009661836 NA -0.01186197 -0.006815507 NA -0.01186197 -0.006815507 -0.006815507 -0.009661836 0.4951691 -0.006815507 -0.006815507 -0.01538862 -0.006815507 -0.01689886 0.277423 -0.006815507 -0.006815507 -0.006815507 0.40133 -0.01186197 NA NA -0.006815507 -0.006815507 -0.006815507 0.705405 -0.006815507 NA NA -0.006815507 NA NA NA NA -0.006815507 0.705405 -0.006815507 -0.006815507 0.1014667 0.2969965 0.2569939 0.3134073 0.2400716 0.127253 0.3786765 0.4378093 0.1131542 0.1543026 0.1722754 0.5050243 0.3411266 0.432502 0.3259435 0.3111552 0.2573353 0.05126986 0.3826368 0.3924929 0.4168098 0.182683 0.2969965 -0.02600318 0.3456065 0.3694204 0.3594241 0.5886719 0.30105 0.3220184 0.1628711 0.3220184 0.2573353 0.4560745 0.296425 0.2106485 0.2840445 0.1831878 0.3464776 0.2666001 NA 0.1628711 0.3500124 0.3924929 0.3786765 0.1943125 0.4819966 0.2225192 0.3914515 0.444401 0.4685267 0.4246895 0.3134073 0.2186496 0.3886561 0.182683 0.09151492 0.6063924 0.09151492 0.2609618 0.06836937 0.168092 0.06836937 0.2666001 0.2573353 -0.04172985 0.1131542 0.481853 -0.01290749 0.4132928 0.3111552 0.09151492 -0.01290749 0.1131542 0.2609618 0.2865098 0.432502 0.2573353 0.3189143 0.3189143 0.3621871 0.6482667 0.2865098 0.4246895 0.3189143 0.3535234 0.3621871 0.3189143 0.4246895 0.4457666 0.1131542 0.2400716 0.5280274 0.4566438 0.4113101 0.2969965 0.3621871 0.4929432 -0.01829798 0.2186496 0.1943125 0.3189143 0.5116011 0.3134073 0.1943125 0.3621871 0.2692462 0.1014667 NA 0.2225192 0.2692462 0.2400716 0.3134073 0.08286355 0.2272271 0.4087694 0.4819966 0.1467805 0.5280274 0.09151492 0.2692462 0.1448853 -0.04172985 -0.01829798 -0.01829798 -0.01290749 0.1014667 0.2865098 0.2548647 0.2548647 0.168092 -0.02246469 0.08286355 0.4566438 0.4929432 -0.01290749 -0.01290749 0.168092 -0.02600318 0.6050234 -0.01829798 0.2225192 0.3189143 -0.01290749 -0.03200376 -0.01829798 0.2011124 -0.02600318 -0.0291436 -0.02600318 -0.01290749 -0.02600318 -0.02246469 -0.01829798 0.2011124 0.1448853 0.3724732 0.4246895 0.2011124 NA 0.5280274 -0.01829798 0.3756214 NA 0.5565771 NA -0.01290749 0.2011124 0.1943125 0.2548647 -0.01829798 NA -0.02246469 0.3724732 NA 0.2011124 0.3724732 0.3724732 0.2548647 0.5280274 0.3724732 0.3724732 0.1448853 0.3724732 0.127253 0.127253 -0.01290749 -0.01290749 -0.01290749 0.4246895 -0.02246469 NA NA -0.01290749 -0.01290749 0.3724732 0.3724732 0.3724732 NA NA -0.01290749 NA NA NA NA 0.3724732 0.3724732 -0.01290749 -0.01290749 -0.02786763 0.1156366 0.205777 0.1234662 0.1541428 -0.02401489 -0.02786763 0.1345642 -0.02600318 0.0964568 -0.03597466 0.1637349 0.05612297 -0.03292432 0.205777 0.07730207 0.0964568 -0.03884166 0.1095821 -0.03597466 -0.04288176 -0.0344755 -0.0344755 -0.0195122 0.1756917 -0.04791192 0.06246814 0.1987767 -0.04543988 0.08159447 -0.03742827 0.08159447 0.0964568 0.2934605 0.0399596 0.0732718 0.1310526 0.05922159 0.09112183 -0.05031214 NA 0.241947 0.1687553 0.2532063 0.3361533 -0.03292432 0.1022594 -0.02963189 -0.04543988 0.1740565 0.1856312 -0.01685699 0.2798567 0.1987767 0.2020027 0.2657486 -0.02963189 0.2060707 0.1423977 0.3621871 -0.0344755 0.2353659 0.1156366 0.1687553 0.2317553 -0.03131313 0.168092 0.3106952 -0.009685486 0.1589683 0.1987767 0.1423977 -0.009685486 0.168092 0.168092 0.1851148 0.2798567 0.2317553 0.4351871 -0.0218687 1 0.2767356 0.3942445 0.5703282 0.2066592 0.1423977 0.745122 -0.0218687 0.5703282 0.3942445 0.168092 0.1541428 0.7036825 0.2959091 0.2657486 0.1156366 0.2353659 0.4351871 -0.01373039 0.1987767 0.2798567 0.6637151 0.2060707 0.2798567 -0.03292432 0.4902439 0.3816347 0.1541428 NA 0.1423977 0.241947 0.3361533 0.2798567 0.132298 0.3305469 0.168092 0.241947 0.1382132 0.7036825 0.1423977 0.1022594 -0.0218687 -0.03131313 -0.01373039 -0.01373039 -0.009685486 0.1541428 0.1851148 -0.01373039 -0.01373039 -0.0195122 -0.01685699 -0.03131313 0.132298 0.4351871 -0.009685486 -0.009685486 0.2353659 -0.0195122 0.3942445 -0.01373039 0.3144273 0.2066592 -0.009685486 -0.02401489 -0.01373039 -0.01685699 -0.0195122 -0.0218687 0.2353659 -0.009685486 -0.0195122 -0.01685699 -0.01373039 0.5703282 -0.0218687 -0.009685486 0.5703282 0.2767356 NA 0.7036825 -0.01373039 -0.03742827 NA 0.168092 NA -0.009685486 0.2767356 -0.03292432 -0.01373039 -0.01373039 NA -0.01685699 0.4963811 NA 0.2767356 0.4963811 0.4963811 0.3449761 0.7036825 0.4963811 0.4963811 -0.0218687 0.4963811 0.1851148 0.1851148 -0.009685486 -0.009685486 -0.009685486 0.2767356 -0.01685699 NA NA -0.009685486 -0.009685486 0.4963811 -0.009685486 0.4963811 NA NA -0.009685486 NA NA NA NA 0.4963811 0.4963811 -0.009685486 -0.009685486 0.2365452 0.1870027 0.2085144 0.1969303 -0.01960996 -0.01689886 0.4927003 0.2311753 0.2548647 0.1630821 0.1781768 0.2666667 0.2666667 0.4170288 0.08108894 0.3108349 0.3534965 0.1630821 0.2020427 0.3816684 0.3201918 0.1870027 0.3982652 -0.01373039 0.1824897 0.2865757 0.1224805 0.3108349 0.3021661 0.3201918 0.1702539 0.3201918 0.1630821 0.2865757 0.2355369 0.1350954 0.2270017 0.1187502 0.3413882 0.2729041 NA -0.02633762 0.2729041 0.3816684 -0.01960996 0.1969303 0.3668454 0.4633654 0.3021661 0.2795261 0.2941028 0.40133 -0.02316827 -0.03108349 0.2052211 -0.02425981 -0.02085144 0.3201918 -0.02085144 -0.01829798 -0.02425981 -0.01373039 -0.02425981 0.1187502 0.1630821 -0.0220345 -0.01829798 0.1350954 -0.006815507 0.1118632 0.1398757 -0.02085144 -0.006815507 -0.01829798 -0.01829798 -0.01689886 0.1969303 -0.0273322 -0.01538862 -0.01538862 -0.01373039 0.40133 -0.01689886 -0.01186197 -0.01538862 -0.02085144 -0.01373039 0.3062336 -0.01186197 0.277423 -0.01829798 -0.01960996 -0.009661836 0.2082261 0.1870027 0.1870027 -0.01373039 -0.01538862 -0.009661836 0.1398757 -0.02316827 -0.01538862 0.1450083 0.1969303 0.1969303 -0.01373039 -0.02633762 -0.01960996 NA -0.02085144 -0.02633762 -0.01960996 0.1969303 -0.0220345 0.1450083 -0.01829798 0.1702539 0.2355369 -0.009661836 -0.02085144 0.1702539 0.3062336 -0.0220345 -0.009661836 -0.009661836 -0.006815507 -0.01960996 -0.01689886 -0.009661836 -0.009661836 -0.01373039 -0.01186197 -0.0220345 -0.0220345 0.3062336 -0.006815507 -0.006815507 -0.01373039 -0.01373039 0.5717448 -0.009661836 -0.02085144 -0.01538862 -0.006815507 -0.01689886 -0.009661836 -0.01186197 -0.01373039 -0.01538862 -0.01373039 -0.006815507 -0.01373039 -0.01186197 -0.009661836 -0.01186197 0.3062336 0.705405 -0.01186197 -0.01186197 NA -0.009661836 -0.009661836 0.1702539 NA 0.5280274 NA -0.006815507 -0.01186197 0.4170288 0.4951691 -0.009661836 NA -0.01186197 -0.006815507 NA -0.01186197 -0.006815507 -0.006815507 -0.009661836 -0.009661836 -0.006815507 -0.006815507 0.3062336 -0.006815507 -0.01689886 -0.01689886 -0.006815507 -0.006815507 -0.006815507 -0.01186197 -0.01186197 NA NA -0.006815507 -0.006815507 -0.006815507 -0.006815507 -0.006815507 NA NA -0.006815507 NA NA NA NA -0.006815507 -0.006815507 -0.006815507 -0.006815507 -0.01960996 0.1870027 0.2085144 0.1969303 0.2365452 -0.01689886 -0.01960996 0.2311753 -0.01829798 -0.0273322 -0.02531474 0.2666667 0.1152174 -0.02316827 0.2085144 0.1398757 -0.0273322 -0.0273322 0.2020427 -0.02531474 -0.03017515 -0.02425981 -0.02425981 -0.01373039 0.1824897 -0.03371478 0.1224805 0.3108349 -0.03197525 0.1450083 -0.02633762 0.1450083 0.1630821 0.2865757 0.09725822 -0.03197525 0.2270017 0.1187502 0.1565433 -0.03540378 NA 0.3668454 0.2729041 0.1781768 0.4927003 -0.02316827 0.1702539 -0.02085144 -0.03197525 0.2795261 0.2941028 -0.01186197 0.4170288 0.3108349 0.2052211 0.3982652 -0.02085144 0.3201918 0.221257 0.5280274 -0.02425981 0.3449761 0.1870027 0.2729041 0.3534965 -0.0220345 0.2548647 0.3021661 -0.006815507 0.2607766 0.3108349 0.221257 -0.006815507 0.2548647 0.2548647 0.277423 0.4170288 0.3534965 0.6278558 -0.01538862 0.7036825 0.40133 0.5717448 0.814522 0.3062336 0.221257 0.7036825 -0.01538862 0.814522 0.5717448 0.2548647 0.2365452 1 0.4384866 0.3982652 0.1870027 0.3449761 0.6278558 -0.009661836 0.3108349 0.4170288 0.6278558 0.3201918 0.4170288 -0.02316827 0.7036825 0.3668454 0.2365452 NA 0.221257 0.3668454 0.4927003 0.4170288 0.2082261 0.3201918 0.2548647 0.3668454 0.09725822 1 0.221257 0.1702539 -0.01538862 -0.0220345 -0.009661836 -0.009661836 -0.006815507 0.2365452 0.277423 -0.009661836 -0.009661836 -0.01373039 -0.01186197 -0.0220345 0.2082261 0.3062336 -0.006815507 -0.006815507 0.3449761 -0.01373039 0.5717448 -0.009661836 0.4633654 0.3062336 -0.006815507 -0.01689886 -0.009661836 -0.01186197 -0.01373039 -0.01538862 -0.01373039 -0.006815507 -0.01373039 -0.01186197 -0.009661836 0.40133 -0.01538862 -0.006815507 0.814522 0.40133 NA 1 -0.009661836 -0.02633762 NA 0.2548647 NA -0.006815507 0.40133 -0.02316827 -0.009661836 -0.009661836 NA -0.01186197 0.705405 NA 0.40133 0.705405 0.705405 0.4951691 1 0.705405 0.705405 -0.01538862 0.705405 0.277423 0.277423 -0.006815507 -0.006815507 -0.006815507 0.40133 -0.01186197 NA NA -0.006815507 -0.006815507 0.705405 -0.006815507 0.705405 NA NA -0.006815507 NA NA NA NA 0.705405 0.705405 -0.006815507 -0.006815507 -0.02407543 0.3160424 0.2559961 0.1517014 0.1855814 -0.02074697 0.1855814 0.2838172 -0.02246469 -0.03355612 -0.03107926 0.3273904 0.2034328 0.1517014 0.2559961 0.2416904 0.1222934 -0.03355612 0.2480507 0.1354737 0.106337 -0.0297841 0.1431292 -0.01685699 0.2240452 0.0896829 0.08610203 0.3816164 0.09748687 0.2497205 -0.03233506 0.2497205 0.1222934 0.3518329 0.1759942 -0.03925646 0.2786932 0.2088769 0.2678359 0.08270559 NA 0.2894758 0.3350482 0.3020266 0.3952382 -0.02844401 0.2894758 0.1725603 0.09748687 0.3431781 0.3610741 -0.01456311 0.3318467 0.2416904 0.2519528 0.3160424 -0.02559961 0.393104 0.1725603 0.4246895 -0.0297841 0.2767356 0.1431292 0.2088769 0.278143 -0.02705207 0.2011124 0.2342302 -0.008367493 0.1982771 0.2416904 0.1725603 -0.008367493 0.2011124 0.2011124 0.2201484 0.3318467 0.278143 0.5075873 -0.01889283 0.5703282 0.3236246 0.4610437 0.6618123 0.2443472 0.1725603 0.5703282 -0.01889283 0.6618123 0.7019391 0.2011124 0.1855814 0.814522 0.3498734 0.4889557 0.3160424 0.2767356 0.5075873 -0.01186197 0.3816164 0.3318467 0.5075873 0.2497205 0.3318467 -0.02844401 0.5703282 0.2894758 0.1855814 NA 0.1725603 0.2894758 0.3952382 0.3318467 0.1614107 0.2497205 0.2011124 0.4503813 0.1759942 0.814522 0.1725603 0.2894758 -0.01889283 -0.02705207 -0.01186197 -0.01186197 -0.008367493 0.1855814 0.2201484 -0.01186197 -0.01186197 -0.01685699 -0.01456311 -0.02705207 0.1614107 0.2443472 -0.008367493 -0.008367493 0.2767356 -0.01685699 0.7019391 -0.01186197 0.3707202 0.2443472 -0.008367493 -0.02074697 -0.01186197 -0.01456311 -0.01685699 -0.01889283 -0.01685699 -0.008367493 -0.01685699 -0.01456311 -0.01186197 0.3236246 -0.01889283 -0.008367493 0.6618123 0.3236246 NA 0.814522 -0.01186197 -0.03233506 NA 0.4246895 NA -0.008367493 0.3236246 0.1517014 -0.01186197 -0.01186197 NA -0.01456311 0.5745678 NA 0.3236246 0.5745678 0.5745678 0.40133 0.814522 0.5745678 0.5745678 -0.01889283 0.5745678 0.2201484 0.2201484 -0.008367493 -0.008367493 -0.008367493 0.3236246 -0.01456311 NA NA -0.008367493 -0.008367493 0.5745678 -0.008367493 0.5745678 NA NA -0.008367493 NA NA NA NA 0.5745678 0.5745678 -0.008367493 -0.008367493 -0.039801 0.165154 0.4232074 0.06465668 0.2201493 -0.03429846 -0.039801 0.2614402 -0.03713815 0.1377611 0.05187362 0.2338488 0.1570023 0.06465668 0.293894 0.1104041 0.1377611 0.2343789 0.2198982 0.05187362 0.02764505 0.05795777 -0.04923846 -0.02786763 0.2509256 0.09408929 0.08921799 0.1971501 0.019875 -0.06124442 -0.05345566 0.1165345 0.1377611 0.419125 0.1272346 0.3589669 0.1871715 0.006362304 0.03634991 0.08458122 NA 0.5450568 0.319238 0.05187362 0.09017413 0.1763364 0.1460485 0.2033747 0.2741939 0.009531837 0.2651215 -0.02407543 0.3996958 0.02365801 0.2885035 0.2723502 -0.04232074 0.02764505 0.2033747 0.3786765 0.05795777 0.3361533 0.2723502 0.1628001 0.3309966 -0.04472192 -0.03713815 0.3589669 -0.01383297 0.3781607 0.1971501 0.3262223 -0.01383297 0.2400716 0.1014667 -0.03429846 0.1763364 0.3309966 0.1319604 -0.03123323 0.3361533 -0.02407543 0.1150427 0.1855814 0.1319604 0.2033747 0.1541428 0.1319604 0.1855814 0.1150427 0.6558863 0.09017413 0.2365452 0.4226221 0.2723502 0.165154 -0.02786763 0.1319604 -0.01960996 0.3706422 0.3996958 0.1319604 0.2943135 0.2880161 0.06465668 0.1541428 0.4453047 0.4800995 NA 0.08052696 0.5450568 0.3501244 0.1763364 0.1889501 0.3832029 0.1014667 0.2458006 0.267562 0.2365452 0.3262223 0.1460485 0.295154 -0.04472192 0.2365452 -0.01960996 -0.01383297 0.2201493 0.1150427 -0.01960996 0.2365452 0.1541428 0.3952382 0.3057861 -0.04472192 0.4583476 0.3475533 0.3475533 -0.02786763 -0.02786763 0.1150427 0.4927003 0.3262223 0.295154 0.3475533 0.2643839 0.2365452 0.3952382 0.1541428 0.1319604 0.1541428 -0.01383297 -0.02786763 -0.02407543 -0.01960996 0.3952382 -0.03123323 -0.01383297 0.3952382 -0.02407543 NA 0.2365452 0.2365452 0.1460485 NA 0.1014667 NA -0.01383297 -0.02407543 0.2880161 -0.01960996 -0.01960996 NA 0.3952382 0.3475533 NA 0.3952382 0.3475533 0.3475533 0.2365452 0.2365452 0.3475533 0.3475533 0.1319604 0.3475533 0.4137251 0.2643839 0.3475533 0.3475533 0.3475533 0.1855814 -0.02407543 NA NA 0.3475533 0.3475533 0.3475533 -0.01383297 0.3475533 NA NA -0.01383297 NA NA NA NA 0.3475533 -0.01383297 0.3475533 -0.01383297 -0.03429846 0.450242 0.290408 0.2161176 0.2643839 0.1420361 0.2643839 0.4043331 -0.03200376 0.1742223 0.1929992 0.4664086 0.378112 0.3444374 0.3646984 0.3443182 0.2852359 -0.0478049 0.3533792 0.311637 0.1514904 0.2039054 0.3270737 -0.02401489 0.3191804 0.2211309 0.3057816 0.5436603 0.1388822 0.3557581 0.1831646 0.3557581 0.1742223 0.4078636 0.3313437 0.2362862 0.3970333 0.2975712 0.3815658 0.2975712 NA 0.2977795 0.477318 0.311637 0.4137251 0.2161176 0.2977795 0.1046819 0.3336902 0.4889001 0.5143952 0.2201484 0.3444374 0.3443182 0.3589383 0.3270737 0.1046819 0.5600258 0.1046819 0.2865098 0.2039054 0.1851148 0.2039054 0.2975712 0.1742223 0.09570532 0.2865098 0.3336902 -0.01192054 0.2824705 0.4439892 0.2458337 -0.01192054 0.127253 0.2865098 0.4852217 0.3444374 0.3962495 0.3481032 0.3481032 0.3942445 0.4610437 0.3136289 0.4610437 0.3481032 0.3869855 0.3942445 0.160594 0.4610437 0.6568144 0.127253 0.2643839 0.5717448 0.3641941 0.450242 0.3270737 0.3942445 0.5356124 -0.01689886 0.3443182 0.2161176 0.3481032 0.3557581 0.3444374 0.2161176 0.3942445 0.4123945 0.1150427 NA 0.3869855 0.2977795 0.4137251 0.4727572 0.09570532 0.2536243 0.2865098 0.4123945 0.08948979 0.5717448 0.1046819 0.2977795 -0.02691519 -0.03853906 -0.01689886 -0.01689886 -0.01192054 0.2643839 0.3136289 0.277423 0.277423 0.1851148 -0.02074697 0.09570532 0.3641941 0.3481032 -0.01192054 -0.01192054 0.1851148 -0.02401489 0.4852217 -0.01689886 0.2458337 0.3481032 -0.01192054 -0.02955665 -0.01689886 0.2201484 -0.02401489 -0.02691519 -0.02401489 -0.01192054 -0.02401489 -0.02074697 -0.01689886 0.2201484 0.160594 -0.01192054 0.4610437 0.2201484 NA 0.5717448 -0.01689886 0.1831646 NA 0.4457666 NA -0.01192054 0.2201484 0.08779776 -0.01689886 -0.01689886 NA -0.02074697 0.4033116 NA 0.2201484 0.4033116 0.4033116 0.277423 0.5717448 0.4033116 0.4033116 -0.02691519 0.4033116 0.1420361 0.1420361 -0.01192054 -0.01192054 -0.01192054 0.4610437 -0.02074697 NA NA -0.01192054 -0.01192054 0.4033116 0.4033116 0.4033116 NA NA -0.01192054 NA NA NA NA 0.4033116 0.4033116 -0.01192054 -0.01192054 -0.01960996 0.1870027 0.2085144 0.1969303 0.2365452 -0.01689886 -0.01960996 0.2311753 -0.01829798 -0.0273322 -0.02531474 0.2666667 0.1152174 -0.02316827 0.2085144 0.1398757 -0.0273322 -0.0273322 0.2020427 -0.02531474 -0.03017515 -0.02425981 -0.02425981 -0.01373039 0.1824897 -0.03371478 0.1224805 0.3108349 -0.03197525 0.1450083 -0.02633762 0.1450083 0.1630821 0.2865757 0.09725822 -0.03197525 0.2270017 0.1187502 0.1565433 -0.03540378 NA 0.3668454 0.2729041 0.1781768 0.4927003 -0.02316827 0.1702539 -0.02085144 -0.03197525 0.2795261 0.2941028 -0.01186197 0.4170288 0.3108349 0.2052211 0.3982652 -0.02085144 0.3201918 0.221257 0.5280274 -0.02425981 0.3449761 0.1870027 0.2729041 0.3534965 -0.0220345 0.2548647 0.3021661 -0.006815507 0.2607766 0.3108349 0.221257 -0.006815507 0.2548647 0.2548647 0.277423 0.4170288 0.3534965 0.6278558 -0.01538862 0.7036825 0.40133 0.5717448 0.814522 0.3062336 0.221257 0.7036825 -0.01538862 0.814522 0.5717448 0.2548647 0.2365452 1 0.4384866 0.3982652 0.1870027 0.3449761 0.6278558 -0.009661836 0.3108349 0.4170288 0.6278558 0.3201918 0.4170288 -0.02316827 0.7036825 0.3668454 0.2365452 NA 0.221257 0.3668454 0.4927003 0.4170288 0.2082261 0.3201918 0.2548647 0.3668454 0.09725822 1 0.221257 0.1702539 -0.01538862 -0.0220345 -0.009661836 -0.009661836 -0.006815507 0.2365452 0.277423 -0.009661836 -0.009661836 -0.01373039 -0.01186197 -0.0220345 0.2082261 0.3062336 -0.006815507 -0.006815507 0.3449761 -0.01373039 0.5717448 -0.009661836 0.4633654 0.3062336 -0.006815507 -0.01689886 -0.009661836 -0.01186197 -0.01373039 -0.01538862 -0.01373039 -0.006815507 -0.01373039 -0.01186197 -0.009661836 0.40133 -0.01538862 -0.006815507 0.814522 0.40133 NA 1 -0.009661836 -0.02633762 NA 0.2548647 NA -0.006815507 0.40133 -0.02316827 -0.009661836 -0.009661836 NA -0.01186197 0.705405 NA 0.40133 0.705405 0.705405 0.4951691 1 0.705405 0.705405 -0.01538862 0.705405 0.277423 0.277423 -0.006815507 -0.006815507 -0.006815507 0.40133 -0.01186197 NA NA -0.006815507 -0.006815507 0.705405 -0.006815507 0.705405 NA NA -0.006815507 NA NA NA NA 0.705405 0.705405 -0.006815507 -0.006815507 0.05795777 0.4695431 0.3635811 0.2181486 0.3795465 0.08073711 0.2723502 0.466223 0.182683 0.2501115 0.2770674 0.3526769 0.4160557 0.4944703 0.3102559 0.3512125 0.3297964 0.2501115 0.3504621 0.4473824 0.3641 0.2927242 0.2927242 -0.0344755 0.3596867 0.3174529 0.3075351 0.4942991 0.2692937 0.2907889 0.180679 0.3641 0.3297964 0.5855243 0.3599389 0.3392097 0.3443607 0.1691474 0.3157088 0.2981686 NA 0.4274888 0.4917004 0.3622249 0.2723502 0.2181486 0.5097588 0.454234 0.4790418 0.3732558 0.3963983 0.3160424 0.4023631 0.208126 0.4097041 0.2927242 0.1502802 0.4374111 0.2515981 0.4113101 0.2043147 0.2657486 0.2043147 0.2981686 0.3297964 0.04103361 0.182683 0.4091258 -0.01711299 0.4678288 0.4942991 0.2515981 -0.01711299 0.2969965 0.2969965 0.2039054 0.4944703 0.4094813 0.2305469 0.09595386 0.2657486 0.4889557 0.3270737 0.3160424 0.3651399 0.2515981 0.2657486 0.3651399 0.3160424 0.3270737 0.2969965 0.3795465 0.3982652 0.9082721 0.3811337 0.2927242 0.2657486 0.3651399 -0.02425981 0.3512125 0.3102559 0.2305469 0.3641 0.4023631 0.2181486 0.2657486 0.3452189 0.3795465 NA 0.2515981 0.3452189 0.3795465 0.3102559 0.2337533 0.3641 0.2969965 0.3452189 0.3020718 0.3982652 0.2515981 0.180679 0.3651399 -0.05532622 0.1870027 0.1870027 -0.01711299 0.165154 0.3270737 0.1870027 0.3982652 0.2657486 0.1431292 0.3301131 0.1373934 0.4997329 0.2809382 0.2809382 0.1156366 0.1156366 0.450242 0.1870027 0.352916 0.2305469 0.2809382 0.2039054 0.1870027 0.4889557 0.1156366 -0.03863914 -0.0344755 -0.01711299 -0.0344755 -0.0297841 -0.02425981 0.3160424 0.09595386 0.2809382 0.4889557 0.1431292 NA 0.3982652 0.1870027 0.180679 NA 0.4113101 NA -0.01711299 0.1431292 0.4944703 0.1870027 -0.02425981 NA 0.1431292 0.2809382 NA 0.3160424 0.2809382 0.2809382 0.1870027 0.3982652 0.2809382 0.2809382 0.09595386 0.2809382 0.3270737 0.2039054 0.2809382 -0.01711299 0.2809382 0.3160424 -0.0297841 NA NA 0.2809382 0.2809382 0.2809382 0.2809382 0.2809382 NA NA -0.01711299 NA NA NA NA 0.2809382 0.2809382 -0.01711299 -0.01711299 0.1014667 0.06836937 0.3259435 0.07521774 -0.03713815 -0.03200376 0.2400716 0.2162545 0.1131542 0.05126986 0.06216667 0.2591778 0.2591778 0.3134073 0.1190948 0.126144 0.1543026 0.05126986 0.3150365 0.2823842 0.1324357 0.06836937 0.182683 -0.02600318 0.2182136 0.1961121 0.1894702 0.3111552 0.120247 0.3220184 0.0564959 0.2272271 0.1543026 0.4560745 0.2216027 0.120247 0.2840445 0.09977548 0.2464585 0.1831878 NA 0.2692462 0.4334247 0.2823842 0.2400716 0.3134073 0.2692462 0.2225192 0.30105 0.3594241 0.3800695 0.2011124 0.3134073 0.126144 0.2521366 0.2969965 -0.03948931 0.4168098 0.09151492 0.4087694 -0.04594422 -0.02600318 -0.04594422 0.1831878 0.2573353 -0.04172985 0.1131542 0.2106485 -0.01290749 0.1715628 0.4036608 0.09151492 -0.01290749 0.4087694 0.2609618 0.4457666 0.3134073 0.2573353 0.3189143 0.3189143 0.168092 0.4246895 0.2865098 0.4246895 0.1448853 0.2225192 0.168092 0.3189143 0.2011124 0.4457666 0.1131542 0.2400716 0.2548647 0.3320504 0.6399373 0.6399373 0.168092 0.1448853 -0.01829798 0.4961663 0.1943125 0.1448853 0.4168098 0.3134073 0.3134073 0.3621871 0.1628711 0.1014667 NA 0.3535234 0.1628711 0.2400716 0.432502 0.3320504 0.3220184 0.4087694 0.4819966 0.2216027 0.2548647 0.4845276 0.5883717 0.3189143 0.08286355 -0.01829798 -0.01829798 -0.01290749 -0.03713815 -0.03200376 -0.01829798 0.2548647 0.168092 0.2011124 -0.04172985 0.207457 0.3189143 0.3724732 -0.01290749 0.3621871 -0.02600318 0.6050234 0.2548647 0.2225192 0.1448853 -0.01290749 0.2865098 -0.01829798 0.2011124 -0.02600318 -0.0291436 -0.02600318 -0.01290749 -0.02600318 -0.02246469 -0.01829798 -0.02246469 0.4929432 0.3724732 0.2011124 0.4246895 NA 0.2548647 0.2548647 0.3756214 NA 0.8521924 NA -0.01290749 0.2011124 0.3134073 0.5280274 -0.01829798 NA 0.2011124 -0.01290749 NA -0.02246469 -0.01290749 -0.01290749 -0.01829798 0.2548647 -0.01290749 -0.01290749 0.3189143 -0.01290749 0.2865098 0.4457666 0.3724732 -0.01290749 0.3724732 -0.02246469 -0.02246469 NA NA -0.01290749 0.3724732 -0.01290749 -0.01290749 -0.01290749 NA NA -0.01290749 NA NA NA NA -0.01290749 0.3724732 -0.01290749 -0.01290749 -0.01383297 -0.01711299 0.1470871 -0.01634301 -0.01383297 -0.01192054 -0.01383297 -0.02948198 -0.01290749 -0.01928027 -0.01785714 -0.02555815 -0.02555815 -0.01634301 -0.03268602 -0.02192645 -0.01928027 -0.01928027 0.1425219 -0.01785714 -0.0212857 -0.01711299 -0.01711299 -0.009685486 0.1287292 -0.02378257 -0.02438236 -0.02192645 -0.0225555 -0.0212857 -0.01857869 -0.0212857 -0.01928027 0.2021519 -0.02893605 -0.0225555 -0.03002403 -0.024974 -0.0199641 -0.024974 NA 0.2587746 0.1925079 -0.01785714 -0.01383297 -0.01634301 -0.01857869 -0.01470871 0.2131495 -0.02438236 0.2074615 -0.008367493 0.2941742 -0.02192645 0.144764 0.2809382 -0.01470871 -0.0212857 -0.01470871 0.3724732 -0.01711299 -0.009685486 -0.01711299 -0.024974 0.2493582 -0.01554325 -0.01290749 0.2131495 -0.004807692 0.1839531 0.2192645 0.3268602 -0.004807692 0.3724732 -0.01290749 -0.01192054 -0.01634301 0.2493582 -0.01085521 -0.01085521 -0.009685486 -0.008367493 -0.01192054 -0.008367493 -0.01085521 -0.01470871 -0.009685486 -0.01085521 -0.008367493 -0.01192054 0.3724732 -0.01383297 -0.006815507 0.3093106 0.2809382 0.2809382 -0.009685486 -0.01085521 -0.006815507 0.2192645 0.2941742 -0.01085521 0.2258649 0.2941742 0.2941742 -0.009685486 0.2587746 0.3475533 NA -0.01470871 0.2587746 0.3475533 0.2941742 0.3093106 0.2258649 -0.01290749 0.2587746 -0.02893605 -0.006815507 0.3268602 0.2587746 0.4428926 -0.01554325 -0.006815507 -0.006815507 -0.004807692 -0.01383297 -0.01192054 -0.006815507 0.705405 -0.009685486 0.5745678 -0.01554325 -0.01554325 0.4428926 1 -0.004807692 -0.009685486 -0.009685486 -0.01192054 0.705405 0.3268602 -0.01085521 -0.004807692 0.4033116 -0.006815507 0.5745678 -0.009685486 -0.01085521 -0.009685486 -0.004807692 -0.009685486 -0.008367493 -0.006815507 -0.008367493 -0.01085521 -0.004807692 -0.008367493 -0.008367493 NA -0.006815507 0.705405 -0.01857869 NA 0.3724732 NA -0.004807692 -0.008367493 0.2941742 -0.006815507 -0.006815507 NA 0.5745678 -0.004807692 NA -0.008367493 -0.004807692 -0.004807692 -0.006815507 -0.006815507 -0.004807692 -0.004807692 -0.01085521 -0.004807692 0.4033116 0.4033116 1 -0.004807692 1 -0.008367493 -0.008367493 NA NA -0.004807692 1 -0.004807692 -0.004807692 -0.004807692 NA NA -0.004807692 NA NA NA NA -0.004807692 -0.004807692 -0.004807692 -0.004807692 0.1150427 0.2039054 0.2161176 0.2161176 0.1150427 0.1420361 0.4137251 0.2451888 0.127253 0.1742223 0.1929992 0.2898155 0.2898155 0.4727572 0.1418272 0.2446471 0.2852359 0.06320869 0.2805426 0.4302747 0.2536243 0.2039054 0.3270737 -0.02401489 0.1819197 0.3144973 0.2142224 0.3443182 0.2362862 0.3557581 0.1831646 0.2536243 0.1742223 0.4078636 0.2507257 0.2362862 0.3184538 0.1178245 0.2737992 0.2975712 NA -0.04606534 0.3874446 0.311637 0.2643839 0.4727572 0.2977795 0.2458337 0.3336902 0.3973409 0.3237771 0.4610437 0.08779776 0.1449761 0.211844 0.08073711 0.1046819 0.457892 -0.03646984 0.127253 0.08073711 -0.02401489 -0.04243118 0.2076979 0.06320869 -0.03853906 -0.03200376 0.1388822 -0.01192054 0.1088342 0.3443182 -0.03646984 -0.01192054 0.127253 0.2865098 0.4852217 0.3444374 0.1742223 0.160594 0.5356124 -0.02401489 0.4610437 0.1420361 0.2201484 0.160594 0.2458337 -0.02401489 0.5356124 -0.02074697 0.3136289 -0.03200376 0.2643839 -0.01689886 0.2299497 0.3270737 0.3270737 0.3942445 0.160594 -0.01689886 0.2446471 -0.04052204 -0.02691519 0.3557581 0.08779776 0.3444374 0.1851148 0.06854962 -0.03429846 NA 0.3869855 0.06854962 -0.03429846 0.2161176 0.09570532 0.1514904 0.2865098 0.2977795 0.2507257 -0.01689886 0.1046819 0.2977795 0.160594 -0.03853906 -0.01689886 -0.01689886 -0.01192054 -0.03429846 0.1420361 0.277423 0.277423 0.3942445 -0.02074697 0.09570532 0.2299497 0.3481032 -0.01192054 -0.01192054 0.1851148 -0.02401489 0.3136289 -0.01689886 -0.03646984 0.160594 -0.01192054 0.1420361 -0.01689886 0.2201484 -0.02401489 -0.02691519 -0.02401489 -0.01192054 -0.02401489 -0.02074697 -0.01689886 -0.02074697 0.3481032 0.4033116 -0.02074697 0.2201484 NA -0.01689886 -0.01689886 0.4123945 NA 0.4457666 NA -0.01192054 -0.02074697 0.2161176 0.277423 -0.01689886 NA -0.02074697 -0.01192054 NA -0.02074697 -0.01192054 -0.01192054 -0.01689886 -0.01689886 -0.01192054 -0.01192054 0.3481032 -0.01192054 0.1420361 0.1420361 -0.01192054 -0.01192054 -0.01192054 0.2201484 -0.02074697 NA NA -0.01192054 -0.01192054 -0.01192054 0.4033116 -0.01192054 NA NA -0.01192054 NA NA NA NA -0.01192054 -0.01192054 -0.01192054 -0.01192054 -0.02407543 0.3160424 0.1517014 0.3318467 0.3952382 0.2201484 0.1855814 0.2838172 -0.02246469 0.1222934 0.1354737 0.3273904 0.2034328 0.1517014 0.2559961 0.2416904 0.1222934 -0.03355612 0.2480507 0.1354737 0.106337 0.1431292 0.1431292 -0.01685699 0.2240452 0.0896829 0.2146401 0.3816164 0.09748687 0.2497205 0.1285704 0.2497205 0.278143 0.3518329 0.1759942 0.09748687 0.2786932 0.2088769 0.2678359 0.08270559 NA 0.2894758 0.3350482 0.3020266 0.6048951 0.1517014 0.2894758 -0.02559961 0.09748687 0.3431781 0.3610741 0.3236246 0.5119921 0.3816164 0.2519528 0.3160424 0.1725603 0.393104 0.1725603 0.4246895 0.1431292 0.2767356 0.1431292 0.3350482 0.278143 -0.02705207 0.2011124 0.3709735 -0.008367493 0.3201591 0.3816164 0.1725603 -0.008367493 0.2011124 0.4246895 0.4610437 0.5119921 0.4339925 0.5075873 0.2443472 0.5703282 0.6618123 0.4610437 0.6618123 0.5075873 0.3707202 0.5703282 0.2443472 0.6618123 0.4610437 0.2011124 0.3952382 0.814522 0.5383362 0.3160424 0.1431292 0.5703282 0.7708273 -0.01186197 0.2416904 0.3318467 0.5075873 0.393104 0.3318467 0.1517014 0.5703282 0.4503813 0.1855814 NA 0.3707202 0.4503813 0.3952382 0.3318467 0.1614107 0.2497205 0.4246895 0.2894758 0.06281638 0.814522 0.1725603 0.1285704 -0.01889283 -0.02705207 -0.01186197 -0.01186197 -0.008367493 0.1855814 0.4610437 0.40133 0.40133 0.2767356 -0.01456311 0.1614107 0.3498734 0.5075873 -0.008367493 -0.008367493 0.2767356 -0.01685699 0.4610437 -0.01186197 0.3707202 0.2443472 -0.008367493 -0.02074697 -0.01186197 0.3236246 -0.01685699 -0.01889283 -0.01685699 -0.008367493 -0.01685699 -0.01456311 -0.01186197 0.3236246 -0.01889283 -0.008367493 0.6618123 0.3236246 NA 0.814522 -0.01186197 0.1285704 NA 0.2011124 NA -0.008367493 0.3236246 -0.02844401 -0.01186197 -0.01186197 NA -0.01456311 0.5745678 NA 0.3236246 0.5745678 0.5745678 0.40133 0.814522 0.5745678 0.5745678 -0.01889283 0.5745678 0.2201484 0.2201484 -0.008367493 -0.008367493 -0.008367493 0.6618123 -0.01456311 NA NA -0.008367493 -0.008367493 0.5745678 0.5745678 0.5745678 NA NA -0.008367493 NA NA NA NA 0.5745678 0.5745678 -0.008367493 -0.008367493 0.1855814 0.1431292 0.1517014 0.5119921 0.1855814 0.4610437 0.3952382 0.1721076 -0.02246469 -0.03355612 -0.03107926 0.0794752 0.0794752 -0.02844401 0.2559961 0.3816164 -0.03355612 0.278143 0.2480507 0.3020266 0.106337 -0.0297841 0.1431292 -0.01685699 0.1276965 0.2207579 0.2146401 0.1017644 -0.03925646 0.106337 0.1285704 -0.03704645 -0.03355612 0.2207579 0.06281638 -0.03925646 0.2786932 0.2088769 0.1165448 -0.04346571 NA 0.2894758 0.2088769 0.1354737 0.3952382 0.1517014 0.1285704 -0.02559961 -0.03925646 0.2146401 0.2272718 -0.01456311 0.3318467 0.3816164 0.2519528 0.3160424 0.1725603 0.2497205 -0.02559961 0.4246895 0.1431292 0.2767356 0.3160424 0.2088769 0.1222934 0.3498734 0.2011124 0.2342302 -0.008367493 0.1982771 0.2416904 0.3707202 -0.008367493 0.2011124 0.2011124 0.2201484 0.1517014 0.4339925 0.5075873 0.2443472 0.2767356 -0.01456311 0.4610437 0.3236246 0.2443472 0.1725603 0.2767356 0.2443472 0.3236246 0.4610437 0.2011124 0.1855814 0.40133 0.1614107 0.3160424 0.1431292 0.2767356 0.5075873 0.814522 0.2416904 0.1517014 0.5075873 0.2497205 0.3318467 0.1517014 0.5703282 0.1285704 0.1855814 NA 0.1725603 0.1285704 0.3952382 0.3318467 0.1614107 0.106337 0.2011124 0.2894758 -0.05036141 0.40133 -0.02559961 0.1285704 -0.01889283 0.1614107 -0.01186197 -0.01186197 -0.008367493 0.3952382 0.2201484 0.40133 -0.01186197 -0.01685699 -0.01456311 0.1614107 0.1614107 0.2443472 -0.008367493 -0.008367493 -0.01685699 0.2767356 0.4610437 -0.01186197 0.1725603 0.5075873 -0.008367493 0.2201484 -0.01186197 -0.01456311 0.2767356 0.5075873 0.2767356 -0.008367493 0.5703282 0.6618123 0.814522 0.3236246 0.2443472 -0.008367493 0.3236246 -0.01456311 NA 0.40133 -0.01186197 0.1285704 NA -0.02246469 NA -0.008367493 0.6618123 -0.02844401 -0.01186197 -0.01186197 NA -0.01456311 0.5745678 NA 0.3236246 0.5745678 0.5745678 0.40133 0.40133 0.5745678 0.5745678 0.2443472 0.5745678 0.2201484 0.2201484 -0.008367493 -0.008367493 -0.008367493 0.3236246 0.3236246 NA NA -0.008367493 -0.008367493 0.5745678 -0.008367493 0.5745678 NA NA -0.008367493 NA NA NA NA 0.5745678 -0.008367493 -0.008367493 -0.008367493 0.1165345 0.2907889 0.5185618 0.1567745 0.1165345 0.2536243 0.205424 0.2957304 0.03764441 -0.01928548 -0.008446706 0.3598386 0.3072836 0.1567745 0.341688 0.1402234 0.046791 0.1789439 0.4142398 0.1327822 0.209715 -0.002455395 0.1441668 0.08159447 0.3248416 0.2281404 0.2190312 0.2588739 0.1320408 0.209715 0.05418435 0.1489238 0.1789439 0.4504311 0.3037498 0.2479926 0.2880131 0.1568975 0.1681857 0.1568975 NA 0.3952846 0.4778591 0.2033967 0.2943135 0.3859065 0.1906244 0.1029084 0.3059685 0.3825223 0.5214178 -0.03704645 0.4622838 0.1402234 0.3782754 0.4374111 0.01889334 0.3312973 0.2709385 0.5116011 0.07085568 0.3305469 0.2174778 0.2638847 0.3771734 0.01108711 0.1324357 0.4219203 -0.0212857 0.297688 0.3775245 0.3549535 -0.0212857 0.5116011 0.3220184 0.3557581 0.1567745 0.4432498 0.3983692 0.3983692 0.2060707 0.106337 0.3557581 0.393104 0.2867618 0.4389686 0.2060707 0.2867618 0.2497205 0.457892 0.3220184 0.3832029 0.3201918 0.2507982 0.6573443 0.7306554 0.2060707 0.2867618 0.1450083 0.7928014 0.3095291 0.2867618 0.5136707 0.3859065 0.3095291 0.4550232 0.1906244 0.205424 NA 0.3549535 0.3270645 0.4720924 0.3859065 0.4905092 0.3920884 0.5116011 0.5999447 0.2557652 0.3201918 0.4389686 0.5999447 0.1751543 0.2507982 -0.03017515 -0.03017515 -0.0212857 0.205424 0.2536243 0.1450083 0.1450083 0.2060707 0.2497205 0.1708945 0.2507982 0.1751543 0.2258649 0.2258649 0.3305469 0.08159447 0.457892 0.3201918 0.3549535 0.5099767 0.2258649 0.457892 0.1450083 0.2497205 0.3305469 0.1751543 0.08159447 -0.0212857 0.08159447 0.106337 0.1450083 0.106337 0.2867618 -0.0212857 0.393104 0.393104 NA 0.3201918 0.1450083 0.5317247 NA 0.5116011 NA -0.0212857 0.2497205 0.2331518 0.1450083 0.1450083 NA 0.2497205 0.2258649 NA 0.106337 0.2258649 0.2258649 0.1450083 0.3201918 0.2258649 0.2258649 0.2867618 0.2258649 0.457892 0.457892 0.2258649 0.2258649 0.2258649 0.106337 0.2497205 NA NA 0.2258649 0.2258649 0.2258649 -0.0212857 0.2258649 NA NA 0.2258649 NA NA NA NA 0.2258649 0.2258649 0.2258649 0.2258649 -0.02786763 0.1156366 0.205777 0.1234662 0.1541428 -0.02401489 -0.02786763 0.1345642 -0.02600318 -0.03884166 -0.03597466 0.1637349 0.05612297 -0.03292432 0.1152351 0.07730207 -0.03884166 -0.03884166 0.198352 -0.03597466 -0.04288176 -0.0344755 -0.0344755 -0.0195122 0.1756917 -0.04791192 0.06246814 0.1987767 -0.04543988 0.08159447 -0.03742827 0.08159447 0.0964568 0.2934605 0.0399596 -0.04543988 0.1310526 0.05922159 0.09112183 -0.05031214 NA 0.3816347 0.278289 0.1086158 0.3361533 -0.03292432 0.1022594 -0.02963189 0.0732718 0.1740565 0.3017896 -0.01685699 0.4362472 0.1987767 0.2020027 0.4158607 -0.02963189 0.2060707 0.1423977 0.5562822 -0.0344755 0.2353659 0.1156366 0.1687553 0.3670537 -0.03131313 0.168092 0.3106952 -0.009685486 0.2647784 0.4417261 0.3144273 -0.009685486 0.3621871 0.168092 0.1851148 0.2798567 0.3670537 0.4351871 -0.0218687 0.4902439 0.2767356 0.3942445 0.5703282 0.2066592 0.1423977 0.4902439 -0.0218687 0.5703282 0.3942445 0.3621871 0.1541428 0.7036825 0.4595202 0.4158607 0.2657486 0.2353659 0.4351871 -0.01373039 0.3202514 0.4362472 0.4351871 0.3305469 0.4362472 0.1234662 0.4902439 0.5213224 0.3361533 NA 0.1423977 0.5213224 0.5181637 0.4362472 0.2959091 0.4550232 0.168092 0.3816347 0.0399596 0.7036825 0.3144273 0.241947 0.4351871 -0.03131313 -0.01373039 -0.01373039 -0.009685486 0.1541428 0.1851148 -0.01373039 0.3449761 -0.0195122 0.2767356 -0.03131313 0.132298 0.4351871 0.4963811 -0.009685486 0.2353659 -0.0195122 0.3942445 0.3449761 0.4864568 0.2066592 -0.009685486 0.1851148 -0.01373039 0.2767356 -0.0195122 -0.0218687 -0.0195122 -0.009685486 -0.0195122 -0.01685699 -0.01373039 0.2767356 -0.0218687 -0.009685486 0.5703282 0.2767356 NA 0.7036825 0.3449761 -0.03742827 NA 0.3621871 NA -0.009685486 0.2767356 0.1234662 -0.01373039 -0.01373039 NA 0.2767356 0.4963811 NA 0.2767356 0.4963811 0.4963811 0.3449761 0.7036825 0.4963811 0.4963811 -0.0218687 0.4963811 0.3942445 0.3942445 0.4963811 -0.009685486 0.4963811 0.2767356 -0.01685699 NA NA -0.009685486 0.4963811 0.4963811 -0.009685486 0.4963811 NA NA -0.009685486 NA NA NA NA 0.4963811 0.4963811 -0.009685486 -0.009685486 -0.02407543 0.1431292 0.1517014 0.1517014 0.1855814 -0.02074697 -0.02407543 0.1721076 -0.02246469 -0.03355612 -0.03107926 0.2034328 0.0794752 -0.02844401 0.1517014 0.1017644 -0.03355612 -0.03355612 0.145797 -0.03107926 -0.03704645 -0.0297841 -0.0297841 -0.01685699 0.1276965 -0.04139211 0.08610203 0.2416904 -0.03925646 0.106337 -0.03233506 0.106337 0.1222934 0.2207579 0.06281638 -0.03925646 0.1683771 0.08270559 0.1165448 -0.04346571 NA 0.2894758 0.2088769 0.1354737 0.3952382 -0.02844401 0.1285704 -0.02559961 -0.03925646 0.2146401 0.2272718 -0.01456311 0.3318467 0.2416904 0.1487015 0.3160424 -0.02559961 0.2497205 0.1725603 0.4246895 -0.0297841 0.2767356 0.1431292 0.2088769 0.278143 -0.02705207 0.2011124 0.2342302 -0.008367493 0.1982771 0.2416904 0.1725603 -0.008367493 0.2011124 0.2011124 0.2201484 0.3318467 0.278143 0.5075873 -0.01889283 0.8639208 0.3236246 0.4610437 0.6618123 0.2443472 0.1725603 0.8639208 -0.01889283 0.6618123 0.4610437 0.2011124 0.1855814 0.814522 0.3498734 0.3160424 0.1431292 0.2767356 0.5075873 -0.01186197 0.2416904 0.3318467 0.7708273 0.2497205 0.3318467 -0.02844401 0.5703282 0.2894758 0.1855814 NA 0.1725603 0.2894758 0.3952382 0.3318467 0.1614107 0.2497205 0.2011124 0.2894758 0.06281638 0.814522 0.1725603 0.1285704 -0.01889283 -0.02705207 -0.01186197 -0.01186197 -0.008367493 0.1855814 0.2201484 -0.01186197 -0.01186197 -0.01685699 -0.01456311 -0.02705207 0.1614107 0.2443472 -0.008367493 -0.008367493 0.2767356 -0.01685699 0.4610437 -0.01186197 0.3707202 0.2443472 -0.008367493 -0.02074697 -0.01186197 -0.01456311 -0.01685699 -0.01889283 -0.01685699 -0.008367493 -0.01685699 -0.01456311 -0.01186197 0.3236246 -0.01889283 -0.008367493 0.6618123 0.3236246 NA 0.814522 -0.01186197 -0.03233506 NA 0.2011124 NA -0.008367493 0.3236246 -0.02844401 -0.01186197 -0.01186197 NA -0.01456311 0.5745678 NA 0.3236246 0.5745678 0.5745678 0.40133 0.814522 0.5745678 0.5745678 -0.01889283 0.5745678 0.2201484 0.2201484 -0.008367493 -0.008367493 -0.008367493 0.3236246 -0.01456311 NA NA -0.008367493 -0.008367493 0.5745678 -0.008367493 0.5745678 NA NA -0.008367493 NA NA NA NA 0.5745678 0.5745678 -0.008367493 -0.008367493 0.05187362 0.1919099 0.443596 0.205455 0.1551268 0.07436147 0.25838 0.4956658 0.06216667 0.1586491 0.1797488 0.5155444 0.3934495 0.5603318 0.3922323 0.2631174 0.2354029 0.1586491 0.5293672 0.4258242 0.3446256 0.1919099 0.1919099 -0.03597466 0.383236 0.492639 0.4158631 0.6765876 0.2529438 0.3446256 0.08948103 0.2740111 0.3121567 0.6217445 0.3941703 0.3876324 0.3774449 0.1557902 0.2983919 0.3422032 NA 0.2479686 0.5286163 0.2617739 0.3616332 0.2941742 0.4857 0.4333233 0.5896652 0.4158631 0.5069881 0.3020266 0.3828934 0.1942057 0.435995 0.2770674 0.04295877 0.556469 0.1405499 0.3924929 0.1067524 0.1086158 0.02159496 0.4043409 0.3121567 -0.05773207 0.06216667 0.3876324 -0.01785714 0.4431533 0.4009408 0.1405499 -0.01785714 0.2823842 0.2823842 0.4302747 0.4716126 0.3889106 0.3486073 0.4782496 0.2532063 0.4685796 0.311637 0.4685796 0.2189651 0.4333233 0.2532063 0.3486073 0.3020266 0.4302747 0.2823842 0.25838 0.3816684 0.4991603 0.5325399 0.4473824 0.2532063 0.3486073 -0.02531474 0.4698525 0.205455 0.2189651 0.6270834 0.2941742 0.2941742 0.3977967 0.2479686 0.25838 NA 0.3357321 0.3272124 0.25838 0.3828934 0.2207141 0.3446256 0.3924929 0.5649438 0.171216 0.3816684 0.3357321 0.4857 0.2189651 -0.05773207 0.1781768 -0.02531474 -0.01785714 0.05187362 0.1929992 0.1781768 0.3816684 0.2532063 0.3020266 0.2207141 0.4063449 0.4782496 0.2692308 -0.01785714 0.2532063 -0.03597466 0.4302747 0.1781768 0.238141 0.3486073 -0.01785714 0.1929992 -0.02531474 0.3020266 -0.03597466 -0.04031935 -0.03597466 -0.01785714 -0.03597466 -0.03107926 -0.02531474 0.1354737 0.2189651 0.2692308 0.3020266 0.3020266 NA 0.3816684 0.1781768 0.4857 NA 0.6127105 NA -0.01785714 0.1354737 0.2941742 0.1781768 -0.02531474 NA 0.1354737 0.2692308 NA 0.3020266 0.2692308 0.2692308 0.1781768 0.3816684 0.2692308 0.2692308 0.3486073 0.2692308 0.311637 0.4302747 0.2692308 -0.01785714 0.2692308 0.3020266 -0.03107926 NA NA -0.01785714 0.2692308 0.2692308 0.2692308 0.2692308 NA NA -0.01785714 NA NA NA NA 0.2692308 0.2692308 -0.01785714 -0.01785714 -0.01960996 -0.02425981 0.2085144 -0.02316827 -0.01960996 -0.01689886 -0.01960996 0.09469046 -0.01829798 -0.0273322 -0.02531474 0.1152174 0.1152174 -0.02316827 0.08108894 -0.03108349 -0.0273322 0.1630821 0.2020427 -0.02531474 -0.03017515 -0.02425981 -0.02425981 -0.01373039 0.1824897 0.1264304 0.1224805 0.1398757 -0.03197525 -0.03017515 -0.02633762 -0.03017515 0.1630821 0.2865757 0.09725822 0.1350954 0.09221946 0.1187502 -0.02830161 0.1187502 NA 0.1702539 0.2729041 -0.02531474 -0.01960996 -0.02316827 0.1702539 0.221257 0.3021661 -0.03456506 0.2941028 -0.01186197 0.4170288 -0.03108349 0.07907048 0.1870027 -0.02085144 -0.03017515 0.221257 0.2548647 -0.02425981 -0.01373039 -0.02425981 0.1187502 0.3534965 -0.0220345 -0.01829798 0.1350954 -0.006815507 0.2607766 0.1398757 0.221257 -0.006815507 0.2548647 -0.01829798 -0.01689886 -0.02316827 0.3534965 -0.01538862 -0.01538862 -0.01373039 -0.01186197 -0.01689886 -0.01186197 -0.01538862 0.221257 -0.01373039 -0.01538862 -0.01186197 -0.01689886 0.5280274 -0.01960996 -0.009661836 0.2082261 0.1870027 0.1870027 -0.01373039 -0.01538862 -0.009661836 0.3108349 0.1969303 -0.01538862 0.3201918 0.1969303 0.1969303 -0.01373039 0.1702539 0.2365452 NA -0.02085144 0.3668454 0.2365452 0.1969303 0.2082261 0.3201918 -0.01829798 0.1702539 0.09725822 -0.009661836 0.4633654 0.3668454 0.3062336 -0.0220345 -0.009661836 -0.009661836 -0.006815507 -0.01960996 -0.01689886 -0.009661836 0.4951691 -0.01373039 0.814522 0.2082261 -0.0220345 0.3062336 0.705405 -0.006815507 -0.01373039 -0.01373039 -0.01689886 0.4951691 0.221257 -0.01538862 -0.006815507 0.277423 -0.009661836 0.40133 -0.01373039 -0.01538862 -0.01373039 -0.006815507 -0.01373039 -0.01186197 -0.009661836 -0.01186197 -0.01538862 -0.006815507 -0.01186197 -0.01186197 NA -0.009661836 0.4951691 0.1702539 NA 0.2548647 NA -0.006815507 -0.01186197 0.1969303 -0.009661836 -0.009661836 NA 0.40133 -0.006815507 NA -0.01186197 -0.006815507 -0.006815507 -0.009661836 -0.009661836 -0.006815507 -0.006815507 0.3062336 -0.006815507 0.277423 0.5717448 0.705405 -0.006815507 0.705405 -0.01186197 -0.01186197 NA NA -0.006815507 0.705405 -0.006815507 -0.006815507 -0.006815507 NA NA -0.006815507 NA NA NA NA -0.006815507 -0.006815507 -0.006815507 -0.006815507 0.1150427 0.2039054 0.290408 0.2161176 0.2643839 0.3136289 0.1150427 0.1656166 -0.03200376 0.1742223 0.1929992 0.2015189 0.2898155 0.08779776 0.2161176 0.3443182 0.2852359 0.06320869 0.2805426 0.1929992 0.04935655 0.2039054 0.3270737 -0.02401489 0.25055 0.1277645 0.1226631 0.2446471 0.2362862 0.1514904 0.1831646 0.1514904 0.1742223 0.1277645 0.3313437 0.2362862 0.2398743 0.2076979 0.1660327 0.2076979 NA 0.1831646 0.3874446 0.1929992 0.1150427 0.08779776 0.06854962 -0.03646984 0.3336902 0.3973409 0.3237771 0.2201484 0.2161176 0.2446471 0.211844 0.450242 0.1046819 0.2536243 0.1046819 0.127253 0.450242 -0.02401489 0.3270737 0.3874446 0.2852359 0.3641941 0.4457666 0.5284982 0.4033116 0.3692886 0.4439892 0.3869855 -0.01192054 0.127253 0.127253 0.1420361 0.08779776 0.1742223 -0.02691519 0.160594 -0.02401489 0.2201484 0.1420361 -0.02074697 0.160594 0.1046819 -0.02401489 0.160594 -0.02074697 -0.02955665 0.127253 0.1150427 -0.01689886 0.2299497 0.08073711 0.08073711 0.1851148 0.160594 -0.01689886 0.04530502 0.08779776 -0.02691519 0.1514904 0.2161176 0.601077 -0.02401489 0.5270095 0.1150427 NA 0.2458337 0.1831646 0.2643839 0.3444374 0.09570532 0.457892 0.127253 0.06854962 0.008871833 -0.01689886 0.1046819 0.06854962 0.160594 0.2299497 -0.01689886 -0.01689886 -0.01192054 0.2643839 0.3136289 0.277423 0.5717448 0.1851148 0.4610437 0.09570532 0.2299497 0.3481032 0.4033116 -0.01192054 0.1851148 -0.02401489 -0.02955665 0.277423 0.1046819 -0.02691519 -0.01192054 0.1420361 -0.01689886 0.4610437 -0.02401489 -0.02691519 -0.02401489 -0.01192054 0.1851148 -0.02074697 -0.01689886 -0.02074697 -0.02691519 -0.01192054 -0.02074697 0.2201484 NA -0.01689886 0.277423 0.1831646 NA 0.127253 NA 0.4033116 -0.02074697 0.2161176 -0.01689886 -0.01689886 NA 0.2201484 -0.01192054 NA -0.02074697 -0.01192054 -0.01192054 -0.01689886 -0.01689886 -0.01192054 -0.01192054 -0.02691519 -0.01192054 0.3136289 0.1420361 0.4033116 -0.01192054 0.4033116 0.2201484 -0.02074697 NA NA -0.01192054 0.4033116 -0.01192054 0.4033116 -0.01192054 NA NA 0.4033116 NA NA NA NA -0.01192054 -0.01192054 -0.01192054 -0.01192054 0.1319604 0.09595386 0.3321056 0.2435441 0.1319604 0.160594 0.1319604 0.1073391 -0.0291436 0.07777826 -0.04031935 0.135266 0.135266 -0.03690062 0.2509242 0.1683251 0.07777826 0.07777826 0.2422053 0.08932288 0.06354684 -0.03863914 0.09595386 -0.0218687 0.2156592 0.04832846 0.1450515 0.1683251 -0.05092769 0.06354684 0.08329777 0.06354684 0.07777826 0.4564355 0.1108574 0.05551119 0.2756825 0.1400312 0.1904487 -0.05638839 NA 0.3337904 0.3364507 0.3486073 0.6215413 0.2435441 0.2085441 -0.03321056 -0.05092769 0.3451555 0.2601249 -0.01889283 0.3837665 0.3861575 0.2464911 0.4997329 0.121034 0.3983692 0.121034 0.6669722 0.09595386 0.2066592 0.2305469 0.3364507 0.1990891 0.1116016 0.3189143 0.3748278 -0.01085521 0.2256026 0.3861575 0.2752786 -0.01085521 0.4929432 0.4929432 0.5356124 0.3837665 0.3204 0.795098 0.3852941 0.6637151 0.2443472 0.7231216 0.7708273 0.3852941 0.2752786 0.4351871 0.3852941 0.5075873 0.5356124 0.1448853 0.4583476 0.6278558 0.2582981 0.4997329 0.3651399 0.4351871 0.5901961 0.3062336 0.3861575 0.2435441 0.5901961 0.3983692 0.3837665 0.2435441 0.892243 0.3337904 0.1319604 NA 0.4295232 0.2085441 0.4583476 0.3837665 0.4049946 0.3983692 0.4929432 0.4590366 0.1989533 0.6278558 0.2752786 0.3337904 -0.0245098 0.1116016 -0.01538862 -0.01538862 -0.01085521 0.295154 0.160594 0.3062336 -0.01538862 0.2066592 -0.01889283 0.1116016 0.4049946 0.3852941 -0.01085521 -0.01085521 0.4351871 0.2066592 0.5356124 -0.01538862 0.2752786 0.3852941 -0.01085521 0.3481032 -0.01538862 -0.01889283 0.2066592 0.1803922 0.4351871 -0.01085521 0.2066592 0.2443472 0.3062336 0.5075873 0.1803922 -0.01085521 0.5075873 0.5075873 NA 0.6278558 -0.01538862 0.2085441 NA 0.1448853 NA -0.01085521 0.5075873 -0.03690062 -0.01538862 -0.01538862 NA -0.01889283 0.4428926 NA 0.2443472 0.4428926 0.4428926 0.3062336 0.6278558 0.4428926 0.4428926 0.3852941 0.4428926 0.3481032 0.5356124 -0.01085521 -0.01085521 -0.01085521 0.2443472 0.2443472 NA NA -0.01085521 -0.01085521 0.4428926 -0.01085521 0.4428926 NA NA -0.01085521 NA NA NA NA 0.4428926 0.4428926 -0.01085521 -0.01085521 -0.02786763 0.1156366 0.205777 0.1234662 0.1541428 -0.02401489 -0.02786763 0.1345642 -0.02600318 -0.03884166 -0.03597466 0.1637349 0.05612297 -0.03292432 0.1152351 0.07730207 -0.03884166 -0.03884166 0.198352 -0.03597466 -0.04288176 -0.0344755 -0.0344755 -0.0195122 0.1756917 -0.04791192 0.06246814 0.1987767 -0.04543988 0.08159447 -0.03742827 0.08159447 0.0964568 0.2934605 0.0399596 -0.04543988 0.1310526 0.05922159 0.09112183 -0.05031214 NA 0.3816347 0.278289 0.1086158 0.3361533 -0.03292432 0.1022594 -0.02963189 0.0732718 0.1740565 0.3017896 -0.01685699 0.4362472 0.1987767 0.2020027 0.4158607 -0.02963189 0.2060707 0.1423977 0.5562822 -0.0344755 0.2353659 0.1156366 0.1687553 0.3670537 -0.03131313 0.168092 0.3106952 -0.009685486 0.2647784 0.4417261 0.3144273 -0.009685486 0.3621871 0.168092 0.1851148 0.2798567 0.3670537 0.4351871 -0.0218687 0.4902439 0.2767356 0.3942445 0.5703282 0.2066592 0.1423977 0.4902439 -0.0218687 0.5703282 0.3942445 0.3621871 0.1541428 0.7036825 0.4595202 0.4158607 0.2657486 0.2353659 0.4351871 -0.01373039 0.3202514 0.4362472 0.4351871 0.3305469 0.4362472 0.1234662 0.4902439 0.5213224 0.3361533 NA 0.1423977 0.5213224 0.5181637 0.4362472 0.2959091 0.4550232 0.168092 0.3816347 0.0399596 0.7036825 0.3144273 0.241947 0.4351871 -0.03131313 -0.01373039 -0.01373039 -0.009685486 0.1541428 0.1851148 -0.01373039 0.3449761 -0.0195122 0.2767356 -0.03131313 0.132298 0.4351871 0.4963811 -0.009685486 0.2353659 -0.0195122 0.3942445 0.3449761 0.4864568 0.2066592 -0.009685486 0.1851148 -0.01373039 0.2767356 -0.0195122 -0.0218687 -0.0195122 -0.009685486 -0.0195122 -0.01685699 -0.01373039 0.2767356 -0.0218687 -0.009685486 0.5703282 0.2767356 NA 0.7036825 0.3449761 -0.03742827 NA 0.3621871 NA -0.009685486 0.2767356 0.1234662 -0.01373039 -0.01373039 NA 0.2767356 0.4963811 NA 0.2767356 0.4963811 0.4963811 0.3449761 0.7036825 0.4963811 0.4963811 -0.0218687 0.4963811 0.3942445 0.3942445 0.4963811 -0.009685486 0.4963811 0.2767356 -0.01685699 NA NA -0.009685486 0.4963811 0.4963811 -0.009685486 0.4963811 NA NA -0.009685486 NA NA NA NA 0.4963811 0.4963811 -0.009685486 -0.009685486 -0.03123323 0.3651399 0.2509242 0.2435441 0.295154 0.160594 0.1319604 0.1942921 -0.0291436 0.1990891 0.2189651 0.3282393 0.2317527 0.1033217 0.2509242 0.2772413 0.1990891 -0.04353261 0.321798 0.08932288 0.06354684 0.3651399 0.2305469 -0.0218687 0.2906555 0.1503552 0.2451035 0.3861575 0.05551119 0.06354684 0.2085441 0.1751543 0.1990891 0.252382 0.1989533 0.2683889 0.2756825 0.2382409 0.1904487 0.2382409 NA 0.3337904 0.3364507 0.08932288 0.295154 0.2435441 0.2085441 -0.03321056 0.3748278 0.3451555 0.3642745 0.2443472 0.5239888 0.2772413 0.3268602 0.3651399 0.121034 0.2867618 -0.03321056 0.3189143 0.2305469 0.2066592 0.2305469 0.3364507 0.1990891 0.1116016 0.1448853 0.4812667 -0.01085521 0.3204737 0.3861575 0.4295232 -0.01085521 0.3189143 0.1448853 0.160594 0.2435441 0.3204 0.1803922 0.1803922 0.2066592 0.2443472 0.160594 0.2443472 0.1803922 0.121034 0.2066592 0.1803922 0.2443472 0.160594 0.3189143 0.1319604 0.3062336 0.4049946 0.2305469 0.09595386 0.2066592 0.3852941 -0.01538862 0.1683251 0.2435441 0.1803922 0.2867618 0.3837665 0.3837665 0.2066592 0.4590366 0.295154 NA 0.121034 0.3337904 0.4583476 0.3837665 0.1116016 0.2867618 0.1448853 0.2085441 0.0227616 0.3062336 0.121034 0.08329777 0.1803922 0.1116016 -0.01538862 -0.01538862 -0.01085521 0.295154 0.3481032 0.3062336 0.6278558 0.2066592 0.2443472 0.1116016 0.2582981 0.5901961 0.4428926 -0.01085521 -0.0218687 -0.0218687 0.160594 0.3062336 0.2752786 0.1803922 -0.01085521 0.160594 -0.01538862 0.5075873 -0.0218687 -0.0245098 -0.0218687 -0.01085521 -0.0218687 -0.01889283 -0.01538862 0.2443472 -0.0245098 -0.01085521 0.2443472 -0.01889283 NA 0.3062336 0.3062336 0.08329777 NA 0.1448853 NA -0.01085521 -0.01889283 0.2435441 -0.01538862 -0.01538862 NA 0.2443472 0.4428926 NA 0.2443472 0.4428926 0.4428926 0.3062336 0.3062336 0.4428926 0.4428926 -0.0245098 0.4428926 0.3481032 0.3481032 0.4428926 -0.01085521 0.4428926 0.5075873 -0.01889283 NA NA -0.01085521 0.4428926 0.4428926 0.4428926 0.4428926 NA NA -0.01085521 NA NA NA NA 0.4428926 -0.01085521 -0.01085521 -0.01085521 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 0.165154 0.1159052 0.3102559 0.2181486 0.05795777 0.2039054 0.3795465 0.2948737 0.182683 0.09074166 0.1919099 0.3526769 0.3526769 0.4023631 0.2569306 0.208126 0.1704266 0.09074166 0.3504621 0.3622249 0.3641 0.1159052 0.3811337 -0.0344755 0.2611618 0.3174529 0.3075351 0.3512125 0.1993777 0.2907889 0.180679 0.2174778 0.2501115 0.5185064 0.3020718 0.1294617 0.2879568 0.1691474 0.3157088 0.2981686 NA 0.09840903 0.4271898 0.3622249 0.3795465 0.4023631 0.3452189 0.1502802 0.2692937 0.5046972 0.3963983 0.3160424 0.2181486 0.208126 0.251329 0.2043147 0.1502802 0.5107222 0.04896225 0.2969965 0.1159052 -0.0344755 0.02749577 0.233658 0.09074166 0.04103361 0.182683 0.2692937 -0.01711299 0.2185587 0.3512125 0.04896225 -0.01711299 0.2969965 0.4113101 0.5734103 0.3102559 0.2501115 0.3651399 0.6343258 0.1156366 0.4889557 0.3270737 0.3160424 0.3651399 0.454234 0.1156366 0.4997329 0.1431292 0.450242 -0.04594422 0.3795465 0.1870027 0.2337533 0.4695431 0.4695431 0.4158607 0.3651399 0.1870027 0.3512125 0.03393423 0.2305469 0.4374111 0.2181486 0.3102559 0.4158607 0.09840903 -0.04923846 NA 0.454234 0.09840903 0.165154 0.3102559 0.3301131 0.1441668 0.5256237 0.4274888 0.1863376 0.1870027 0.1502802 0.4274888 0.09595386 0.04103361 -0.02425981 -0.02425981 -0.01711299 0.05795777 0.08073711 0.3982652 0.1870027 0.4158607 -0.0297841 0.1373934 0.4264729 0.2305469 -0.01711299 -0.01711299 0.2657486 0.2657486 0.450242 -0.02425981 0.04896225 0.3651399 -0.01711299 0.2039054 -0.02425981 0.1431292 0.1156366 0.09595386 0.1156366 -0.01711299 0.1156366 0.1431292 0.1870027 -0.0297841 0.3651399 0.2809382 0.1431292 0.3160424 NA 0.1870027 -0.02425981 0.4274888 NA 0.5256237 NA -0.01711299 0.3160424 0.1260414 0.1870027 0.1870027 NA -0.0297841 -0.01711299 NA 0.1431292 -0.01711299 -0.01711299 -0.02425981 0.1870027 -0.01711299 -0.01711299 0.3651399 -0.01711299 0.08073711 0.3270737 -0.01711299 -0.01711299 -0.01711299 0.1431292 0.1431292 NA NA -0.01711299 -0.01711299 -0.01711299 0.2809382 -0.01711299 NA NA -0.01711299 NA NA NA NA -0.01711299 0.2809382 -0.01711299 -0.01711299 -0.05744183 0.3157088 0.19087 0.09331421 0.2239334 0.05826613 0.03634991 0.2773689 -0.05359875 -0.01034133 0.0003565017 0.2265898 0.2265898 0.09331421 0.2375271 0.03414386 -0.01034133 0.05937927 0.2258748 0.1493742 0.1040419 0.006291968 0.006291968 -0.04021929 0.2759377 0.1357921 0.1862643 0.2845322 -0.03248916 0.03989806 -0.005166201 0.1040419 0.1290999 0.2530671 0.1329973 0.2122039 0.1714291 0.06562603 0.05246114 0.06562603 NA 0.3547458 0.347845 0.07486536 0.2239334 0.1739038 0.3547458 0.1162186 0.2733772 0.1287617 0.2629151 0.1165448 0.4156724 0.09674093 0.2778049 0.2383546 0.02757011 0.2323295 0.2935156 0.3464776 0.006291968 0.2224629 0.1610004 0.1220698 0.2685411 -0.06454384 0.04642035 0.3345505 -0.0199641 0.4912465 0.3471292 0.2048671 -0.0199641 0.2464585 0.2464585 0.1660327 0.1739038 0.4079823 0.1904487 0.07268603 0.2224629 0.2678359 0.1660327 0.2678359 0.3082113 0.2935156 0.2224629 0.1904487 0.2678359 0.1660327 0.3464776 0.2239334 0.3413882 0.4413185 0.2383546 0.1610004 0.2224629 0.3082113 -0.02830161 0.2219351 0.4156724 0.1904487 0.3606171 0.2544933 0.09331421 0.2224629 0.3547458 0.2239334 NA 0.2048671 0.7866402 0.3177251 0.1739038 0.1883873 0.2964733 0.2464585 0.2827634 0.1836283 0.3413882 0.2935156 0.1387986 0.3082113 -0.06454384 -0.02830161 0.1565433 -0.0199641 0.1301417 0.1660327 0.1565433 0.3413882 0.2224629 0.2678359 0.1883873 0.1883873 0.3082113 0.2408169 0.2408169 0.09112183 -0.04021929 0.1660327 0.3413882 0.2935156 0.1904487 0.2408169 0.1660327 0.1565433 0.419127 0.09112183 0.07268603 -0.04021929 -0.0199641 -0.04021929 -0.03474628 -0.02830161 0.1165448 -0.04507661 -0.0199641 0.419127 0.1165448 NA 0.3413882 0.1565433 0.210781 NA 0.1464394 NA -0.0199641 0.1165448 0.1739038 -0.02830161 -0.02830161 NA 0.2678359 0.2408169 NA 0.1165448 0.2408169 0.2408169 0.1565433 0.3413882 0.2408169 0.2408169 0.07268603 0.2408169 0.2737992 0.2737992 0.2408169 0.2408169 0.2408169 0.2678359 -0.03474628 NA NA 0.2408169 0.2408169 0.2408169 0.2408169 0.2408169 NA NA -0.0199641 NA NA NA NA 0.2408169 0.2408169 0.2408169 -0.0199641 0.1541428 0.1156366 0.2963189 -0.03292432 0.1541428 -0.02401489 -0.02786763 0.2315432 0.168092 0.2317553 0.2532063 0.2713468 0.2713468 -0.03292432 0.205777 0.1987767 0.0964568 -0.03884166 0.287122 -0.03597466 -0.04288176 0.1156366 0.2657486 -0.0195122 0.2593353 0.06587889 0.2856449 0.1987767 0.0732718 0.2060707 0.241947 0.3305469 0.2317553 0.1796697 0.2364668 0.0732718 0.2268219 0.1687553 0.3538041 0.1687553 NA 0.3816347 0.278289 0.1086158 0.1541428 -0.03292432 0.1022594 -0.02963189 0.1919835 0.1740565 0.3017896 -0.01685699 0.2798567 0.3202514 0.2020027 0.4158607 0.1423977 0.2060707 0.1423977 0.3621871 0.1156366 -0.0195122 0.1156366 0.278289 0.2317553 0.132298 0.3621871 0.3106952 -0.009685486 0.2647784 0.3202514 0.3144273 -0.009685486 0.3621871 0.168092 0.1851148 0.1234662 0.2317553 0.2066592 -0.0218687 0.2353659 0.2767356 0.1851148 0.2767356 0.2066592 0.1423977 0.2353659 -0.0218687 0.2767356 0.1851148 0.168092 0.1541428 0.3449761 0.2959091 0.2657486 0.2657486 0.2353659 0.2066592 -0.01373039 0.1987767 0.2798567 0.2066592 0.2060707 0.4362472 0.2798567 0.2353659 0.3816347 0.1541428 NA 0.1423977 0.241947 0.5181637 0.4362472 0.2959091 0.3305469 0.168092 0.241947 0.0399596 0.3449761 0.3144273 0.241947 0.2066592 -0.03131313 -0.01373039 -0.01373039 -0.009685486 0.1541428 -0.02401489 -0.01373039 0.3449761 -0.0195122 0.2767356 0.132298 0.2959091 0.2066592 0.4963811 -0.009685486 0.2353659 -0.0195122 0.1851148 0.3449761 0.3144273 -0.0218687 -0.009685486 0.1851148 -0.01373039 0.2767356 -0.0195122 -0.0218687 0.2353659 -0.009685486 -0.0195122 -0.01685699 -0.01373039 -0.01685699 -0.0218687 -0.009685486 0.2767356 0.2767356 NA 0.3449761 0.3449761 -0.03742827 NA 0.3621871 NA -0.009685486 0.2767356 0.1234662 -0.01373039 -0.01373039 NA 0.2767356 -0.009685486 NA -0.01685699 -0.009685486 -0.009685486 -0.01373039 0.3449761 -0.009685486 -0.009685486 -0.0218687 -0.009685486 0.1851148 0.3942445 0.4963811 -0.009685486 0.4963811 -0.01685699 -0.01685699 NA NA -0.009685486 0.4963811 -0.009685486 -0.009685486 -0.009685486 NA NA -0.009685486 NA NA NA NA -0.009685486 0.4963811 -0.009685486 -0.009685486 0.1014667 0.06836937 0.3948931 0.1943125 0.1014667 0.127253 0.1014667 0.2901061 0.1131542 0.1543026 0.1722754 0.2591778 0.3411266 0.1943125 0.1880444 0.2186496 0.1543026 0.1543026 0.3150365 0.2823842 0.03764441 0.182683 0.182683 -0.02600318 0.2819101 0.1961121 0.2744471 0.3111552 0.120247 0.3220184 0.1628711 0.2272271 0.1543026 0.2827662 0.3712472 0.30105 0.2840445 0.09977548 0.2464585 0.1831878 NA 0.2692462 0.516837 0.2823842 0.1014667 0.1943125 0.1628711 0.09151492 0.3914515 0.444401 0.4685267 0.2011124 0.1943125 0.126144 0.3203963 0.4113101 -0.03948931 0.3220184 0.2225192 0.2609618 0.182683 -0.02600318 0.182683 0.3500124 0.4634007 0.207457 0.4087694 0.481853 0.3724732 0.3327161 0.4961663 0.2225192 -0.01290749 0.2609618 0.1131542 0.2865098 0.1943125 0.2573353 0.1448853 0.1448853 0.168092 0.4246895 0.2865098 0.2011124 0.1448853 0.2225192 0.168092 0.1448853 0.2011124 0.2865098 0.1131542 0.1014667 0.2548647 0.3320504 0.2969965 0.2969965 0.168092 0.1448853 -0.01829798 0.2186496 0.1943125 0.1448853 0.3220184 0.432502 0.432502 0.168092 0.3756214 0.1014667 NA 0.2225192 0.1628711 0.3786765 0.6706915 0.207457 0.5116011 0.1131542 0.2692462 0.1467805 0.2548647 0.2225192 0.2692462 0.3189143 0.207457 -0.01829798 -0.01829798 -0.01290749 0.1014667 0.127253 -0.01829798 0.2548647 -0.02600318 0.4246895 -0.04172985 0.207457 0.3189143 0.3724732 -0.01290749 0.3621871 -0.02600318 0.2865098 0.2548647 0.2225192 0.1448853 -0.01290749 0.127253 -0.01829798 0.2011124 -0.02600318 -0.0291436 -0.02600318 -0.01290749 0.168092 -0.02246469 -0.01829798 -0.02246469 0.3189143 0.3724732 0.2011124 0.4246895 NA 0.2548647 0.2548647 0.2692462 NA 0.5565771 NA 0.3724732 0.2011124 0.3134073 0.2548647 -0.01829798 NA 0.2011124 -0.01290749 NA -0.02246469 -0.01290749 -0.01290749 -0.01829798 0.2548647 -0.01290749 -0.01290749 0.1448853 -0.01290749 0.2865098 0.2865098 0.3724732 -0.01290749 0.3724732 -0.02246469 -0.02246469 NA NA -0.01290749 0.3724732 -0.01290749 -0.01290749 -0.01290749 NA NA 0.3724732 NA NA NA NA -0.01290749 0.3724732 -0.01290749 -0.01290749 0.1014667 0.06836937 0.3948931 0.07521774 -0.03713815 -0.03200376 0.2400716 0.2901061 0.1131542 0.05126986 0.06216667 0.3411266 0.3411266 0.432502 0.1880444 0.126144 0.1543026 0.05126986 0.3826368 0.2823842 0.2272271 0.06836937 0.182683 -0.02600318 0.2819101 0.2827662 0.2744471 0.4036608 0.2106485 0.3220184 0.0564959 0.2272271 0.1543026 0.5427287 0.296425 0.120247 0.2840445 0.09977548 0.2464585 0.2666001 NA 0.1628711 0.4334247 0.2823842 0.2400716 0.3134073 0.2692462 0.2225192 0.3914515 0.444401 0.4685267 0.2011124 0.1943125 0.126144 0.3203963 0.2969965 -0.03948931 0.5116011 0.09151492 0.4087694 -0.04594422 -0.02600318 -0.04594422 0.1831878 0.2573353 -0.04172985 0.1131542 0.30105 -0.01290749 0.2521395 0.4036608 0.09151492 -0.01290749 0.4087694 0.2609618 0.4457666 0.3134073 0.2573353 0.3189143 0.4929432 0.168092 0.4246895 0.2865098 0.4246895 0.1448853 0.3535234 0.168092 0.3189143 0.2011124 0.4457666 0.1131542 0.2400716 0.2548647 0.3320504 0.6399373 0.6399373 0.168092 0.1448853 -0.01829798 0.4036608 0.1943125 0.1448853 0.5116011 0.3134073 0.3134073 0.3621871 0.1628711 0.1014667 NA 0.3535234 0.1628711 0.2400716 0.432502 0.3320504 0.3220184 0.4087694 0.5883717 0.2216027 0.2548647 0.3535234 0.5883717 0.3189143 -0.04172985 -0.01829798 -0.01829798 -0.01290749 -0.03713815 -0.03200376 -0.01829798 0.2548647 0.168092 0.2011124 -0.04172985 0.3320504 0.3189143 0.3724732 -0.01290749 0.3621871 -0.02600318 0.4457666 0.2548647 0.2225192 0.3189143 -0.01290749 0.2865098 -0.01829798 0.2011124 -0.02600318 -0.0291436 -0.02600318 -0.01290749 -0.02600318 -0.02246469 -0.01829798 -0.02246469 0.3189143 0.3724732 0.2011124 0.4246895 NA 0.2548647 0.2548647 0.3756214 NA 0.8521924 NA -0.01290749 0.2011124 0.3134073 0.2548647 -0.01829798 NA 0.2011124 -0.01290749 NA -0.02246469 -0.01290749 -0.01290749 -0.01829798 0.2548647 -0.01290749 -0.01290749 0.3189143 -0.01290749 0.2865098 0.4457666 0.3724732 -0.01290749 0.3724732 -0.02246469 -0.02246469 NA NA -0.01290749 0.3724732 -0.01290749 -0.01290749 -0.01290749 NA NA -0.01290749 NA NA NA NA -0.01290749 0.3724732 -0.01290749 -0.01290749 -0.03713815 0.182683 0.3259435 0.1943125 0.2400716 -0.03200376 0.1014667 0.2162545 -0.03465347 -0.05176284 -0.04794209 0.2591778 0.177229 -0.04387702 0.2569939 0.126144 0.05126986 0.2573353 0.3150365 -0.04794209 0.03764441 -0.04594422 0.06836937 -0.02600318 0.2819101 0.1094579 0.1894702 0.2186496 -0.06055603 0.03764441 0.0564959 0.03764441 0.1543026 0.3694204 0.1467805 0.120247 0.2111142 0.1831878 0.04642035 0.01636318 NA 0.4819966 0.3500124 0.1722754 0.2400716 0.1943125 0.1628711 0.09151492 0.30105 0.1894702 0.4685267 -0.02246469 0.6706915 0.2186496 0.2521366 0.5256237 0.09151492 0.2272271 0.3535234 0.7043847 -0.04594422 0.5562822 0.2969965 0.2666001 0.5664334 0.08286355 0.2609618 0.3914515 -0.01290749 0.4132928 0.4961663 0.4845276 -0.01290749 0.4087694 0.4087694 0.2865098 0.1943125 0.5664334 0.4929432 -0.0291436 0.3621871 0.2011124 0.2865098 0.4246895 0.4929432 0.4845276 0.3621871 0.1448853 0.4246895 0.2865098 0.7043847 0.3786765 0.5280274 0.4566438 0.5256237 0.2969965 0.168092 0.4929432 -0.01829798 0.4961663 0.5515968 0.3189143 0.5116011 0.5515968 0.1943125 0.3621871 0.5883717 0.5172814 NA 0.3535234 0.5883717 0.6558863 0.432502 0.4566438 0.6063924 0.2609618 0.4819966 0.2216027 0.5280274 0.6155319 0.3756214 0.4929432 -0.04172985 -0.01829798 -0.01829798 -0.01290749 0.3786765 0.127253 -0.01829798 0.2548647 0.168092 0.4246895 0.3320504 0.207457 0.3189143 0.3724732 0.3724732 0.168092 -0.02600318 0.2865098 0.2548647 0.4845276 0.3189143 0.3724732 0.4457666 0.2548647 0.4246895 0.3621871 -0.0291436 0.168092 -0.01290749 -0.02600318 -0.02246469 -0.01829798 0.2011124 -0.0291436 -0.01290749 0.6482667 0.2011124 NA 0.5280274 0.2548647 0.2692462 NA 0.2609618 NA -0.01290749 0.2011124 0.1943125 -0.01829798 -0.01829798 NA 0.2011124 0.3724732 NA 0.2011124 0.3724732 0.3724732 0.2548647 0.5280274 0.3724732 0.3724732 0.1448853 0.3724732 0.4457666 0.4457666 0.3724732 -0.01290749 0.3724732 0.2011124 0.2011124 NA NA 0.3724732 0.3724732 0.3724732 -0.01290749 0.3724732 NA NA -0.01290749 NA NA NA NA 0.3724732 0.3724732 -0.01290749 -0.01290749 0.08052696 0.2515981 0.2666667 0.2666667 0.2033747 0.2458337 0.3262223 0.2370817 -0.03948931 0.03233322 0.04295877 0.2849697 0.2849697 0.2666667 0.2666667 0.2608746 0.1236527 0.03233322 0.3162029 0.238141 0.2709385 0.04896225 0.2515981 -0.02963189 0.2809252 0.2344511 0.22667 0.3428638 0.1713663 0.1869234 0.1317241 0.1869234 0.1236527 0.4648599 0.2430534 0.01111772 0.29598 0.2193128 0.2935156 0.1453832 NA 0.3202881 0.4411017 0.3357321 0.6947654 0.2666667 0.3202881 0.07111111 0.1713663 0.4526192 0.3995074 0.1725603 0.4777778 0.3428638 0.2613935 0.352916 0.1872222 0.6069987 0.07111111 0.4845276 0.1502802 0.1423977 0.1502802 0.2932424 0.1236527 0.06287589 0.2225192 0.3316148 -0.01470871 0.2771229 0.3428638 0.1872222 0.3268602 0.3535234 0.4845276 0.5281373 0.4777778 0.3062917 0.5837678 0.5837678 0.3144273 0.3707202 0.5281373 0.5688801 0.4295232 0.4194444 0.3144273 0.4295232 0.3707202 0.5281373 0.09151492 0.44907 0.4633654 0.2837341 0.6568698 0.5555519 0.4864568 0.5837678 0.221257 0.4248529 0.1611111 0.4295232 0.4389686 0.2666667 0.2666667 0.6584864 0.2260061 0.08052696 NA 0.4194444 0.2260061 0.3262223 0.2666667 0.2837341 0.1869234 0.7465361 0.508852 0.1104211 0.4633654 0.3033333 0.508852 -0.03321056 0.173305 -0.02085144 -0.02085144 -0.01470871 0.2033747 0.2458337 0.4633654 0.221257 0.3144273 -0.02559961 0.173305 0.6150213 0.2752786 -0.01470871 -0.01470871 0.3144273 0.1423977 0.6692891 -0.02085144 0.1872222 0.4295232 -0.01470871 0.2458337 -0.02085144 0.1725603 0.1423977 0.121034 0.1423977 0.3268602 0.1423977 0.1725603 0.221257 0.1725603 0.2752786 -0.01470871 0.3707202 0.3707202 NA 0.4633654 -0.02085144 0.4145701 NA 0.4845276 NA -0.01470871 0.3707202 0.05555556 0.221257 -0.02085144 NA -0.02559961 0.3268602 NA 0.1725603 0.3268602 0.3268602 0.221257 0.4633654 0.3268602 0.3268602 0.2752786 0.3268602 0.2458337 0.3869855 -0.01470871 -0.01470871 -0.01470871 0.3707202 0.1725603 NA NA -0.01470871 -0.01470871 0.3268602 0.3268602 0.3268602 NA NA -0.01470871 NA NA NA NA 0.3268602 0.3268602 -0.01470871 -0.01470871 0.1150427 0.08073711 0.3646984 0.2161176 0.1150427 -0.02955665 0.1150427 0.2451888 0.127253 0.06320869 0.07436147 0.2898155 0.2015189 0.2161176 0.1418272 0.1449761 0.06320869 0.06320869 0.3533792 0.1929992 0.04935655 0.08073711 0.08073711 -0.02401489 0.25055 0.1277645 0.2142224 0.3443182 0.04147825 0.2536243 0.06854962 0.1514904 0.1742223 0.50123 0.1701077 0.1388822 0.3184538 0.02795106 0.1660327 0.1178245 NA 0.2977795 0.477318 0.1929992 0.4137251 0.3444374 0.1831646 0.1046819 0.2362862 0.3973409 0.4190861 0.2201484 0.3444374 0.2446471 0.2853911 0.450242 -0.03646984 0.457892 0.1046819 0.6050234 -0.04243118 0.1851148 0.08073711 0.2975712 0.3962495 -0.03853906 0.127253 0.3336902 -0.01192054 0.2824705 0.5436603 0.2458337 -0.01192054 0.4457666 0.2865098 0.4852217 0.4727572 0.3962495 0.5356124 0.3481032 0.3942445 0.4610437 0.4852217 0.7019391 0.160594 0.2458337 0.3942445 0.3481032 0.4610437 0.4852217 0.2865098 0.2643839 0.5717448 0.4984385 0.5734103 0.450242 0.1851148 0.3481032 -0.01689886 0.4439892 0.3444374 0.3481032 0.5600258 0.4727572 0.3444374 0.6033742 0.2977795 0.2643839 NA 0.3869855 0.2977795 0.4137251 0.601077 0.3641941 0.457892 0.2865098 0.5270095 0.1701077 0.5717448 0.3869855 0.4123945 0.3481032 -0.03853906 -0.01689886 -0.01689886 -0.01192054 0.1150427 0.1420361 -0.01689886 0.277423 0.1851148 0.2201484 -0.03853906 0.2299497 0.5356124 0.4033116 -0.01192054 0.3942445 -0.02401489 0.4852217 0.277423 0.3869855 0.3481032 -0.01192054 0.3136289 -0.01689886 0.2201484 -0.02401489 -0.02691519 -0.02401489 -0.01192054 -0.02401489 -0.02074697 -0.01689886 0.2201484 0.3481032 0.4033116 0.4610437 0.4610437 NA 0.5717448 0.277423 0.2977795 NA 0.6050234 NA -0.01192054 0.2201484 0.2161176 0.277423 -0.01689886 NA 0.2201484 0.4033116 NA 0.2201484 0.4033116 0.4033116 0.277423 0.5717448 0.4033116 0.4033116 0.3481032 0.4033116 0.4852217 0.4852217 0.4033116 -0.01192054 0.4033116 0.2201484 -0.02074697 NA NA -0.01192054 0.4033116 0.4033116 -0.01192054 0.4033116 NA NA -0.01192054 NA NA NA NA 0.4033116 0.4033116 -0.01192054 -0.01192054 0.2875953 0.3255981 0.3608876 0.22183 0.1411704 0.1006232 0.1411704 0.4569109 0.2390765 0.3804393 0.3058297 0.3311702 0.4177425 0.284737 0.3973074 0.2665219 0.3804393 0.2171707 0.3442575 0.2476692 0.2297457 0.3255981 0.2652166 0.1501054 0.3264699 0.2312669 0.3105486 0.3642466 0.2540625 0.2297457 0.1755551 0.3298851 0.4348622 0.4143532 0.3891672 0.3973154 0.3690052 0.2989279 0.2565719 0.3870463 NA 0.2317435 0.2989279 0.2476692 0.1411704 0.22183 0.3441203 0.262554 0.3495644 0.4003199 0.2423385 0.188727 0.158923 0.3153843 0.3524466 0.204835 0.1933563 0.3799548 0.3317517 0.1610031 0.3255981 0.04758242 0.2652166 0.4311055 0.2715936 0.1750773 0.2390765 0.3018135 -0.02727144 0.4050459 0.413109 0.1241586 -0.02727144 0.1610031 0.2390765 0.2688652 0.284737 0.2715936 0.1222718 0.2141956 0.1501054 0.3068226 0.1847442 0.188727 0.2141956 0.262554 0.1501054 0.3061194 0.07063134 0.1847442 0.08292968 0.2875953 0.1056265 0.4383231 0.1444535 0.1444535 0.1501054 0.1222718 -0.03866069 0.2665219 0.158923 0.03034804 0.2798154 0.158923 0.284737 0.1501054 0.2317435 0.06795797 NA 0.3317517 0.2317435 0.1411704 0.158923 0.1750773 0.3298851 0.2390765 0.1193667 0.4682109 0.1056265 0.1933563 0.1193667 0.1222718 -0.08816845 0.1056265 0.1056265 -0.02727144 0.1411704 0.1006232 0.1056265 0.1056265 0.2526283 0.07063134 0.3067002 0.1750773 0.2141956 -0.02727144 0.1762904 0.1501054 0.04758242 0.1006232 -0.03866069 0.262554 0.1222718 0.1762904 0.1006232 0.2499137 0.188727 0.04758242 -0.06157574 0.04758242 -0.02727144 -0.05494052 -0.04746426 -0.03866069 0.188727 0.1222718 0.1762904 0.188727 0.188727 NA 0.1056265 -0.03866069 0.2317435 NA 0.1610031 NA -0.02727144 0.07063134 0.158923 0.1056265 0.1056265 NA -0.04746426 -0.02727144 NA 0.07063134 -0.02727144 -0.02727144 0.1056265 0.1056265 -0.02727144 -0.02727144 0.2141956 -0.02727144 0.1006232 0.1847442 -0.02727144 -0.02727144 -0.02727144 0.07063134 -0.04746426 NA NA 0.1762904 -0.02727144 -0.02727144 0.1762904 -0.02727144 NA NA -0.02727144 NA NA NA NA -0.02727144 0.1762904 -0.02727144 -0.02727144 -0.02407543 0.1431292 0.2559961 0.1517014 0.1855814 -0.02074697 -0.02407543 0.1721076 -0.02246469 -0.03355612 -0.03107926 0.2034328 0.0794752 -0.02844401 0.1517014 0.1017644 -0.03355612 -0.03355612 0.145797 -0.03107926 -0.03704645 -0.0297841 -0.0297841 -0.01685699 0.1276965 -0.04139211 0.08610203 0.2416904 -0.03925646 0.106337 -0.03233506 0.106337 0.1222934 0.2207579 0.1759942 -0.03925646 0.1683771 0.08270559 0.1165448 -0.04346571 NA 0.2894758 0.3350482 0.1354737 0.3952382 -0.02844401 0.1285704 -0.02559961 -0.03925646 0.3431781 0.3610741 -0.01456311 0.3318467 0.2416904 0.1487015 0.4889557 -0.02559961 0.2497205 0.1725603 0.4246895 -0.0297841 0.2767356 0.1431292 0.3350482 0.4339925 -0.02705207 0.2011124 0.3709735 -0.008367493 0.1982771 0.3816164 0.1725603 -0.008367493 0.2011124 0.2011124 0.2201484 0.3318467 0.278143 0.5075873 -0.01889283 0.5703282 0.3236246 0.4610437 0.6618123 0.2443472 0.1725603 0.5703282 -0.01889283 0.6618123 0.4610437 0.2011124 0.1855814 0.814522 0.3498734 0.3160424 0.1431292 0.2767356 0.5075873 -0.01186197 0.2416904 0.3318467 0.5075873 0.2497205 0.3318467 0.1517014 0.5703282 0.2894758 0.1855814 NA 0.1725603 0.2894758 0.3952382 0.3318467 0.1614107 0.393104 0.2011124 0.2894758 0.06281638 0.814522 0.1725603 0.1285704 -0.01889283 0.1614107 -0.01186197 -0.01186197 -0.008367493 0.1855814 0.4610437 -0.01186197 -0.01186197 -0.01685699 -0.01456311 -0.02705207 0.1614107 0.2443472 -0.008367493 -0.008367493 0.5703282 -0.01685699 0.4610437 -0.01186197 0.3707202 0.2443472 -0.008367493 -0.02074697 -0.01186197 -0.01456311 -0.01685699 -0.01889283 -0.01685699 -0.008367493 -0.01685699 -0.01456311 -0.01186197 0.3236246 -0.01889283 -0.008367493 0.6618123 0.6618123 NA 0.814522 -0.01186197 -0.03233506 NA 0.2011124 NA -0.008367493 0.3236246 -0.02844401 -0.01186197 -0.01186197 NA -0.01456311 0.5745678 NA 0.3236246 0.5745678 0.5745678 0.40133 0.814522 0.5745678 0.5745678 -0.01889283 0.5745678 0.4610437 0.2201484 -0.008367493 -0.008367493 -0.008367493 0.3236246 -0.01456311 NA NA -0.008367493 -0.008367493 0.5745678 -0.008367493 0.5745678 NA NA 0.5745678 NA NA NA NA 0.5745678 0.5745678 -0.008367493 -0.008367493 -0.02407543 -0.0297841 -0.05688801 -0.02844401 -0.02407543 -0.02074697 -0.02407543 -0.05131158 -0.02246469 -0.03355612 -0.03107926 -0.04448239 -0.04448239 -0.02844401 -0.05688801 -0.03816164 -0.03355612 -0.03355612 -0.05871021 -0.03107926 -0.03704645 -0.0297841 -0.0297841 -0.01685699 -0.06500076 -0.04139211 -0.042436 -0.03816164 -0.03925646 -0.03704645 -0.03233506 -0.03704645 -0.03355612 -0.04139211 -0.05036141 -0.03925646 -0.05225498 -0.04346571 -0.03474628 -0.04346571 NA 0.1285704 -0.04346571 -0.03107926 -0.02407543 -0.02844401 -0.03233506 -0.02559961 -0.03925646 -0.042436 -0.04033274 -0.01456311 0.1517014 -0.03816164 -0.05780093 -0.0297841 -0.02559961 -0.03704645 -0.02559961 -0.02246469 -0.0297841 -0.01685699 -0.0297841 -0.04346571 -0.03355612 -0.02705207 -0.02246469 -0.03925646 -0.008367493 -0.04548709 -0.03816164 -0.02559961 -0.008367493 -0.02246469 -0.02246469 -0.02074697 -0.02844401 -0.03355612 -0.01889283 -0.01889283 -0.01685699 -0.01456311 -0.02074697 -0.01456311 -0.01889283 -0.02559961 -0.01685699 -0.01889283 -0.01456311 -0.02074697 -0.02246469 -0.02407543 -0.01186197 -0.02705207 0.1431292 0.1431292 -0.01685699 -0.01889283 -0.01186197 0.1017644 -0.02844401 -0.01889283 -0.03704645 -0.02844401 -0.02844401 -0.01685699 -0.03233506 -0.02407543 NA -0.02559961 -0.03233506 -0.02407543 -0.02844401 -0.02705207 -0.03704645 0.2011124 -0.03233506 -0.05036141 -0.01186197 0.3707202 0.1285704 -0.01889283 0.1614107 -0.01186197 -0.01186197 -0.008367493 -0.02407543 -0.02074697 -0.01186197 -0.01186197 -0.01685699 -0.01456311 -0.02705207 -0.02705207 -0.01889283 -0.008367493 -0.008367493 -0.01685699 -0.01685699 0.2201484 -0.01186197 -0.02559961 -0.01889283 -0.008367493 -0.02074697 -0.01186197 -0.01456311 -0.01685699 -0.01889283 -0.01685699 -0.008367493 -0.01685699 -0.01456311 -0.01186197 -0.01456311 0.2443472 -0.008367493 -0.01456311 -0.01456311 NA -0.01186197 -0.01186197 0.1285704 NA 0.2011124 NA -0.008367493 -0.01456311 -0.02844401 0.40133 -0.01186197 NA -0.01456311 -0.008367493 NA -0.01456311 -0.008367493 -0.008367493 -0.01186197 -0.01186197 -0.008367493 -0.008367493 -0.01889283 -0.008367493 -0.02074697 -0.02074697 -0.008367493 -0.008367493 -0.008367493 -0.01456311 -0.01456311 NA NA -0.008367493 -0.008367493 -0.008367493 -0.008367493 -0.008367493 NA NA -0.008367493 NA NA NA NA -0.008367493 -0.008367493 -0.008367493 -0.008367493 -0.02786763 0.1156366 0.1152351 -0.03292432 -0.02786763 -0.02401489 0.1541428 0.03758517 -0.02600318 0.0964568 -0.03597466 0.05612297 0.1637349 0.1234662 0.1152351 0.07730207 0.2317553 -0.03884166 0.0208121 0.1086158 0.08159447 -0.0344755 0.1156366 -0.0195122 0.09204802 0.06587889 -0.04912024 0.07730207 0.0732718 0.08159447 -0.03742827 0.08159447 -0.03884166 0.2934605 0.0399596 0.0732718 0.03528341 0.05922159 0.09112183 0.05922159 NA 0.1022594 0.05922159 0.2532063 -0.02786763 -0.03292432 0.1022594 0.1423977 0.0732718 0.06246814 0.06947275 -0.01685699 0.1234662 -0.04417261 0.1123667 -0.0344755 -0.02963189 0.08159447 -0.02963189 -0.02600318 -0.0344755 -0.0195122 -0.0344755 -0.05031214 -0.03884166 -0.03131313 -0.02600318 0.0732718 -0.009685486 -0.05265192 -0.04417261 -0.02963189 -0.009685486 -0.02600318 -0.02600318 -0.02401489 -0.03292432 -0.03884166 -0.0218687 -0.0218687 0.2353659 -0.01685699 -0.02401489 -0.01685699 -0.0218687 -0.02963189 -0.0195122 -0.0218687 -0.01685699 0.1851148 -0.02600318 -0.02786763 -0.01373039 -0.03131313 0.2657486 0.4158607 -0.0195122 -0.0218687 -0.01373039 0.1987767 -0.03292432 -0.0218687 -0.04288176 -0.03292432 -0.03292432 -0.0195122 0.1022594 -0.02786763 NA -0.02963189 -0.03742827 -0.02786763 -0.03292432 -0.03131313 0.08159447 0.168092 0.1022594 0.1382132 -0.01373039 0.3144273 0.241947 -0.0218687 0.132298 -0.01373039 -0.01373039 -0.009685486 -0.02786763 -0.02401489 -0.01373039 -0.01373039 -0.0195122 -0.01685699 -0.03131313 -0.03131313 0.2066592 -0.009685486 -0.009685486 -0.0195122 -0.0195122 0.3942445 -0.01373039 -0.02963189 -0.0218687 -0.009685486 -0.02401489 -0.01373039 -0.01685699 -0.0195122 -0.0218687 0.2353659 -0.009685486 -0.0195122 -0.01685699 -0.01373039 0.2767356 0.2066592 -0.009685486 -0.01685699 -0.01685699 NA -0.01373039 -0.01373039 0.1022594 NA 0.3621871 NA -0.009685486 -0.01685699 0.1234662 0.3449761 -0.01373039 NA -0.01685699 -0.009685486 NA -0.01685699 -0.009685486 -0.009685486 -0.01373039 -0.01373039 -0.009685486 -0.009685486 -0.0218687 -0.009685486 -0.02401489 -0.02401489 -0.009685486 -0.009685486 -0.009685486 -0.01685699 -0.01685699 NA NA -0.009685486 -0.009685486 -0.009685486 -0.009685486 -0.009685486 NA NA -0.009685486 NA NA NA NA -0.009685486 -0.009685486 -0.009685486 -0.009685486 -0.01383297 -0.01711299 -0.03268602 -0.01634301 -0.01383297 -0.01192054 -0.01383297 -0.02948198 -0.01290749 -0.01928027 -0.01785714 -0.02555815 -0.02555815 -0.01634301 -0.03268602 -0.02192645 -0.01928027 0.2493582 -0.033733 -0.01785714 -0.0212857 -0.01711299 -0.01711299 -0.009685486 -0.03734735 -0.02378257 -0.02438236 -0.02192645 -0.0225555 -0.0212857 -0.01857869 -0.0212857 -0.01928027 -0.02378257 -0.02893605 -0.0225555 -0.03002403 -0.024974 -0.0199641 -0.024974 NA -0.01857869 -0.024974 -0.01785714 -0.01383297 -0.01634301 -0.01857869 -0.01470871 -0.0225555 -0.02438236 -0.0231739 -0.008367493 -0.01634301 -0.02192645 -0.03321056 0.2809382 -0.01470871 -0.0212857 -0.01470871 -0.01290749 -0.01711299 -0.009685486 -0.01711299 -0.024974 -0.01928027 -0.01554325 -0.01290749 -0.0225555 -0.004807692 -0.02613542 -0.02192645 -0.01470871 -0.004807692 -0.01290749 -0.01290749 -0.01192054 -0.01634301 -0.01928027 -0.01085521 -0.01085521 -0.009685486 -0.008367493 -0.01192054 -0.008367493 -0.01085521 -0.01470871 -0.009685486 -0.01085521 -0.008367493 -0.01192054 -0.01290749 -0.01383297 -0.006815507 -0.01554325 -0.01711299 -0.01711299 -0.009685486 -0.01085521 -0.006815507 0.2192645 0.2941742 -0.01085521 0.2258649 -0.01634301 -0.01634301 -0.009685486 0.2587746 -0.01383297 NA -0.01470871 -0.01857869 -0.01383297 -0.01634301 -0.01554325 -0.0212857 -0.01290749 -0.01857869 -0.02893605 -0.006815507 -0.01470871 -0.01857869 0.4428926 -0.01554325 -0.006815507 -0.006815507 -0.004807692 -0.01383297 -0.01192054 -0.006815507 -0.006815507 -0.009685486 -0.008367493 -0.01554325 -0.01554325 -0.01085521 -0.004807692 -0.004807692 -0.009685486 -0.009685486 -0.01192054 -0.006815507 -0.01470871 -0.01085521 -0.004807692 -0.01192054 -0.006815507 -0.008367493 -0.009685486 -0.01085521 -0.009685486 -0.004807692 -0.009685486 -0.008367493 -0.006815507 -0.008367493 -0.01085521 -0.004807692 -0.008367493 -0.008367493 NA -0.006815507 -0.006815507 -0.01857869 NA -0.01290749 NA -0.004807692 -0.008367493 0.2941742 -0.006815507 -0.006815507 NA -0.008367493 -0.004807692 NA -0.008367493 -0.004807692 -0.004807692 -0.006815507 -0.006815507 -0.004807692 -0.004807692 -0.01085521 -0.004807692 -0.01192054 -0.01192054 -0.004807692 -0.004807692 -0.004807692 -0.008367493 -0.008367493 NA NA -0.004807692 -0.004807692 -0.004807692 -0.004807692 -0.004807692 NA NA -0.004807692 NA NA NA NA -0.004807692 -0.004807692 -0.004807692 -0.004807692 -0.03123323 -0.03863914 0.1697429 0.1033217 0.1319604 0.160594 -0.03123323 0.02038611 -0.0291436 0.07777826 0.08932288 -0.05770733 0.03877933 -0.03690062 0.08856149 0.05940885 0.07777826 0.07777826 0.1626127 0.08932288 -0.04806063 -0.03863914 -0.03863914 -0.0218687 0.06566661 0.04832846 -0.05505254 -0.04950738 0.05551119 0.06354684 0.08329777 -0.04806063 -0.04353261 0.1503552 0.0227616 0.1619501 0.1039458 -0.05638839 -0.04507661 -0.05638839 NA 0.08329777 0.1400312 0.2189651 0.1319604 0.1033217 -0.04194852 -0.03321056 0.05551119 0.1450515 -0.05232396 -0.01889283 0.1033217 0.1683251 0.08575274 0.09595386 -0.03321056 0.06354684 0.121034 0.1448853 0.09595386 -0.0218687 0.09595386 0.1400312 0.07777826 0.1116016 0.1448853 0.1619501 0.4428926 0.03586037 0.05940885 -0.03321056 -0.01085521 0.1448853 0.1448853 0.160594 0.1033217 -0.04353261 0.1803922 0.1803922 0.2066592 -0.01889283 0.3481032 0.2443472 -0.0245098 -0.03321056 -0.0218687 0.1803922 -0.01889283 -0.02691519 -0.0291436 0.1319604 -0.01538862 -0.03509485 0.2305469 0.2305469 -0.0218687 -0.0245098 -0.01538862 0.1683251 -0.03690062 -0.0245098 0.06354684 -0.03690062 0.1033217 0.2066592 0.2085441 -0.03123323 NA 0.121034 -0.04194852 -0.03123323 0.1033217 0.1116016 0.2867618 0.3189143 0.08329777 0.1989533 -0.01538862 0.2752786 0.2085441 -0.0245098 0.4049946 -0.01538862 -0.01538862 -0.01085521 -0.03123323 -0.02691519 -0.01538862 -0.01538862 0.2066592 0.2443472 -0.03509485 0.1116016 0.1803922 -0.01085521 -0.01085521 0.2066592 -0.0218687 0.160594 -0.01538862 -0.03321056 -0.0245098 -0.01085521 0.160594 -0.01538862 -0.01889283 -0.0218687 -0.0245098 0.2066592 -0.01085521 0.2066592 -0.01889283 -0.01538862 0.2443472 0.1803922 -0.01085521 -0.01889283 0.2443472 NA -0.01538862 -0.01538862 0.3337904 NA 0.1448853 NA 0.4428926 -0.01889283 0.1033217 0.3062336 -0.01538862 NA -0.01889283 -0.01085521 NA -0.01889283 -0.01085521 -0.01085521 -0.01538862 -0.01538862 -0.01085521 -0.01085521 0.1803922 -0.01085521 0.160594 0.160594 -0.01085521 -0.01085521 -0.01085521 -0.01889283 -0.01889283 NA NA -0.01085521 -0.01085521 -0.01085521 -0.01085521 -0.01085521 NA NA -0.01085521 NA NA NA NA -0.01085521 -0.01085521 -0.01085521 -0.01085521 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA -0.01960996 0.1870027 0.2085144 -0.02316827 -0.01960996 -0.01689886 -0.01960996 0.2311753 -0.01829798 -0.0273322 -0.02531474 -0.03623188 0.1152174 0.4170288 0.2085144 -0.03108349 -0.0273322 -0.0273322 0.2020427 0.3816684 0.3201918 -0.02425981 -0.02425981 -0.01373039 0.1824897 0.2865757 0.2795261 0.3108349 0.1350954 -0.03017515 -0.02633762 0.1450083 -0.0273322 -0.03371478 0.2355369 0.1350954 0.2270017 -0.03540378 0.1565433 0.2729041 NA -0.02633762 0.1187502 -0.02531474 -0.01960996 -0.02316827 0.3668454 0.4633654 0.3021661 0.2795261 0.1306254 -0.01186197 -0.02316827 -0.03108349 0.2052211 -0.02425981 -0.02085144 0.1450083 -0.02085144 -0.01829798 -0.02425981 -0.01373039 -0.02425981 -0.03540378 -0.0273322 -0.0220345 -0.01829798 -0.03197525 -0.006815507 0.1118632 -0.03108349 -0.02085144 -0.006815507 -0.01829798 -0.01829798 -0.01689886 -0.02316827 0.3534965 -0.01538862 -0.01538862 -0.01373039 -0.01186197 -0.01689886 -0.01186197 -0.01538862 -0.02085144 -0.01373039 -0.01538862 -0.01186197 -0.01689886 -0.01829798 -0.01960996 -0.009661836 0.2082261 -0.02425981 -0.02425981 -0.01373039 -0.01538862 -0.009661836 -0.03108349 -0.02316827 -0.01538862 -0.03017515 -0.02316827 -0.02316827 -0.01373039 -0.02633762 -0.01960996 NA -0.02085144 0.1702539 -0.01960996 -0.02316827 -0.0220345 0.1450083 -0.01829798 -0.02633762 0.09725822 -0.009661836 -0.02085144 -0.02633762 -0.01538862 0.2082261 -0.009661836 1 0.705405 -0.01960996 -0.01689886 -0.009661836 -0.009661836 -0.01373039 -0.01186197 -0.0220345 -0.0220345 -0.01538862 -0.006815507 -0.006815507 -0.01373039 -0.01373039 -0.01689886 -0.009661836 -0.02085144 -0.01538862 -0.006815507 -0.01689886 -0.009661836 -0.01186197 -0.01373039 -0.01538862 -0.01373039 -0.006815507 -0.01373039 -0.01186197 -0.009661836 -0.01186197 -0.01538862 -0.006815507 -0.01186197 -0.01186197 NA -0.009661836 -0.009661836 -0.02633762 NA -0.01829798 NA -0.006815507 -0.01186197 -0.02316827 -0.009661836 -0.009661836 NA -0.01186197 -0.006815507 NA -0.01186197 -0.006815507 -0.006815507 -0.009661836 -0.009661836 -0.006815507 -0.006815507 -0.01538862 -0.006815507 -0.01689886 -0.01689886 -0.006815507 -0.006815507 -0.006815507 -0.01186197 -0.01186197 NA NA -0.006815507 -0.006815507 -0.006815507 -0.006815507 -0.006815507 NA NA -0.006815507 NA NA NA NA -0.006815507 -0.006815507 -0.006815507 -0.006815507 -0.01383297 -0.01711299 0.1470871 -0.01634301 -0.01383297 -0.01192054 -0.01383297 0.1630722 -0.01290749 -0.01928027 -0.01785714 -0.02555815 -0.02555815 0.2941742 0.1470871 -0.02192645 -0.01928027 -0.01928027 0.1425219 0.2692308 0.2258649 -0.01711299 -0.01711299 -0.009685486 0.1287292 0.2021519 0.1971791 0.2192645 0.2131495 -0.0212857 -0.01857869 0.2258649 -0.01928027 -0.02378257 0.1661489 0.2131495 0.1601282 -0.024974 0.2408169 0.1925079 NA -0.01857869 -0.024974 -0.01785714 -0.01383297 -0.01634301 0.2587746 0.3268602 0.2131495 0.1971791 0.2074615 -0.008367493 -0.01634301 -0.02192645 0.144764 -0.01711299 -0.01470871 -0.0212857 -0.01470871 -0.01290749 -0.01711299 -0.009685486 -0.01711299 -0.024974 -0.01928027 -0.01554325 -0.01290749 -0.0225555 -0.004807692 -0.02613542 -0.02192645 -0.01470871 -0.004807692 -0.01290749 -0.01290749 -0.01192054 -0.01634301 0.2493582 -0.01085521 -0.01085521 -0.009685486 -0.008367493 -0.01192054 -0.008367493 -0.01085521 -0.01470871 -0.009685486 -0.01085521 -0.008367493 -0.01192054 -0.01290749 -0.01383297 -0.006815507 -0.01554325 -0.01711299 -0.01711299 -0.009685486 -0.01085521 -0.006815507 -0.02192645 -0.01634301 -0.01085521 -0.0212857 -0.01634301 -0.01634301 -0.009685486 -0.01857869 -0.01383297 NA -0.01470871 0.2587746 -0.01383297 -0.01634301 -0.01554325 0.2258649 -0.01290749 -0.01857869 -0.02893605 -0.006815507 -0.01470871 -0.01857869 -0.01085521 0.3093106 -0.006815507 0.705405 1 -0.01383297 -0.01192054 -0.006815507 -0.006815507 -0.009685486 -0.008367493 -0.01554325 -0.01554325 -0.01085521 -0.004807692 -0.004807692 -0.009685486 -0.009685486 -0.01192054 -0.006815507 -0.01470871 -0.01085521 -0.004807692 -0.01192054 -0.006815507 -0.008367493 -0.009685486 -0.01085521 -0.009685486 -0.004807692 -0.009685486 -0.008367493 -0.006815507 -0.008367493 -0.01085521 -0.004807692 -0.008367493 -0.008367493 NA -0.006815507 -0.006815507 -0.01857869 NA -0.01290749 NA -0.004807692 -0.008367493 -0.01634301 -0.006815507 -0.006815507 NA -0.008367493 -0.004807692 NA -0.008367493 -0.004807692 -0.004807692 -0.006815507 -0.006815507 -0.004807692 -0.004807692 -0.01085521 -0.004807692 -0.01192054 -0.01192054 -0.004807692 -0.004807692 -0.004807692 -0.008367493 -0.008367493 NA NA -0.004807692 -0.004807692 -0.004807692 -0.004807692 -0.004807692 NA NA -0.004807692 NA NA NA NA -0.004807692 -0.004807692 -0.004807692 -0.004807692 -0.01960996 0.1870027 0.2085144 -0.02316827 -0.01960996 -0.01689886 -0.01960996 0.09469046 -0.01829798 0.1630821 0.1781768 0.1152174 0.1152174 -0.02316827 0.08108894 0.1398757 0.1630821 -0.0273322 0.2020427 -0.02531474 -0.03017515 0.1870027 0.1870027 -0.01373039 0.1824897 -0.03371478 0.1224805 0.1398757 -0.03197525 -0.03017515 0.1702539 0.1450083 -0.0273322 0.1264304 0.09725822 0.1350954 0.09221946 0.1187502 0.1565433 0.1187502 NA 0.3668454 0.2729041 -0.02531474 -0.01960996 -0.02316827 -0.02633762 -0.02085144 0.3021661 0.1224805 0.2941028 -0.01186197 0.1969303 0.1398757 0.2052211 0.3982652 -0.02085144 0.1450083 -0.02085144 0.2548647 0.1870027 -0.01373039 0.1870027 0.1187502 0.1630821 0.2082261 0.2548647 0.3021661 -0.006815507 0.2607766 0.3108349 0.4633654 -0.006815507 0.2548647 -0.01829798 -0.01689886 -0.02316827 0.1630821 -0.01538862 -0.01538862 -0.01373039 -0.01186197 -0.01689886 -0.01186197 -0.01538862 -0.02085144 -0.01373039 -0.01538862 -0.01186197 -0.01689886 0.2548647 -0.01960996 -0.009661836 0.2082261 0.1870027 0.1870027 -0.01373039 -0.01538862 -0.009661836 0.1398757 0.1969303 -0.01538862 0.1450083 0.4170288 0.4170288 -0.01373039 0.3668454 0.2365452 NA -0.02085144 0.1702539 0.4927003 0.4170288 0.2082261 0.3201918 -0.01829798 0.1702539 -0.04102047 -0.009661836 0.221257 0.1702539 0.3062336 -0.0220345 -0.009661836 -0.009661836 -0.006815507 0.2365452 -0.01689886 -0.009661836 0.4951691 -0.01373039 0.40133 -0.0220345 0.2082261 0.3062336 0.705405 -0.006815507 -0.01373039 -0.01373039 -0.01689886 0.4951691 0.221257 -0.01538862 -0.006815507 0.277423 -0.009661836 0.40133 -0.01373039 -0.01538862 -0.01373039 -0.006815507 -0.01373039 -0.01186197 -0.009661836 -0.01186197 -0.01538862 -0.006815507 -0.01186197 -0.01186197 NA -0.009661836 0.4951691 -0.02633762 NA 0.2548647 NA -0.006815507 -0.01186197 0.1969303 -0.009661836 -0.009661836 NA 0.40133 -0.006815507 NA -0.01186197 -0.006815507 -0.006815507 -0.009661836 -0.009661836 -0.006815507 -0.006815507 -0.01538862 -0.006815507 0.277423 0.277423 0.705405 -0.006815507 0.705405 -0.01186197 -0.01186197 NA NA -0.006815507 0.705405 -0.006815507 -0.006815507 -0.006815507 NA NA -0.006815507 NA NA NA NA -0.006815507 -0.006815507 -0.006815507 -0.006815507 0.1319604 0.2305469 0.2509242 0.3837665 0.4583476 0.160594 0.295154 0.2812451 0.3189143 0.3204 0.3486073 0.3282393 0.2317527 0.3837665 0.1697429 0.3861575 0.3204 0.1990891 0.1626127 0.3486073 0.2867618 0.3651399 0.3651399 -0.0218687 0.2156592 0.252382 0.2451035 0.3861575 0.2683889 0.2867618 0.3337904 0.2867618 0.3204 0.3544087 0.2870491 0.2683889 0.2756825 0.1400312 0.1904487 0.2382409 NA 0.2085441 0.4346605 0.3486073 0.295154 0.2435441 0.3337904 0.2752786 0.2683889 0.4452075 0.3642745 0.5075873 0.2435441 0.2772413 0.2464911 0.2305469 0.2752786 0.3983692 0.121034 0.1448853 0.2305469 0.2066592 0.2305469 0.4346605 0.3204 0.1116016 0.1448853 0.4812667 -0.01085521 0.3204737 0.4950738 0.121034 -0.01085521 -0.0291436 0.1448853 0.160594 0.3837665 0.1990891 0.1803922 0.1803922 0.2066592 0.5075873 0.3481032 0.2443472 0.1803922 0.121034 0.2066592 0.3852941 0.2443472 0.160594 0.1448853 0.295154 0.3062336 0.551691 0.09595386 -0.03863914 0.2066592 0.3852941 -0.01538862 0.05940885 0.1033217 0.1803922 0.2867618 0.2435441 0.3837665 0.2066592 0.2085441 0.1319604 NA 0.121034 0.2085441 0.1319604 0.2435441 -0.03509485 0.3983692 0.1448853 0.08329777 0.1108574 0.3062336 -0.03321056 -0.04194852 0.1803922 0.1116016 -0.01538862 -0.01538862 -0.01085521 0.1319604 0.7231216 0.3062336 0.3062336 0.2066592 -0.01889283 0.2582981 0.1116016 0.5901961 -0.01085521 -0.01085521 0.2066592 0.2066592 0.3481032 -0.01538862 0.121034 0.1803922 -0.01085521 -0.02691519 -0.01538862 0.2443472 -0.0218687 -0.0245098 -0.0218687 -0.01085521 -0.0218687 -0.01889283 -0.01538862 0.5075873 0.1803922 0.4428926 0.2443472 0.2443472 NA 0.3062336 -0.01538862 0.2085441 NA 0.1448853 NA -0.01085521 -0.01889283 0.2435441 0.3062336 -0.01538862 NA -0.01889283 0.4428926 NA 0.2443472 0.4428926 0.4428926 0.3062336 0.3062336 0.4428926 0.4428926 0.1803922 0.4428926 0.3481032 -0.02691519 -0.01085521 -0.01085521 -0.01085521 0.5075873 -0.01889283 NA NA -0.01085521 -0.01085521 0.4428926 0.4428926 0.4428926 NA NA 0.4428926 NA NA NA NA 0.4428926 -0.01085521 -0.01085521 -0.01085521 -0.01383297 0.2809382 0.1470871 -0.01634301 -0.01383297 -0.01192054 0.3475533 0.1630722 -0.01290749 -0.01928027 -0.01785714 0.188108 0.188108 0.2941742 0.1470871 0.2192645 0.2493582 -0.01928027 0.1425219 0.2692308 0.2258649 -0.01711299 0.2809382 -0.009685486 0.1287292 0.2021519 -0.02438236 0.2192645 0.2131495 0.2258649 -0.01857869 0.2258649 -0.01928027 0.2021519 0.1661489 -0.0225555 0.1601282 0.1925079 0.2408169 0.1925079 NA -0.01857869 0.1925079 0.2692308 -0.01383297 -0.01634301 0.2587746 0.3268602 0.2131495 0.1971791 0.2074615 -0.008367493 -0.01634301 -0.02192645 0.144764 -0.01711299 -0.01470871 0.2258649 -0.01470871 -0.01290749 -0.01711299 -0.009685486 -0.01711299 -0.024974 -0.01928027 -0.01554325 -0.01290749 -0.0225555 -0.004807692 -0.02613542 -0.02192645 -0.01470871 -0.004807692 -0.01290749 -0.01290749 -0.01192054 -0.01634301 -0.01928027 -0.01085521 -0.01085521 -0.009685486 -0.008367493 -0.01192054 -0.008367493 -0.01085521 -0.01470871 -0.009685486 -0.01085521 -0.008367493 0.4033116 -0.01290749 -0.01383297 -0.006815507 -0.01554325 0.2809382 0.2809382 -0.009685486 -0.01085521 -0.006815507 0.2192645 -0.01634301 -0.01085521 -0.0212857 -0.01634301 -0.01634301 -0.009685486 -0.01857869 -0.01383297 NA -0.01470871 -0.01857869 -0.01383297 -0.01634301 -0.01554325 -0.0212857 -0.01290749 0.2587746 0.1661489 -0.006815507 -0.01470871 0.2587746 -0.01085521 -0.01554325 -0.006815507 -0.006815507 -0.004807692 -0.01383297 -0.01192054 -0.006815507 -0.006815507 -0.009685486 -0.008367493 -0.01554325 -0.01554325 -0.01085521 -0.004807692 -0.004807692 -0.009685486 -0.009685486 0.4033116 -0.006815507 -0.01470871 -0.01085521 -0.004807692 -0.01192054 -0.006815507 -0.008367493 -0.009685486 -0.01085521 -0.009685486 -0.004807692 -0.009685486 -0.008367493 -0.006815507 -0.008367493 -0.01085521 -0.004807692 -0.008367493 -0.008367493 NA -0.006815507 -0.006815507 -0.01857869 NA 0.3724732 NA -0.004807692 -0.008367493 0.2941742 -0.006815507 -0.006815507 NA -0.008367493 -0.004807692 NA -0.008367493 -0.004807692 -0.004807692 -0.006815507 -0.006815507 -0.004807692 -0.004807692 -0.01085521 -0.004807692 -0.01192054 -0.01192054 -0.004807692 -0.004807692 -0.004807692 -0.008367493 -0.008367493 NA NA -0.004807692 -0.004807692 -0.004807692 -0.004807692 -0.004807692 NA NA -0.004807692 NA NA NA NA -0.004807692 -0.004807692 -0.004807692 -0.004807692 -0.02407543 0.1431292 0.1517014 0.1517014 0.1855814 0.2201484 0.1855814 0.060398 -0.02246469 0.1222934 0.1354737 0.2034328 0.2034328 0.1517014 0.1517014 0.1017644 0.1222934 -0.03355612 0.2480507 0.1354737 0.106337 0.3160424 0.1431292 -0.01685699 0.2240452 0.2207579 0.2146401 0.2416904 0.09748687 0.106337 0.1285704 0.106337 0.278143 0.2207579 0.1759942 0.2342302 0.1683771 0.2088769 0.1165448 0.2088769 NA 0.1285704 0.2088769 0.1354737 0.1855814 0.3318467 0.2894758 -0.02559961 0.3709735 0.2146401 0.2272718 0.3236246 0.5119921 0.1017644 0.2519528 0.1431292 0.1725603 0.106337 -0.02559961 0.2011124 0.1431292 -0.01685699 -0.0297841 0.2088769 0.1222934 -0.02705207 -0.02246469 0.3709735 -0.008367493 0.1982771 0.2416904 0.1725603 -0.008367493 0.4246895 0.2011124 0.2201484 0.1517014 0.278143 -0.01889283 0.2443472 -0.01685699 0.3236246 -0.02074697 -0.01456311 0.2443472 0.1725603 -0.01685699 0.2443472 -0.01456311 -0.02074697 0.2011124 0.1855814 -0.01186197 0.3498734 0.1431292 0.1431292 0.2767356 0.2443472 -0.01186197 0.1017644 0.1517014 -0.01889283 0.2497205 0.1517014 0.3318467 -0.01685699 0.2894758 0.1855814 NA 0.1725603 0.2894758 0.1855814 0.1517014 0.1614107 0.106337 0.2011124 0.1285704 0.06281638 -0.01186197 0.1725603 0.1285704 0.2443472 0.1614107 -0.01186197 -0.01186197 -0.008367493 -0.02407543 0.2201484 0.40133 0.814522 0.2767356 0.3236246 0.1614107 0.1614107 0.5075873 0.5745678 -0.008367493 -0.01685699 -0.01685699 -0.02074697 0.40133 0.1725603 -0.01889283 -0.008367493 0.2201484 -0.01186197 0.6618123 -0.01685699 -0.01889283 -0.01685699 -0.008367493 -0.01685699 -0.01456311 -0.01186197 -0.01456311 -0.01889283 -0.008367493 -0.01456311 -0.01456311 NA -0.01186197 0.40133 0.1285704 NA 0.2011124 NA -0.008367493 -0.01456311 0.3318467 -0.01186197 -0.01186197 NA 0.3236246 -0.008367493 NA -0.01456311 -0.008367493 -0.008367493 -0.01186197 -0.01186197 -0.008367493 -0.008367493 -0.01889283 -0.008367493 0.2201484 0.4610437 0.5745678 -0.008367493 0.5745678 0.3236246 -0.01456311 NA NA -0.008367493 0.5745678 -0.008367493 0.5745678 -0.008367493 NA NA -0.008367493 NA NA NA NA -0.008367493 -0.008367493 -0.008367493 -0.008367493 0.1319604 0.2305469 0.1697429 0.2435441 0.1319604 0.160594 0.4583476 0.2812451 0.1448853 0.1990891 0.2189651 0.3282393 0.3282393 0.5239888 0.1697429 0.2772413 0.3204 0.07777826 0.2422053 0.3486073 0.3983692 0.2305469 0.3651399 -0.0218687 0.2156592 0.3544087 0.2451035 0.3861575 0.3748278 0.2867618 0.2085441 0.2867618 0.1990891 0.3544087 0.2870491 0.1619501 0.1898142 0.1400312 0.3082113 0.3364507 NA -0.04194852 0.2382409 0.3486073 0.1319604 0.2435441 0.3337904 0.2752786 0.3748278 0.3451555 0.3642745 0.5075873 0.1033217 0.05940885 0.2464911 -0.03863914 0.121034 0.3983692 -0.03321056 -0.0291436 0.09595386 -0.0218687 -0.03863914 0.1400312 0.07777826 -0.03509485 -0.0291436 0.2683889 -0.01085521 0.2256026 0.1683251 -0.03321056 -0.01085521 -0.0291436 0.1448853 0.160594 0.2435441 0.07777826 -0.0245098 0.3852941 -0.0218687 0.5075873 -0.02691519 -0.01889283 0.1803922 0.2752786 -0.0218687 0.3852941 -0.01889283 0.160594 -0.0291436 0.1319604 -0.01538862 0.2582981 0.2305469 0.2305469 0.4351871 0.1803922 -0.01538862 0.05940885 -0.03690062 -0.0245098 0.2867618 0.1033217 0.2435441 -0.0218687 0.08329777 -0.03123323 NA 0.121034 0.08329777 -0.03123323 0.1033217 -0.03509485 0.06354684 0.3189143 0.2085441 0.1989533 -0.01538862 -0.03321056 0.2085441 0.1803922 -0.03509485 -0.01538862 -0.01538862 -0.01085521 -0.03123323 0.160594 0.3062336 0.3062336 0.2066592 -0.01889283 0.1116016 0.2582981 0.3852941 -0.01085521 -0.01085521 -0.0218687 -0.0218687 0.3481032 -0.01538862 -0.03321056 0.1803922 -0.01085521 -0.02691519 -0.01538862 0.2443472 -0.0218687 -0.0245098 -0.0218687 -0.01085521 -0.0218687 -0.01889283 -0.01538862 -0.01889283 0.1803922 0.4428926 -0.01889283 -0.01889283 NA -0.01538862 -0.01538862 0.3337904 NA 0.4929432 NA -0.01085521 -0.01889283 0.2435441 0.3062336 -0.01538862 NA -0.01889283 -0.01085521 NA -0.01889283 -0.01085521 -0.01085521 -0.01538862 -0.01538862 -0.01085521 -0.01085521 0.1803922 -0.01085521 -0.02691519 -0.02691519 -0.01085521 -0.01085521 -0.01085521 0.2443472 -0.01889283 NA NA -0.01085521 -0.01085521 -0.01085521 0.4428926 -0.01085521 NA NA -0.01085521 NA NA NA NA -0.01085521 -0.01085521 -0.01085521 -0.01085521 -0.02407543 -0.0297841 0.04740668 -0.02844401 -0.02407543 -0.02074697 -0.02407543 0.060398 -0.02246469 -0.03355612 -0.03107926 0.0794752 0.0794752 -0.02844401 0.04740668 -0.03816164 -0.03355612 0.1222934 0.04354341 -0.03107926 -0.03704645 -0.0297841 -0.0297841 -0.01685699 0.03134788 -0.04139211 0.08610203 0.1017644 -0.03925646 0.106337 -0.03233506 0.106337 0.1222934 0.0896829 0.06281638 -0.03925646 0.05806108 0.08270559 0.1165448 -0.04346571 NA 0.1285704 0.08270559 0.1354737 0.1855814 -0.02844401 0.1285704 -0.02559961 -0.03925646 0.08610203 0.09346953 -0.01456311 0.1517014 0.1017644 0.04545031 0.3160424 -0.02559961 0.106337 0.1725603 0.2011124 -0.0297841 -0.01685699 -0.0297841 0.08270559 0.1222934 -0.02705207 0.2011124 0.09748687 -0.008367493 0.07639498 0.2416904 -0.02559961 -0.008367493 0.2011124 0.2011124 0.2201484 0.1517014 0.1222934 0.2443472 -0.01889283 0.2767356 0.3236246 0.2201484 0.3236246 0.2443472 0.1725603 0.2767356 -0.01889283 0.3236246 0.2201484 -0.02246469 0.1855814 0.40133 0.1614107 0.1431292 0.1431292 0.2767356 0.2443472 -0.01186197 0.2416904 0.3318467 0.2443472 0.2497205 0.1517014 -0.02844401 0.2767356 0.4503813 -0.02407543 NA 0.1725603 0.2894758 0.1855814 0.1517014 0.1614107 0.2497205 0.2011124 0.1285704 0.06281638 0.40133 0.1725603 0.1285704 0.5075873 -0.02705207 -0.01186197 -0.01186197 -0.008367493 -0.02407543 -0.02074697 -0.01186197 -0.01186197 -0.01685699 -0.01456311 -0.02705207 0.1614107 -0.01889283 -0.008367493 -0.008367493 0.2767356 -0.01685699 0.2201484 -0.01186197 0.1725603 -0.01889283 -0.008367493 -0.02074697 -0.01186197 -0.01456311 -0.01685699 -0.01889283 -0.01685699 -0.008367493 -0.01685699 -0.01456311 -0.01186197 -0.01456311 -0.01889283 -0.008367493 0.3236246 0.3236246 NA 0.40133 -0.01186197 -0.03233506 NA 0.2011124 NA -0.008367493 0.3236246 0.1517014 -0.01186197 -0.01186197 NA -0.01456311 -0.008367493 NA -0.01456311 -0.008367493 -0.008367493 -0.01186197 0.40133 -0.008367493 -0.008367493 -0.01889283 -0.008367493 -0.02074697 0.2201484 -0.008367493 -0.008367493 -0.008367493 -0.01456311 -0.01456311 NA NA -0.008367493 -0.008367493 -0.008367493 -0.008367493 -0.008367493 NA NA -0.008367493 NA NA NA NA -0.008367493 0.5745678 -0.008367493 -0.008367493 0.3057861 0.2337533 0.3592908 0.2483334 0.4226221 0.3641941 0.3057861 0.4027064 0.3320504 0.4587711 0.5919757 0.469996 0.6081523 0.2483334 0.475532 0.4749504 0.4587711 0.3719204 0.4037896 0.3135295 0.3307019 0.4264729 0.5228327 0.2959091 0.3624883 0.4344226 0.5658485 0.3189965 0.3080947 0.3307019 0.5676125 0.4905092 0.4587711 0.3613781 0.3479461 0.4605014 0.3947414 0.34113 0.4413185 0.4114418 NA 0.3882762 0.34113 0.3135295 0.1889501 0.2483334 0.3882762 0.2837341 0.4605014 0.2076948 0.2979006 0.1614107 0.3487234 0.3969735 0.295404 0.2337533 0.3941632 0.2507982 0.3941632 0.207457 0.5228327 0.132298 0.3301131 0.4817536 0.1113683 0.2648241 0.3320504 0.3080947 -0.01554325 0.3909551 0.3189965 0.2837341 -0.01554325 0.207457 0.3320504 0.2299497 0.1479433 0.2850697 0.1116016 0.2582981 -0.03131313 0.1614107 0.2299497 -0.02705207 0.4049946 0.3941632 -0.03131313 0.4049946 -0.02705207 0.09570532 0.207457 0.4226221 -0.0220345 0.3698492 0.1373934 0.1373934 0.2959091 0.2582981 0.2082261 0.3189965 0.0475532 0.1116016 0.2507982 0.2483334 0.2483334 0.132298 0.2089398 0.1889501 NA 0.2837341 0.2089398 0.3057861 0.1479433 0.159799 0.2507982 0.3320504 0.1192716 0.09566253 -0.0220345 0.173305 0.1192716 0.1116016 0.05477387 0.2082261 -0.0220345 -0.01554325 0.3057861 0.2299497 0.4384866 0.2082261 0.2959091 0.1614107 0.7899497 0.2648241 0.1116016 -0.01554325 0.3093106 -0.03131313 0.2959091 0.09570532 -0.0220345 0.06287589 0.2582981 0.3093106 0.2299497 0.2082261 0.3498734 0.2959091 0.1116016 0.2959091 -0.01554325 0.132298 0.1614107 0.2082261 0.1614107 0.1116016 -0.01554325 0.1614107 -0.02705207 NA -0.0220345 -0.0220345 0.298608 NA -0.04172985 NA -0.01554325 0.1614107 0.2483334 -0.0220345 -0.0220345 NA -0.02705207 -0.01554325 NA 0.1614107 -0.01554325 -0.01554325 -0.0220345 -0.0220345 -0.01554325 -0.01554325 0.2582981 -0.01554325 0.09570532 0.2299497 -0.01554325 -0.01554325 -0.01554325 0.1614107 0.1614107 NA NA 0.3093106 -0.01554325 -0.01554325 0.3093106 -0.01554325 NA NA -0.01554325 NA NA NA NA -0.01554325 -0.01554325 -0.01554325 -0.01554325 0.1319604 0.2305469 0.1697429 0.2435441 0.1319604 0.160594 0.4583476 0.2812451 0.1448853 0.1990891 0.2189651 0.3282393 0.3282393 0.3837665 0.1697429 0.2772413 0.3204 0.07777826 0.2422053 0.3486073 0.2867618 0.2305469 0.3651399 -0.0218687 0.2906555 0.252382 0.2451035 0.3861575 0.2683889 0.3983692 0.2085441 0.3983692 0.3204 0.3544087 0.3751449 0.1619501 0.2756825 0.2382409 0.425974 0.2382409 NA 0.08329777 0.3364507 0.4782496 0.295154 0.2435441 0.4590366 0.2752786 0.2683889 0.3451555 0.3642745 0.5075873 0.2435441 0.1683251 0.2464911 0.09595386 0.121034 0.3983692 0.121034 0.1448853 0.09595386 -0.0218687 -0.03863914 0.2382409 0.1990891 -0.03509485 0.1448853 0.2683889 -0.01085521 0.2256026 0.2772413 -0.03321056 -0.01085521 0.1448853 0.3189143 0.3481032 0.3837665 0.1990891 0.1803922 0.1803922 0.2066592 0.7708273 0.160594 0.2443472 0.3852941 0.2752786 0.2066592 0.3852941 0.2443472 0.3481032 -0.0291436 0.295154 0.3062336 0.4049946 0.2305469 0.2305469 0.4351871 0.3852941 -0.01538862 0.1683251 0.1033217 0.1803922 0.2867618 0.2435441 0.2435441 0.2066592 0.2085441 -0.03123323 NA 0.2752786 0.2085441 0.1319604 0.2435441 0.1116016 0.1751543 0.3189143 0.2085441 0.1989533 0.3062336 0.121034 0.2085441 0.1803922 -0.03509485 -0.01538862 -0.01538862 -0.01085521 -0.03123323 0.160594 0.3062336 0.3062336 0.2066592 -0.01889283 0.1116016 0.2582981 0.3852941 -0.01085521 -0.01085521 0.2066592 -0.0218687 0.5356124 -0.01538862 0.121034 -0.0245098 -0.01085521 -0.02691519 -0.01538862 0.2443472 -0.0218687 -0.0245098 -0.0218687 -0.01085521 -0.0218687 -0.01889283 -0.01538862 -0.01889283 0.1803922 0.4428926 0.2443472 0.2443472 NA 0.3062336 -0.01538862 0.2085441 NA 0.4929432 NA -0.01085521 0.2443472 0.2435441 0.3062336 -0.01538862 NA -0.01889283 -0.01085521 NA -0.01889283 -0.01085521 -0.01085521 -0.01538862 0.3062336 -0.01085521 -0.01085521 0.1803922 -0.01085521 -0.02691519 0.160594 -0.01085521 -0.01085521 -0.01085521 0.2443472 -0.01889283 NA NA -0.01085521 -0.01085521 -0.01085521 0.4428926 -0.01085521 NA NA -0.01085521 NA NA NA NA -0.01085521 0.4428926 -0.01085521 -0.01085521 -0.02407543 0.1431292 0.1517014 0.1517014 0.1855814 0.2201484 0.1855814 0.060398 -0.02246469 0.278143 0.1354737 0.0794752 0.0794752 0.1517014 0.1517014 0.1017644 0.278143 -0.03355612 0.145797 0.1354737 0.106337 0.1431292 0.1431292 -0.01685699 0.2240452 0.0896829 0.08610203 0.1017644 0.09748687 0.106337 0.1285704 0.106337 0.1222934 0.3518329 0.06281638 0.2342302 0.05806108 0.08270559 0.1165448 0.08270559 NA 0.1285704 0.2088769 0.3020266 0.1855814 0.1517014 0.1285704 -0.02559961 0.2342302 0.08610203 0.2272718 0.3236246 0.3318467 0.1017644 0.2519528 0.1431292 0.1725603 0.106337 -0.02559961 0.2011124 0.1431292 -0.01685699 -0.0297841 0.08270559 0.1222934 -0.02705207 -0.02246469 0.3709735 -0.008367493 0.1982771 0.2416904 0.1725603 -0.008367493 0.2011124 0.2011124 0.2201484 0.1517014 0.278143 -0.01889283 0.2443472 0.2767356 0.3236246 -0.02074697 -0.01456311 0.2443472 0.1725603 -0.01685699 0.2443472 -0.01456311 -0.02074697 0.2011124 0.1855814 -0.01186197 0.3498734 0.1431292 0.1431292 0.2767356 0.2443472 -0.01186197 0.1017644 0.1517014 -0.01889283 0.2497205 0.1517014 0.3318467 -0.01685699 0.4503813 0.1855814 NA 0.1725603 0.2894758 0.1855814 0.1517014 0.1614107 0.2497205 0.2011124 0.1285704 0.06281638 -0.01186197 0.1725603 0.1285704 0.2443472 -0.02705207 -0.01186197 -0.01186197 -0.008367493 -0.02407543 0.2201484 0.40133 0.814522 0.2767356 0.3236246 0.1614107 0.1614107 0.7708273 0.5745678 -0.008367493 -0.01685699 -0.01685699 -0.02074697 0.40133 0.1725603 -0.01889283 -0.008367493 0.2201484 -0.01186197 0.6618123 -0.01685699 -0.01889283 0.2767356 -0.008367493 -0.01685699 -0.01456311 -0.01186197 0.3236246 -0.01889283 -0.008367493 -0.01456311 -0.01456311 NA -0.01186197 0.40133 0.1285704 NA 0.2011124 NA -0.008367493 -0.01456311 0.1517014 -0.01186197 -0.01186197 NA 0.3236246 -0.008367493 NA -0.01456311 -0.008367493 -0.008367493 -0.01186197 -0.01186197 -0.008367493 -0.008367493 -0.01889283 -0.008367493 0.2201484 0.2201484 0.5745678 -0.008367493 0.5745678 0.3236246 -0.01456311 NA NA -0.008367493 0.5745678 -0.008367493 0.5745678 -0.008367493 NA NA -0.008367493 NA NA NA NA -0.008367493 -0.008367493 -0.008367493 -0.008367493 -0.01960996 0.1870027 0.08108894 0.1969303 0.2365452 0.277423 0.2365452 0.09469046 -0.01829798 0.1630821 0.1781768 0.1152174 0.1152174 0.1969303 0.08108894 0.1398757 0.1630821 -0.0273322 0.2020427 0.1781768 0.1450083 0.1870027 0.1870027 -0.01373039 0.1824897 0.1264304 0.1224805 0.1398757 0.1350954 0.1450083 0.1702539 0.1450083 0.1630821 0.2865757 0.09725822 0.1350954 0.09221946 0.1187502 0.1565433 0.1187502 NA 0.1702539 0.2729041 0.1781768 0.2365452 0.1969303 0.1702539 -0.02085144 0.3021661 0.1224805 0.2941028 0.40133 0.4170288 0.1398757 0.2052211 0.1870027 0.221257 0.1450083 -0.02085144 0.2548647 0.1870027 -0.01373039 -0.02425981 0.1187502 0.1630821 -0.0220345 -0.01829798 0.3021661 -0.006815507 0.2607766 0.3108349 0.221257 -0.006815507 0.2548647 0.2548647 0.277423 0.1969303 0.3534965 -0.01538862 0.3062336 -0.01373039 0.40133 -0.01689886 -0.01186197 0.3062336 0.221257 -0.01373039 0.3062336 -0.01186197 -0.01689886 0.2548647 0.2365452 -0.009661836 0.4384866 0.1870027 0.1870027 0.3449761 0.3062336 -0.009661836 0.1398757 0.1969303 -0.01538862 0.3201918 0.1969303 0.4170288 -0.01373039 0.3668454 0.2365452 NA 0.221257 0.3668454 0.2365452 0.1969303 0.2082261 0.1450083 0.2548647 0.1702539 -0.04102047 -0.009661836 0.221257 0.1702539 0.3062336 -0.0220345 -0.009661836 -0.009661836 -0.006815507 -0.01960996 0.277423 0.4951691 1 0.3449761 0.40133 0.2082261 0.2082261 0.6278558 0.705405 -0.006815507 -0.01373039 -0.01373039 -0.01689886 0.4951691 0.221257 -0.01538862 -0.006815507 0.277423 -0.009661836 0.814522 -0.01373039 -0.01538862 -0.01373039 -0.006815507 -0.01373039 -0.01186197 -0.009661836 -0.01186197 -0.01538862 -0.006815507 -0.01186197 -0.01186197 NA -0.009661836 0.4951691 0.1702539 NA 0.2548647 NA -0.006815507 -0.01186197 0.1969303 -0.009661836 -0.009661836 NA 0.40133 -0.006815507 NA -0.01186197 -0.006815507 -0.006815507 -0.009661836 -0.009661836 -0.006815507 -0.006815507 -0.01538862 -0.006815507 0.277423 0.277423 0.705405 -0.006815507 0.705405 0.40133 -0.01186197 NA NA -0.006815507 0.705405 -0.006815507 0.705405 -0.006815507 NA NA -0.006815507 NA NA NA NA -0.006815507 -0.006815507 -0.006815507 -0.006815507 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA -0.02407543 -0.0297841 0.2559961 -0.02844401 -0.02407543 -0.02074697 -0.02407543 -0.05131158 -0.02246469 -0.03355612 -0.03107926 -0.04448239 -0.04448239 -0.02844401 -0.05688801 -0.03816164 -0.03355612 -0.03355612 0.04354341 -0.03107926 -0.03704645 -0.0297841 -0.0297841 -0.01685699 -0.06500076 -0.04139211 -0.042436 -0.03816164 0.09748687 -0.03704645 -0.03233506 -0.03704645 -0.03355612 0.0896829 0.1759942 -0.03925646 0.05806108 0.08270559 -0.03474628 -0.04346571 NA -0.03233506 0.2088769 -0.03107926 0.1855814 0.1517014 -0.03233506 -0.02559961 -0.03925646 0.2146401 0.09346953 -0.01456311 -0.02844401 0.2416904 -0.05780093 0.3160424 -0.02559961 0.2497205 -0.02559961 0.2011124 -0.0297841 -0.01685699 0.1431292 0.3350482 0.278143 -0.02705207 -0.02246469 0.09748687 -0.008367493 0.07639498 0.2416904 -0.02559961 -0.008367493 0.2011124 0.2011124 0.2201484 0.1517014 0.1222934 0.2443472 0.2443472 -0.01685699 -0.01456311 0.2201484 0.3236246 -0.01889283 -0.02559961 0.2767356 0.2443472 -0.01456311 -0.02074697 -0.02246469 0.1855814 -0.01186197 -0.02705207 0.1431292 0.1431292 -0.01685699 -0.01889283 -0.01186197 0.1017644 -0.02844401 -0.01889283 0.2497205 -0.02844401 0.5119921 0.2767356 -0.03233506 -0.02407543 NA 0.1725603 -0.03233506 -0.02407543 -0.02844401 0.1614107 0.2497205 0.2011124 0.1285704 0.1759942 -0.01186197 0.1725603 0.1285704 -0.01889283 0.1614107 -0.01186197 -0.01186197 -0.008367493 -0.02407543 0.2201484 -0.01186197 -0.01186197 0.2767356 -0.01456311 -0.02705207 0.1614107 -0.01889283 -0.008367493 -0.008367493 0.5703282 -0.01685699 -0.02074697 -0.01186197 0.1725603 -0.01889283 -0.008367493 0.2201484 0.40133 -0.01456311 -0.01685699 -0.01889283 -0.01685699 -0.008367493 -0.01685699 -0.01456311 -0.01186197 -0.01456311 -0.01889283 -0.008367493 -0.01456311 0.6618123 NA -0.01186197 -0.01186197 0.1285704 NA -0.02246469 NA -0.008367493 -0.01456311 -0.02844401 -0.01186197 -0.01186197 NA -0.01456311 -0.008367493 NA -0.01456311 -0.008367493 -0.008367493 -0.01186197 -0.01186197 -0.008367493 -0.008367493 0.2443472 -0.008367493 0.4610437 0.2201484 -0.008367493 -0.008367493 -0.008367493 -0.01456311 -0.01456311 NA NA -0.008367493 -0.008367493 -0.008367493 -0.008367493 -0.008367493 NA NA 0.5745678 NA NA NA NA -0.008367493 -0.008367493 -0.008367493 -0.008367493 -0.01383297 -0.01711299 0.1470871 -0.01634301 -0.01383297 -0.01192054 -0.01383297 0.1630722 -0.01290749 -0.01928027 -0.01785714 0.188108 0.188108 -0.01634301 0.1470871 -0.02192645 -0.01928027 0.2493582 0.1425219 -0.01785714 -0.0212857 -0.01711299 -0.01711299 -0.009685486 0.1287292 0.2021519 0.1971791 0.2192645 -0.0225555 -0.0212857 -0.01857869 -0.0212857 0.2493582 0.2021519 0.1661489 0.2131495 0.1601282 0.1925079 -0.0199641 0.1925079 NA -0.01857869 0.1925079 -0.01785714 -0.01383297 -0.01634301 0.2587746 0.3268602 0.2131495 -0.02438236 0.2074615 -0.008367493 0.2941742 -0.02192645 -0.03321056 -0.01711299 -0.01470871 -0.0212857 0.3268602 -0.01290749 -0.01711299 -0.009685486 -0.01711299 0.1925079 0.2493582 -0.01554325 -0.01290749 -0.0225555 -0.004807692 0.1839531 -0.02192645 -0.01470871 -0.004807692 -0.01290749 -0.01290749 -0.01192054 -0.01634301 0.2493582 -0.01085521 -0.01085521 -0.009685486 -0.008367493 -0.01192054 -0.008367493 -0.01085521 0.3268602 -0.009685486 -0.01085521 -0.008367493 -0.01192054 0.3724732 -0.01383297 -0.006815507 -0.01554325 -0.01711299 -0.01711299 -0.009685486 -0.01085521 -0.006815507 0.2192645 -0.01634301 -0.01085521 0.2258649 -0.01634301 -0.01634301 -0.009685486 -0.01857869 -0.01383297 NA -0.01470871 0.2587746 -0.01383297 -0.01634301 -0.01554325 0.2258649 -0.01290749 -0.01857869 0.1661489 -0.006815507 0.3268602 0.2587746 -0.01085521 -0.01554325 -0.006815507 -0.006815507 -0.004807692 -0.01383297 -0.01192054 -0.006815507 -0.006815507 -0.009685486 0.5745678 0.3093106 -0.01554325 -0.01085521 -0.004807692 -0.004807692 -0.009685486 -0.009685486 -0.01192054 -0.006815507 -0.01470871 -0.01085521 -0.004807692 -0.01192054 -0.006815507 -0.008367493 -0.009685486 -0.01085521 -0.009685486 -0.004807692 -0.009685486 -0.008367493 -0.006815507 -0.008367493 -0.01085521 -0.004807692 -0.008367493 -0.008367493 NA -0.006815507 -0.006815507 0.2587746 NA -0.01290749 NA -0.004807692 -0.008367493 -0.01634301 -0.006815507 -0.006815507 NA -0.008367493 -0.004807692 NA -0.008367493 -0.004807692 -0.004807692 -0.006815507 -0.006815507 -0.004807692 -0.004807692 0.4428926 -0.004807692 -0.01192054 0.4033116 -0.004807692 -0.004807692 -0.004807692 -0.008367493 -0.008367493 NA NA -0.004807692 -0.004807692 -0.004807692 -0.004807692 -0.004807692 NA NA -0.004807692 NA NA NA NA -0.004807692 -0.004807692 -0.004807692 -0.004807692 -0.02407543 -0.0297841 0.04740668 -0.02844401 -0.02407543 -0.02074697 -0.02407543 0.1721076 -0.02246469 -0.03355612 -0.03107926 0.2034328 0.0794752 0.1517014 0.1517014 -0.03816164 -0.03355612 -0.03355612 0.145797 0.1354737 0.2497205 -0.0297841 -0.0297841 -0.01685699 0.1276965 0.2207579 0.2146401 0.2416904 0.09748687 -0.03704645 -0.03233506 -0.03704645 -0.03355612 0.0896829 0.06281638 0.09748687 -0.05225498 -0.04346571 -0.03474628 0.08270559 NA 0.1285704 -0.04346571 -0.03107926 -0.02407543 -0.02844401 0.1285704 -0.02559961 0.2342302 0.08610203 0.09346953 -0.01456311 0.1517014 -0.03816164 0.1487015 -0.0297841 -0.02559961 0.2497205 -0.02559961 -0.02246469 -0.0297841 -0.01685699 -0.0297841 -0.04346571 -0.03355612 -0.02705207 -0.02246469 0.2342302 -0.008367493 0.1982771 -0.03816164 -0.02559961 -0.008367493 -0.02246469 -0.02246469 -0.02074697 -0.02844401 -0.03355612 -0.01889283 0.2443472 -0.01685699 -0.01456311 -0.02074697 -0.01456311 -0.01889283 0.1725603 -0.01685699 -0.01889283 -0.01456311 -0.02074697 -0.02246469 -0.02407543 -0.01186197 -0.02705207 0.3160424 0.3160424 -0.01685699 -0.01889283 -0.01186197 0.1017644 -0.02844401 -0.01889283 0.2497205 -0.02844401 -0.02844401 -0.01685699 -0.03233506 -0.02407543 NA -0.02559961 -0.03233506 -0.02407543 -0.02844401 -0.02705207 -0.03704645 0.4246895 0.2894758 -0.05036141 -0.01186197 0.1725603 0.2894758 -0.01889283 0.1614107 -0.01186197 -0.01186197 -0.008367493 -0.02407543 -0.02074697 -0.01186197 -0.01186197 -0.01685699 -0.01456311 -0.02705207 0.3498734 -0.01889283 -0.008367493 -0.008367493 -0.01685699 -0.01685699 0.2201484 -0.01186197 -0.02559961 0.2443472 -0.008367493 -0.02074697 -0.01186197 -0.01456311 -0.01685699 -0.01889283 -0.01685699 -0.008367493 -0.01685699 -0.01456311 -0.01186197 -0.01456311 0.2443472 -0.008367493 -0.01456311 -0.01456311 NA -0.01186197 -0.01186197 0.4503813 NA 0.4246895 NA -0.008367493 -0.01456311 -0.02844401 0.40133 -0.01186197 NA -0.01456311 -0.008367493 NA -0.01456311 -0.008367493 -0.008367493 -0.01186197 -0.01186197 -0.008367493 -0.008367493 -0.01889283 -0.008367493 -0.02074697 -0.02074697 -0.008367493 -0.008367493 -0.008367493 -0.01456311 -0.01456311 NA NA -0.008367493 -0.008367493 -0.008367493 -0.008367493 -0.008367493 NA NA -0.008367493 NA NA NA NA -0.008367493 -0.008367493 -0.008367493 -0.008367493 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA -0.01960996 0.1870027 0.2085144 0.1969303 0.2365452 -0.01689886 -0.01960996 0.09469046 -0.01829798 -0.0273322 -0.02531474 0.1152174 -0.03623188 -0.02316827 0.08108894 0.1398757 -0.0273322 -0.0273322 0.2020427 -0.02531474 -0.03017515 -0.02425981 -0.02425981 -0.01373039 0.1824897 -0.03371478 -0.03456506 0.1398757 -0.03197525 -0.03017515 -0.02633762 -0.03017515 -0.0273322 0.2865757 -0.04102047 -0.03197525 0.09221946 -0.03540378 -0.02830161 -0.03540378 NA 0.3668454 0.2729041 -0.02531474 0.2365452 -0.02316827 -0.02633762 -0.02085144 0.1350954 0.1224805 0.2941028 -0.01186197 0.4170288 0.1398757 0.2052211 0.3982652 -0.02085144 0.1450083 -0.02085144 0.5280274 -0.02425981 0.3449761 0.1870027 0.1187502 0.3534965 -0.0220345 -0.01829798 0.3021661 -0.006815507 0.2607766 0.3108349 0.4633654 -0.006815507 0.2548647 -0.01829798 -0.01689886 0.1969303 0.3534965 0.3062336 -0.01538862 0.3449761 -0.01186197 0.277423 0.40133 -0.01538862 -0.02085144 0.3449761 -0.01538862 0.40133 0.277423 0.5280274 -0.01960996 0.4951691 0.4384866 0.3982652 0.1870027 -0.01373039 0.3062336 -0.009661836 0.3108349 0.4170288 0.3062336 0.3201918 0.4170288 0.1969303 0.3449761 0.3668454 0.4927003 NA -0.02085144 0.3668454 0.4927003 0.4170288 0.2082261 0.3201918 -0.01829798 0.3668454 -0.04102047 0.4951691 0.221257 0.1702539 0.3062336 -0.0220345 -0.009661836 -0.009661836 -0.006815507 0.2365452 0.277423 -0.009661836 0.4951691 -0.01373039 0.40133 -0.0220345 -0.0220345 0.6278558 0.705405 -0.006815507 -0.01373039 -0.01373039 0.277423 0.4951691 0.4633654 0.3062336 -0.006815507 0.277423 -0.009661836 0.40133 -0.01373039 -0.01538862 -0.01373039 -0.006815507 -0.01373039 -0.01186197 -0.009661836 0.40133 -0.01538862 -0.006815507 0.40133 -0.01186197 NA 0.4951691 0.4951691 -0.02633762 NA 0.2548647 NA -0.006815507 -0.01186197 0.1969303 -0.009661836 -0.009661836 NA 0.40133 0.705405 NA 0.40133 0.705405 0.705405 0.4951691 0.4951691 0.705405 0.705405 -0.01538862 0.705405 0.5717448 0.277423 0.705405 -0.006815507 0.705405 0.40133 -0.01186197 NA NA -0.006815507 0.705405 0.705405 -0.006815507 0.705405 NA NA -0.006815507 NA NA NA NA 0.705405 -0.006815507 -0.006815507 -0.006815507 -0.02407543 0.1431292 0.2559961 -0.02844401 -0.02407543 -0.02074697 0.1855814 0.2838172 -0.02246469 -0.03355612 -0.03107926 0.3273904 0.3273904 0.5119921 0.2559961 0.1017644 0.1222934 -0.03355612 0.2480507 0.3020266 0.2497205 -0.0297841 0.1431292 -0.01685699 0.2240452 0.3518329 0.2146401 0.3816164 0.2342302 0.2497205 -0.03233506 0.106337 -0.03355612 0.3518329 0.289172 0.09748687 0.1683771 0.08270559 0.1165448 0.3350482 NA -0.03233506 0.2088769 0.1354737 -0.02407543 0.1517014 0.1285704 0.1725603 0.3709735 0.3431781 0.3610741 -0.01456311 -0.02844401 -0.03816164 0.2519528 -0.0297841 -0.02559961 0.393104 -0.02559961 -0.02246469 -0.0297841 -0.01685699 -0.0297841 -0.04346571 -0.03355612 -0.02705207 -0.02246469 0.09748687 -0.008367493 0.07639498 0.1017644 -0.02559961 -0.008367493 -0.02246469 -0.02246469 0.2201484 -0.02844401 0.1222934 -0.01889283 0.5075873 -0.01685699 -0.01456311 -0.02074697 -0.01456311 -0.01889283 0.3707202 -0.01685699 -0.01889283 -0.01456311 0.4610437 -0.02246469 -0.02407543 -0.01186197 -0.02705207 0.4889557 0.4889557 -0.01685699 -0.01889283 -0.01186197 0.2416904 -0.02844401 -0.01889283 0.2497205 -0.02844401 -0.02844401 -0.01685699 -0.03233506 -0.02407543 NA 0.1725603 -0.03233506 -0.02407543 0.1517014 -0.02705207 -0.03704645 0.2011124 0.4503813 0.06281638 -0.01186197 -0.02559961 0.4503813 -0.01889283 -0.02705207 -0.01186197 -0.01186197 -0.008367493 -0.02407543 -0.02074697 -0.01186197 -0.01186197 -0.01685699 -0.01456311 -0.02705207 0.1614107 -0.01889283 -0.008367493 -0.008367493 -0.01685699 -0.01685699 0.2201484 -0.01186197 -0.02559961 0.5075873 -0.008367493 -0.02074697 -0.01186197 -0.01456311 -0.01685699 -0.01889283 -0.01685699 -0.008367493 -0.01685699 -0.01456311 -0.01186197 -0.01456311 0.2443472 -0.008367493 -0.01456311 -0.01456311 NA -0.01186197 -0.01186197 0.2894758 NA 0.6482667 NA -0.008367493 -0.01456311 0.1517014 -0.01186197 -0.01186197 NA -0.01456311 -0.008367493 NA -0.01456311 -0.008367493 -0.008367493 -0.01186197 -0.01186197 -0.008367493 -0.008367493 -0.01889283 -0.008367493 -0.02074697 -0.02074697 -0.008367493 -0.008367493 -0.008367493 -0.01456311 -0.01456311 NA NA -0.008367493 -0.008367493 -0.008367493 -0.008367493 -0.008367493 NA NA -0.008367493 NA NA NA NA -0.008367493 -0.008367493 -0.008367493 -0.008367493 -0.01383297 -0.01711299 -0.03268602 -0.01634301 -0.01383297 -0.01192054 -0.01383297 -0.02948198 -0.01290749 -0.01928027 -0.01785714 -0.02555815 -0.02555815 -0.01634301 -0.03268602 -0.02192645 -0.01928027 -0.01928027 -0.033733 -0.01785714 -0.0212857 -0.01711299 -0.01711299 -0.009685486 -0.03734735 -0.02378257 -0.02438236 -0.02192645 -0.0225555 -0.0212857 -0.01857869 -0.0212857 -0.01928027 -0.02378257 -0.02893605 -0.0225555 -0.03002403 -0.024974 -0.0199641 -0.024974 NA -0.01857869 -0.024974 -0.01785714 -0.01383297 -0.01634301 -0.01857869 -0.01470871 -0.0225555 -0.02438236 -0.0231739 -0.008367493 -0.01634301 -0.02192645 -0.03321056 -0.01711299 -0.01470871 -0.0212857 -0.01470871 -0.01290749 -0.01711299 -0.009685486 -0.01711299 -0.024974 -0.01928027 -0.01554325 -0.01290749 -0.0225555 -0.004807692 -0.02613542 -0.02192645 -0.01470871 -0.004807692 -0.01290749 -0.01290749 -0.01192054 -0.01634301 -0.01928027 -0.01085521 -0.01085521 -0.009685486 -0.008367493 -0.01192054 -0.008367493 -0.01085521 -0.01470871 -0.009685486 -0.01085521 -0.008367493 -0.01192054 -0.01290749 -0.01383297 -0.006815507 -0.01554325 -0.01711299 -0.01711299 -0.009685486 -0.01085521 -0.006815507 -0.02192645 -0.01634301 -0.01085521 -0.0212857 -0.01634301 -0.01634301 -0.009685486 -0.01857869 -0.01383297 NA -0.01470871 -0.01857869 -0.01383297 -0.01634301 0.3093106 -0.0212857 -0.01290749 -0.01857869 -0.02893605 -0.006815507 -0.01470871 0.2587746 -0.01085521 -0.01554325 -0.006815507 -0.006815507 -0.004807692 -0.01383297 -0.01192054 -0.006815507 -0.006815507 -0.009685486 -0.008367493 -0.01554325 -0.01554325 -0.01085521 -0.004807692 -0.004807692 -0.009685486 -0.009685486 -0.01192054 -0.006815507 -0.01470871 -0.01085521 -0.004807692 -0.01192054 -0.006815507 -0.008367493 -0.009685486 -0.01085521 -0.009685486 -0.004807692 -0.009685486 -0.008367493 -0.006815507 -0.008367493 -0.01085521 -0.004807692 -0.008367493 -0.008367493 NA -0.006815507 -0.006815507 -0.01857869 NA -0.01290749 NA -0.004807692 -0.008367493 -0.01634301 -0.006815507 -0.006815507 NA -0.008367493 -0.004807692 NA -0.008367493 -0.004807692 -0.004807692 -0.006815507 -0.006815507 -0.004807692 -0.004807692 -0.01085521 -0.004807692 -0.01192054 -0.01192054 -0.004807692 -0.004807692 -0.004807692 -0.008367493 -0.008367493 NA NA -0.004807692 -0.004807692 -0.004807692 -0.004807692 -0.004807692 NA NA -0.004807692 NA NA NA NA -0.004807692 -0.004807692 -0.004807692 -0.004807692 -0.03123323 0.2305469 0.08856149 0.1033217 0.1319604 0.160594 0.295154 0.1942921 -0.0291436 0.07777826 0.08932288 0.2317527 0.135266 0.2435441 0.1697429 0.1683251 0.1990891 -0.04353261 0.2422053 0.3486073 0.2867618 0.09595386 0.2305469 -0.0218687 0.1406629 0.252382 0.1450515 0.2772413 0.1619501 0.1751543 0.08329777 0.1751543 0.07777826 0.252382 0.1108574 0.1619501 0.1898142 0.1400312 0.1904487 0.1400312 NA 0.08329777 0.2382409 0.2189651 0.295154 0.2435441 0.3337904 0.121034 0.2683889 0.2451035 0.1559752 0.2443472 0.2435441 0.1683251 0.1661219 0.09595386 0.121034 0.3983692 -0.03321056 0.1448853 0.09595386 -0.0218687 -0.03863914 0.1400312 -0.04353261 -0.03509485 -0.0291436 0.1619501 -0.01085521 0.1307315 0.1683251 -0.03321056 -0.01085521 0.1448853 0.3189143 0.3481032 0.2435441 0.07777826 0.1803922 0.3852941 -0.0218687 0.2443472 0.160594 0.2443472 0.1803922 0.121034 -0.0218687 0.3852941 -0.01889283 0.160594 -0.0291436 0.295154 -0.01538862 0.1116016 0.3651399 0.3651399 0.2066592 0.1803922 -0.01538862 0.2772413 -0.03690062 -0.0245098 0.2867618 -0.03690062 0.2435441 0.2066592 0.08329777 -0.03123323 NA 0.2752786 0.08329777 -0.03123323 -0.03690062 0.1116016 0.06354684 0.4929432 0.3337904 0.1108574 -0.01538862 0.2752786 0.3337904 -0.0245098 0.1116016 -0.01538862 -0.01538862 -0.01085521 -0.03123323 0.160594 0.3062336 0.3062336 0.4351871 -0.01889283 0.1116016 0.4049946 0.1803922 -0.01085521 -0.01085521 0.2066592 -0.0218687 0.3481032 -0.01538862 -0.03321056 -0.0245098 -0.01085521 0.160594 -0.01538862 0.2443472 -0.0218687 -0.0245098 -0.0218687 -0.01085521 -0.0218687 -0.01889283 -0.01538862 -0.01889283 0.1803922 -0.01085521 -0.01889283 0.2443472 NA -0.01538862 -0.01538862 0.4590366 NA 0.3189143 NA -0.01085521 -0.01889283 0.1033217 0.3062336 -0.01538862 NA -0.01889283 -0.01085521 NA -0.01889283 -0.01085521 -0.01085521 -0.01538862 -0.01538862 -0.01085521 -0.01085521 0.1803922 -0.01085521 0.160594 0.160594 -0.01085521 -0.01085521 -0.01085521 0.2443472 -0.01889283 NA NA -0.01085521 -0.01085521 -0.01085521 0.4428926 -0.01085521 NA NA -0.01085521 NA NA NA NA -0.01085521 -0.01085521 -0.01085521 -0.01085521 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA -0.02786763 0.2657486 0.2963189 0.1234662 0.3361533 -0.02401489 -0.02786763 0.2315432 -0.02600318 -0.03884166 -0.03597466 0.1637349 0.1637349 -0.03292432 0.205777 0.07730207 -0.03884166 0.2317553 0.287122 -0.03597466 -0.04288176 -0.0344755 -0.0344755 -0.0195122 0.2593353 0.06587889 0.06246814 0.1987767 -0.04543988 -0.04288176 -0.03742827 -0.04288176 0.0964568 0.4072513 0.0399596 0.1919835 0.1310526 0.05922159 -0.04021929 0.05922159 NA 0.3816347 0.278289 -0.03597466 0.1541428 0.1234662 0.1022594 0.1423977 0.3106952 0.06246814 0.4179481 -0.01685699 0.5926378 0.07730207 0.2020027 0.4158607 -0.02963189 0.08159447 0.3144273 0.5562822 -0.0344755 0.4902439 0.2657486 0.1687553 0.5023522 -0.03131313 -0.02600318 0.3106952 -0.009685486 0.3705885 0.3202514 0.4864568 -0.009685486 0.3621871 0.168092 -0.02401489 0.1234662 0.5023522 0.2066592 -0.0218687 0.2353659 -0.01685699 0.1851148 0.2767356 0.2066592 0.3144273 0.2353659 0.2066592 0.2767356 0.1851148 0.7503774 0.1541428 0.3449761 0.4595202 0.4158607 0.2657486 -0.0195122 0.2066592 -0.01373039 0.4417261 0.4362472 0.2066592 0.4550232 0.4362472 0.1234662 0.2353659 0.3816347 0.5181637 NA 0.1423977 0.5213224 0.5181637 0.2798567 0.2959091 0.4550232 0.168092 0.3816347 0.1382132 0.3449761 0.4864568 0.241947 0.4351871 -0.03131313 -0.01373039 -0.01373039 -0.009685486 0.3361533 0.1851148 -0.01373039 0.3449761 0.2353659 0.5703282 0.2959091 -0.03131313 0.4351871 0.4963811 0.4963811 -0.0195122 -0.0195122 0.1851148 0.3449761 0.4864568 0.4351871 0.4963811 0.3942445 0.3449761 0.5703282 0.2353659 -0.0218687 -0.0195122 -0.009685486 -0.0195122 -0.01685699 -0.01373039 0.2767356 -0.0218687 -0.009685486 0.5703282 -0.01685699 NA 0.3449761 0.3449761 0.241947 NA 0.168092 NA -0.009685486 -0.01685699 0.2798567 -0.01373039 -0.01373039 NA 0.2767356 0.4963811 NA 0.2767356 0.4963811 0.4963811 0.3449761 0.3449761 0.4963811 0.4963811 0.2066592 0.4963811 0.6033742 0.3942445 0.4963811 -0.009685486 0.4963811 0.2767356 -0.01685699 NA NA 0.4963811 0.4963811 0.4963811 -0.009685486 0.4963811 NA NA -0.009685486 NA NA NA NA 0.4963811 -0.009685486 -0.009685486 -0.009685486 -0.02407543 0.1431292 0.2559961 0.3318467 0.3952382 0.2201484 -0.02407543 0.2838172 -0.02246469 -0.03355612 -0.03107926 0.2034328 0.0794752 -0.02844401 0.2559961 0.2416904 -0.03355612 0.1222934 0.145797 0.1354737 -0.03704645 -0.0297841 -0.0297841 -0.01685699 0.2240452 0.0896829 -0.042436 0.1017644 0.09748687 0.106337 -0.03233506 0.106337 -0.03355612 0.0896829 0.1759942 0.2342302 0.2786932 -0.04346571 -0.03474628 -0.04346571 NA 0.2894758 0.3350482 0.1354737 0.1855814 0.1517014 -0.03233506 -0.02559961 0.09748687 0.2146401 0.09346953 -0.01456311 0.1517014 0.1017644 0.2519528 0.1431292 -0.02559961 0.106337 0.1725603 0.2011124 0.1431292 0.2767356 0.4889557 0.2088769 0.278143 0.1614107 0.2011124 0.3709735 0.5745678 0.3201591 0.1017644 0.1725603 -0.008367493 -0.02246469 -0.02246469 -0.02074697 0.1517014 0.1222934 0.2443472 -0.01889283 0.2767356 -0.01456311 0.4610437 0.3236246 -0.01889283 -0.02559961 0.2767356 -0.01889283 0.3236246 0.2201484 0.2011124 -0.02407543 0.40133 0.1614107 0.1431292 -0.0297841 -0.01685699 0.2443472 -0.01186197 0.1017644 0.3318467 0.2443472 0.106337 0.1517014 -0.02844401 0.2767356 0.2894758 0.1855814 NA -0.02559961 0.2894758 0.1855814 0.3318467 -0.02705207 0.2497205 -0.02246469 0.1285704 0.1759942 0.40133 -0.02559961 -0.03233506 -0.01889283 0.1614107 -0.01186197 -0.01186197 -0.008367493 0.1855814 0.2201484 -0.01186197 -0.01186197 -0.01685699 0.3236246 -0.02705207 -0.02705207 0.2443472 -0.008367493 -0.008367493 -0.01685699 -0.01685699 0.2201484 0.40133 0.1725603 0.2443472 -0.008367493 -0.02074697 -0.01186197 -0.01456311 -0.01685699 0.2443472 -0.01685699 -0.008367493 0.2767356 -0.01456311 -0.01186197 0.3236246 -0.01889283 -0.008367493 0.3236246 -0.01456311 NA 0.40133 -0.01186197 0.1285704 NA -0.02246469 NA 0.5745678 -0.01456311 0.1517014 -0.01186197 -0.01186197 NA 0.3236246 0.5745678 NA 0.3236246 0.5745678 0.5745678 0.40133 0.40133 0.5745678 0.5745678 -0.01889283 0.5745678 0.2201484 -0.02074697 -0.008367493 0.5745678 -0.008367493 0.3236246 -0.01456311 NA NA -0.008367493 -0.008367493 0.5745678 -0.008367493 0.5745678 NA NA -0.008367493 NA NA NA NA 0.5745678 -0.008367493 0.5745678 -0.008367493 -0.01383297 -0.01711299 0.1470871 -0.01634301 -0.01383297 -0.01192054 -0.01383297 0.1630722 -0.01290749 -0.01928027 -0.01785714 0.188108 -0.02555815 -0.01634301 0.1470871 -0.02192645 -0.01928027 -0.01928027 -0.033733 -0.01785714 -0.0212857 -0.01711299 -0.01711299 -0.009685486 0.1287292 -0.02378257 -0.02438236 -0.02192645 -0.0225555 -0.0212857 -0.01857869 0.2258649 -0.01928027 -0.02378257 0.1661489 0.2131495 0.1601282 -0.024974 -0.0199641 -0.024974 NA 0.2587746 0.1925079 -0.01785714 -0.01383297 0.2941742 -0.01857869 -0.01470871 -0.0225555 -0.02438236 -0.0231739 -0.008367493 -0.01634301 -0.02192645 0.144764 -0.01711299 -0.01470871 -0.0212857 -0.01470871 -0.01290749 -0.01711299 -0.009685486 0.2809382 -0.024974 -0.01928027 -0.01554325 -0.01290749 0.2131495 -0.004807692 0.1839531 -0.02192645 -0.01470871 -0.004807692 -0.01290749 -0.01290749 -0.01192054 -0.01634301 -0.01928027 -0.01085521 -0.01085521 -0.009685486 -0.008367493 -0.01192054 -0.008367493 -0.01085521 -0.01470871 -0.009685486 -0.01085521 -0.008367493 -0.01192054 -0.01290749 -0.01383297 -0.006815507 -0.01554325 -0.01711299 -0.01711299 -0.009685486 -0.01085521 -0.006815507 -0.02192645 0.2941742 -0.01085521 -0.0212857 -0.01634301 -0.01634301 -0.009685486 -0.01857869 -0.01383297 NA -0.01470871 0.2587746 -0.01383297 -0.01634301 -0.01554325 -0.0212857 -0.01290749 -0.01857869 0.1661489 -0.006815507 -0.01470871 -0.01857869 -0.01085521 -0.01554325 -0.006815507 -0.006815507 -0.004807692 -0.01383297 -0.01192054 -0.006815507 -0.006815507 -0.009685486 -0.008367493 -0.01554325 -0.01554325 -0.01085521 -0.004807692 -0.004807692 -0.009685486 -0.009685486 -0.01192054 0.705405 -0.01470871 -0.01085521 -0.004807692 -0.01192054 -0.006815507 -0.008367493 -0.009685486 0.4428926 -0.009685486 -0.004807692 -0.009685486 -0.008367493 -0.006815507 -0.008367493 -0.01085521 -0.004807692 -0.008367493 -0.008367493 NA -0.006815507 -0.006815507 -0.01857869 NA -0.01290749 NA -0.004807692 -0.008367493 -0.01634301 -0.006815507 -0.006815507 NA 0.5745678 -0.004807692 NA -0.008367493 -0.004807692 -0.004807692 -0.006815507 -0.006815507 -0.004807692 -0.004807692 -0.01085521 -0.004807692 -0.01192054 -0.01192054 -0.004807692 1 -0.004807692 -0.008367493 -0.008367493 NA NA -0.004807692 -0.004807692 -0.004807692 -0.004807692 -0.004807692 NA NA -0.004807692 NA NA NA NA -0.004807692 -0.004807692 1 -0.004807692 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA -0.01383297 -0.01711299 -0.03268602 -0.01634301 -0.01383297 -0.01192054 -0.01383297 -0.02948198 -0.01290749 -0.01928027 -0.01785714 -0.02555815 -0.02555815 -0.01634301 -0.03268602 -0.02192645 -0.01928027 -0.01928027 -0.033733 -0.01785714 -0.0212857 -0.01711299 -0.01711299 -0.009685486 0.1287292 -0.02378257 -0.02438236 -0.02192645 -0.0225555 -0.0212857 -0.01857869 -0.0212857 -0.01928027 -0.02378257 -0.02893605 -0.0225555 -0.03002403 -0.024974 -0.0199641 -0.024974 NA -0.01857869 0.1925079 -0.01785714 0.3475533 -0.01634301 -0.01857869 -0.01470871 -0.0225555 -0.02438236 -0.0231739 -0.008367493 -0.01634301 -0.02192645 -0.03321056 -0.01711299 -0.01470871 0.2258649 -0.01470871 -0.01290749 -0.01711299 -0.009685486 -0.01711299 -0.024974 -0.01928027 -0.01554325 -0.01290749 -0.0225555 -0.004807692 -0.02613542 -0.02192645 -0.01470871 1 -0.01290749 -0.01290749 -0.01192054 0.2941742 -0.01928027 -0.01085521 -0.01085521 -0.009685486 -0.008367493 -0.01192054 -0.008367493 -0.01085521 -0.01470871 -0.009685486 -0.01085521 -0.008367493 -0.01192054 -0.01290749 -0.01383297 -0.006815507 -0.01554325 -0.01711299 -0.01711299 -0.009685486 -0.01085521 -0.006815507 -0.02192645 -0.01634301 -0.01085521 -0.0212857 -0.01634301 -0.01634301 -0.009685486 -0.01857869 -0.01383297 NA -0.01470871 -0.01857869 -0.01383297 -0.01634301 -0.01554325 -0.0212857 -0.01290749 -0.01857869 -0.02893605 -0.006815507 -0.01470871 -0.01857869 -0.01085521 -0.01554325 -0.006815507 -0.006815507 -0.004807692 -0.01383297 -0.01192054 -0.006815507 -0.006815507 -0.009685486 -0.008367493 -0.01554325 0.3093106 -0.01085521 -0.004807692 -0.004807692 -0.009685486 -0.009685486 -0.01192054 -0.006815507 -0.01470871 -0.01085521 -0.004807692 -0.01192054 -0.006815507 -0.008367493 -0.009685486 -0.01085521 -0.009685486 1 -0.009685486 -0.008367493 -0.006815507 -0.008367493 -0.01085521 -0.004807692 -0.008367493 -0.008367493 NA -0.006815507 -0.006815507 -0.01857869 NA -0.01290749 NA -0.004807692 -0.008367493 -0.01634301 -0.006815507 -0.006815507 NA -0.008367493 -0.004807692 NA -0.008367493 -0.004807692 -0.004807692 -0.006815507 -0.006815507 -0.004807692 -0.004807692 -0.01085521 -0.004807692 -0.01192054 -0.01192054 -0.004807692 -0.004807692 -0.004807692 -0.008367493 -0.008367493 NA NA -0.004807692 -0.004807692 -0.004807692 -0.004807692 -0.004807692 NA NA -0.004807692 NA NA NA NA -0.004807692 -0.004807692 -0.004807692 -0.004807692 -0.01383297 -0.01711299 0.1470871 -0.01634301 -0.01383297 -0.01192054 -0.01383297 0.1630722 -0.01290749 -0.01928027 -0.01785714 0.188108 -0.02555815 -0.01634301 0.1470871 -0.02192645 -0.01928027 -0.01928027 -0.033733 -0.01785714 -0.0212857 -0.01711299 -0.01711299 -0.009685486 0.1287292 -0.02378257 -0.02438236 -0.02192645 -0.0225555 -0.0212857 -0.01857869 0.2258649 -0.01928027 -0.02378257 0.1661489 0.2131495 0.1601282 -0.024974 -0.0199641 -0.024974 NA 0.2587746 0.1925079 -0.01785714 -0.01383297 0.2941742 -0.01857869 -0.01470871 -0.0225555 -0.02438236 -0.0231739 -0.008367493 -0.01634301 -0.02192645 0.144764 -0.01711299 -0.01470871 -0.0212857 -0.01470871 -0.01290749 -0.01711299 -0.009685486 0.2809382 -0.024974 -0.01928027 -0.01554325 -0.01290749 0.2131495 -0.004807692 0.1839531 -0.02192645 -0.01470871 -0.004807692 -0.01290749 -0.01290749 -0.01192054 -0.01634301 -0.01928027 -0.01085521 -0.01085521 -0.009685486 -0.008367493 -0.01192054 -0.008367493 -0.01085521 -0.01470871 -0.009685486 -0.01085521 -0.008367493 -0.01192054 -0.01290749 -0.01383297 -0.006815507 -0.01554325 -0.01711299 -0.01711299 -0.009685486 -0.01085521 -0.006815507 -0.02192645 0.2941742 -0.01085521 -0.0212857 -0.01634301 -0.01634301 -0.009685486 -0.01857869 -0.01383297 NA -0.01470871 0.2587746 -0.01383297 -0.01634301 -0.01554325 -0.0212857 -0.01290749 -0.01857869 0.1661489 -0.006815507 -0.01470871 -0.01857869 -0.01085521 -0.01554325 -0.006815507 -0.006815507 -0.004807692 -0.01383297 -0.01192054 -0.006815507 -0.006815507 -0.009685486 -0.008367493 -0.01554325 -0.01554325 -0.01085521 -0.004807692 -0.004807692 -0.009685486 -0.009685486 -0.01192054 0.705405 -0.01470871 -0.01085521 -0.004807692 -0.01192054 -0.006815507 -0.008367493 -0.009685486 0.4428926 -0.009685486 -0.004807692 -0.009685486 -0.008367493 -0.006815507 -0.008367493 -0.01085521 -0.004807692 -0.008367493 -0.008367493 NA -0.006815507 -0.006815507 -0.01857869 NA -0.01290749 NA -0.004807692 -0.008367493 -0.01634301 -0.006815507 -0.006815507 NA 0.5745678 -0.004807692 NA -0.008367493 -0.004807692 -0.004807692 -0.006815507 -0.006815507 -0.004807692 -0.004807692 -0.01085521 -0.004807692 -0.01192054 -0.01192054 -0.004807692 1 -0.004807692 -0.008367493 -0.008367493 NA NA -0.004807692 -0.004807692 -0.004807692 -0.004807692 -0.004807692 NA NA -0.004807692 NA NA NA NA -0.004807692 -0.004807692 1 -0.004807692 -0.01383297 -0.01711299 0.1470871 0.2941742 0.3475533 0.4033116 -0.01383297 0.1630722 -0.01290749 -0.01928027 -0.01785714 -0.02555815 0.188108 -0.01634301 0.1470871 0.2192645 -0.01928027 0.2493582 0.1425219 0.2692308 -0.0212857 -0.01711299 -0.01711299 -0.009685486 0.1287292 0.2021519 -0.02438236 -0.02192645 0.2131495 0.2258649 -0.01857869 -0.0212857 -0.01928027 -0.02378257 0.1661489 0.2131495 0.1601282 -0.024974 -0.0199641 -0.024974 NA -0.01857869 0.1925079 0.2692308 -0.01383297 -0.01634301 -0.01857869 -0.01470871 0.2131495 0.1971791 -0.0231739 -0.008367493 -0.01634301 -0.02192645 0.144764 -0.01711299 -0.01470871 -0.0212857 0.3268602 -0.01290749 0.2809382 -0.009685486 0.2809382 0.1925079 0.2493582 0.3093106 0.3724732 0.2131495 1 0.1839531 -0.02192645 -0.01470871 -0.004807692 -0.01290749 -0.01290749 -0.01192054 -0.01634301 -0.01928027 -0.01085521 -0.01085521 -0.009685486 -0.008367493 0.4033116 -0.008367493 -0.01085521 -0.01470871 -0.009685486 -0.01085521 -0.008367493 -0.01192054 -0.01290749 -0.01383297 -0.006815507 -0.01554325 -0.01711299 -0.01711299 -0.009685486 -0.01085521 -0.006815507 -0.02192645 -0.01634301 -0.01085521 -0.0212857 -0.01634301 -0.01634301 -0.009685486 0.2587746 -0.01383297 NA -0.01470871 -0.01857869 -0.01383297 0.2941742 -0.01554325 0.2258649 -0.01290749 -0.01857869 0.1661489 -0.006815507 -0.01470871 -0.01857869 -0.01085521 0.3093106 -0.006815507 -0.006815507 -0.004807692 -0.01383297 -0.01192054 -0.006815507 -0.006815507 -0.009685486 0.5745678 -0.01554325 -0.01554325 -0.01085521 -0.004807692 -0.004807692 -0.009685486 -0.009685486 -0.01192054 -0.006815507 -0.01470871 -0.01085521 -0.004807692 -0.01192054 -0.006815507 -0.008367493 -0.009685486 -0.01085521 -0.009685486 -0.004807692 0.4963811 -0.008367493 -0.006815507 -0.008367493 -0.01085521 -0.004807692 -0.008367493 -0.008367493 NA -0.006815507 -0.006815507 0.2587746 NA -0.01290749 NA 1 -0.008367493 0.2941742 -0.006815507 -0.006815507 NA -0.008367493 -0.004807692 NA -0.008367493 -0.004807692 -0.004807692 -0.006815507 -0.006815507 -0.004807692 -0.004807692 -0.01085521 -0.004807692 -0.01192054 -0.01192054 -0.004807692 -0.004807692 -0.004807692 -0.008367493 -0.008367493 NA NA -0.004807692 -0.004807692 -0.004807692 -0.004807692 -0.004807692 NA NA -0.004807692 NA NA NA NA -0.004807692 -0.004807692 -0.004807692 -0.004807692 0.2365452 0.1870027 0.08108894 -0.02316827 -0.01960996 -0.01689886 -0.01960996 0.09469046 0.2548647 0.1630821 0.1781768 0.1152174 -0.03623188 -0.02316827 0.2085144 0.1398757 0.1630821 -0.0273322 0.07711097 -0.02531474 -0.03017515 -0.02425981 -0.02425981 0.3449761 0.06477259 -0.03371478 -0.03456506 -0.03108349 0.1350954 -0.03017515 -0.02633762 0.3201918 0.1630821 -0.03371478 0.2355369 0.1350954 0.2270017 -0.03540378 0.1565433 0.1187502 NA 0.1702539 0.1187502 -0.02531474 -0.01960996 0.1969303 -0.02633762 -0.02085144 -0.03197525 0.1224805 -0.0328519 -0.01186197 -0.02316827 0.1398757 0.2052211 -0.02425981 0.221257 -0.03017515 -0.02085144 -0.01829798 -0.02425981 -0.01373039 0.3982652 0.1187502 -0.0273322 0.2082261 -0.01829798 0.3021661 -0.006815507 0.2607766 -0.03108349 -0.02085144 -0.006815507 -0.01829798 -0.01829798 -0.01689886 -0.02316827 -0.0273322 -0.01538862 -0.01538862 -0.01373039 -0.01186197 -0.01689886 -0.01186197 -0.01538862 -0.02085144 -0.01373039 -0.01538862 -0.01186197 -0.01689886 -0.01829798 -0.01960996 -0.009661836 -0.0220345 -0.02425981 -0.02425981 -0.01373039 -0.01538862 -0.009661836 -0.03108349 0.4170288 -0.01538862 -0.03017515 -0.02316827 -0.02316827 -0.01373039 -0.02633762 -0.01960996 NA -0.02085144 0.1702539 -0.01960996 -0.02316827 -0.0220345 -0.03017515 -0.01829798 -0.02633762 0.2355369 -0.009661836 -0.02085144 -0.02633762 -0.01538862 -0.0220345 -0.009661836 -0.009661836 -0.006815507 -0.01960996 -0.01689886 -0.009661836 -0.009661836 -0.01373039 -0.01186197 -0.0220345 -0.0220345 -0.01538862 -0.006815507 -0.006815507 -0.01373039 -0.01373039 -0.01689886 0.4951691 -0.02085144 -0.01538862 -0.006815507 -0.01689886 -0.009661836 -0.01186197 -0.01373039 0.3062336 -0.01373039 -0.006815507 -0.01373039 -0.01186197 -0.009661836 -0.01186197 -0.01538862 -0.006815507 -0.01186197 -0.01186197 NA -0.009661836 -0.009661836 -0.02633762 NA -0.01829798 NA -0.006815507 -0.01186197 -0.02316827 -0.009661836 -0.009661836 NA 0.40133 -0.006815507 NA -0.01186197 -0.006815507 -0.006815507 -0.009661836 -0.009661836 -0.006815507 -0.006815507 -0.01538862 -0.006815507 -0.01689886 -0.01689886 -0.006815507 0.705405 -0.006815507 -0.01186197 -0.01186197 NA NA -0.006815507 -0.006815507 -0.006815507 -0.006815507 -0.006815507 NA NA -0.006815507 NA NA NA NA -0.006815507 -0.006815507 0.705405 -0.006815507 -0.01383297 0.2809382 0.1470871 0.2941742 0.3475533 -0.01192054 -0.01383297 0.1630722 -0.01290749 -0.01928027 -0.01785714 0.188108 -0.02555815 -0.01634301 0.1470871 0.2192645 -0.01928027 -0.01928027 0.1425219 -0.01785714 -0.0212857 -0.01711299 -0.01711299 -0.009685486 0.1287292 -0.02378257 -0.02438236 0.2192645 -0.0225555 -0.0212857 -0.01857869 -0.0212857 -0.01928027 0.2021519 -0.02893605 -0.0225555 0.1601282 -0.024974 -0.0199641 -0.024974 NA 0.2587746 0.1925079 -0.01785714 0.3475533 -0.01634301 -0.01857869 -0.01470871 -0.0225555 0.1971791 0.2074615 -0.008367493 0.2941742 0.2192645 0.144764 0.2809382 -0.01470871 0.2258649 -0.01470871 0.3724732 -0.01711299 0.4963811 0.2809382 0.1925079 0.2493582 -0.01554325 -0.01290749 0.2131495 -0.004807692 0.1839531 0.2192645 0.3268602 -0.004807692 -0.01290749 -0.01290749 -0.01192054 0.2941742 0.2493582 0.4428926 -0.01085521 0.4963811 -0.008367493 0.4033116 0.5745678 -0.01085521 -0.01470871 0.4963811 -0.01085521 0.5745678 0.4033116 0.3724732 -0.01383297 0.705405 0.3093106 0.2809382 -0.01711299 -0.009685486 0.4428926 -0.006815507 0.2192645 0.2941742 0.4428926 0.2258649 0.2941742 -0.01634301 0.4963811 0.2587746 0.3475533 NA -0.01470871 0.2587746 0.3475533 0.2941742 -0.01554325 0.2258649 -0.01290749 0.2587746 -0.02893605 0.705405 -0.01470871 -0.01857869 -0.01085521 -0.01554325 -0.006815507 -0.006815507 -0.004807692 0.3475533 0.4033116 -0.006815507 -0.006815507 -0.009685486 -0.008367493 -0.01554325 -0.01554325 0.4428926 -0.004807692 -0.004807692 -0.009685486 -0.009685486 0.4033116 -0.006815507 0.3268602 0.4428926 -0.004807692 -0.01192054 -0.006815507 -0.008367493 -0.009685486 -0.01085521 -0.009685486 -0.004807692 -0.009685486 -0.008367493 -0.006815507 0.5745678 -0.01085521 -0.004807692 0.5745678 -0.008367493 NA 0.705405 -0.006815507 -0.01857869 NA -0.01290749 NA -0.004807692 -0.008367493 -0.01634301 -0.006815507 -0.006815507 NA -0.008367493 1 NA 0.5745678 1 1 0.705405 0.705405 1 1 -0.01085521 1 0.4033116 -0.01192054 -0.004807692 -0.004807692 -0.004807692 0.5745678 -0.008367493 NA NA -0.004807692 -0.004807692 1 -0.004807692 1 NA NA -0.004807692 NA NA NA NA 1 -0.004807692 -0.004807692 -0.004807692 -0.01383297 -0.01711299 -0.03268602 -0.01634301 -0.01383297 -0.01192054 -0.01383297 -0.02948198 -0.01290749 -0.01928027 -0.01785714 -0.02555815 -0.02555815 -0.01634301 -0.03268602 -0.02192645 -0.01928027 -0.01928027 -0.033733 -0.01785714 -0.0212857 -0.01711299 -0.01711299 -0.009685486 -0.03734735 -0.02378257 -0.02438236 -0.02192645 -0.0225555 -0.0212857 -0.01857869 -0.0212857 -0.01928027 -0.02378257 -0.02893605 -0.0225555 -0.03002403 -0.024974 -0.0199641 -0.024974 NA 0.2587746 -0.024974 -0.01785714 -0.01383297 -0.01634301 -0.01857869 -0.01470871 -0.0225555 -0.02438236 -0.0231739 -0.008367493 0.2941742 -0.02192645 -0.03321056 -0.01711299 -0.01470871 -0.0212857 -0.01470871 -0.01290749 -0.01711299 -0.009685486 -0.01711299 -0.024974 -0.01928027 -0.01554325 -0.01290749 -0.0225555 -0.004807692 -0.02613542 -0.02192645 -0.01470871 -0.004807692 -0.01290749 -0.01290749 -0.01192054 -0.01634301 -0.01928027 -0.01085521 -0.01085521 -0.009685486 -0.008367493 -0.01192054 -0.008367493 -0.01085521 -0.01470871 -0.009685486 -0.01085521 -0.008367493 -0.01192054 -0.01290749 -0.01383297 -0.006815507 -0.01554325 0.2809382 0.2809382 -0.009685486 -0.01085521 -0.006815507 0.2192645 -0.01634301 -0.01085521 -0.0212857 -0.01634301 -0.01634301 -0.009685486 -0.01857869 -0.01383297 NA -0.01470871 -0.01857869 -0.01383297 -0.01634301 -0.01554325 -0.0212857 0.3724732 -0.01857869 -0.02893605 -0.006815507 0.3268602 0.2587746 -0.01085521 0.3093106 -0.006815507 -0.006815507 -0.004807692 -0.01383297 -0.01192054 -0.006815507 -0.006815507 -0.009685486 -0.008367493 -0.01554325 -0.01554325 -0.01085521 -0.004807692 -0.004807692 -0.009685486 -0.009685486 0.4033116 -0.006815507 -0.01470871 -0.01085521 -0.004807692 -0.01192054 -0.006815507 -0.008367493 -0.009685486 -0.01085521 -0.009685486 -0.004807692 -0.009685486 -0.008367493 -0.006815507 -0.008367493 0.4428926 -0.004807692 -0.008367493 -0.008367493 NA -0.006815507 -0.006815507 0.2587746 NA 0.3724732 NA -0.004807692 -0.008367493 -0.01634301 0.705405 -0.006815507 NA -0.008367493 -0.004807692 NA -0.008367493 -0.004807692 -0.004807692 -0.006815507 -0.006815507 -0.004807692 -0.004807692 -0.01085521 -0.004807692 -0.01192054 -0.01192054 -0.004807692 -0.004807692 -0.004807692 -0.008367493 -0.008367493 NA NA -0.004807692 -0.004807692 -0.004807692 -0.004807692 -0.004807692 NA NA -0.004807692 NA NA NA NA -0.004807692 -0.004807692 -0.004807692 -0.004807692 0.3475533 -0.01711299 0.1470871 0.2941742 -0.01383297 -0.01192054 0.3475533 0.1630722 0.3724732 0.2493582 0.2692308 0.188108 0.188108 0.2941742 -0.03268602 0.2192645 0.2493582 0.2493582 0.1425219 0.2692308 0.2258649 0.2809382 0.2809382 -0.009685486 0.1287292 0.2021519 0.1971791 0.2192645 0.2131495 0.2258649 0.2587746 0.2258649 0.2493582 0.2021519 0.1661489 0.2131495 0.1601282 -0.024974 0.2408169 0.1925079 NA -0.01857869 0.1925079 0.2692308 -0.01383297 0.2941742 0.2587746 0.3268602 0.2131495 0.1971791 0.2074615 0.5745678 -0.01634301 -0.02192645 0.144764 -0.01711299 -0.01470871 0.2258649 -0.01470871 -0.01290749 -0.01711299 -0.009685486 -0.01711299 0.1925079 0.2493582 -0.01554325 -0.01290749 0.2131495 -0.004807692 0.1839531 0.2192645 -0.01470871 -0.004807692 -0.01290749 -0.01290749 -0.01192054 0.2941742 -0.01928027 -0.01085521 -0.01085521 -0.009685486 0.5745678 -0.01192054 -0.008367493 -0.01085521 -0.01470871 -0.009685486 0.4428926 -0.008367493 -0.01192054 -0.01290749 -0.01383297 -0.006815507 0.3093106 -0.01711299 -0.01711299 -0.009685486 -0.01085521 -0.006815507 -0.02192645 -0.01634301 -0.01085521 0.2258649 0.2941742 0.2941742 -0.009685486 -0.01857869 -0.01383297 NA -0.01470871 -0.01857869 -0.01383297 0.2941742 -0.01554325 0.2258649 -0.01290749 -0.01857869 0.1661489 -0.006815507 -0.01470871 -0.01857869 0.4428926 -0.01554325 -0.006815507 -0.006815507 -0.004807692 -0.01383297 -0.01192054 -0.006815507 -0.006815507 -0.009685486 -0.008367493 -0.01554325 -0.01554325 0.4428926 -0.004807692 -0.004807692 -0.009685486 -0.009685486 0.4033116 -0.006815507 -0.01470871 -0.01085521 -0.004807692 -0.01192054 -0.006815507 -0.008367493 -0.009685486 -0.01085521 -0.009685486 -0.004807692 -0.009685486 -0.008367493 -0.006815507 -0.008367493 0.4428926 1 -0.008367493 -0.008367493 NA -0.006815507 -0.006815507 0.2587746 NA 0.3724732 NA -0.004807692 -0.008367493 0.2941742 0.705405 -0.006815507 NA -0.008367493 -0.004807692 NA -0.008367493 -0.004807692 -0.004807692 -0.006815507 -0.006815507 -0.004807692 -0.004807692 0.4428926 -0.004807692 -0.01192054 -0.01192054 -0.004807692 -0.004807692 -0.004807692 -0.008367493 -0.008367493 NA NA -0.004807692 -0.004807692 -0.004807692 -0.004807692 -0.004807692 NA NA -0.004807692 NA NA NA NA -0.004807692 -0.004807692 -0.004807692 -0.004807692 -0.01960996 0.1870027 0.2085144 0.1969303 0.2365452 -0.01689886 -0.01960996 0.2311753 -0.01829798 -0.0273322 -0.02531474 0.2666667 0.1152174 -0.02316827 0.2085144 0.1398757 -0.0273322 -0.0273322 0.2020427 -0.02531474 -0.03017515 -0.02425981 -0.02425981 -0.01373039 0.1824897 -0.03371478 0.1224805 0.3108349 -0.03197525 0.1450083 -0.02633762 0.1450083 0.1630821 0.2865757 0.09725822 -0.03197525 0.2270017 0.1187502 0.1565433 -0.03540378 NA 0.3668454 0.2729041 0.1781768 0.4927003 -0.02316827 0.1702539 -0.02085144 -0.03197525 0.2795261 0.2941028 -0.01186197 0.4170288 0.3108349 0.2052211 0.3982652 -0.02085144 0.3201918 0.221257 0.5280274 -0.02425981 0.3449761 0.1870027 0.2729041 0.3534965 -0.0220345 0.2548647 0.3021661 -0.006815507 0.2607766 0.3108349 0.221257 -0.006815507 0.2548647 0.2548647 0.277423 0.4170288 0.3534965 0.6278558 -0.01538862 0.7036825 0.40133 0.5717448 0.814522 0.3062336 0.221257 0.7036825 -0.01538862 0.814522 0.5717448 0.2548647 0.2365452 1 0.4384866 0.3982652 0.1870027 0.3449761 0.6278558 -0.009661836 0.3108349 0.4170288 0.6278558 0.3201918 0.4170288 -0.02316827 0.7036825 0.3668454 0.2365452 NA 0.221257 0.3668454 0.4927003 0.4170288 0.2082261 0.3201918 0.2548647 0.3668454 0.09725822 1 0.221257 0.1702539 -0.01538862 -0.0220345 -0.009661836 -0.009661836 -0.006815507 0.2365452 0.277423 -0.009661836 -0.009661836 -0.01373039 -0.01186197 -0.0220345 0.2082261 0.3062336 -0.006815507 -0.006815507 0.3449761 -0.01373039 0.5717448 -0.009661836 0.4633654 0.3062336 -0.006815507 -0.01689886 -0.009661836 -0.01186197 -0.01373039 -0.01538862 -0.01373039 -0.006815507 -0.01373039 -0.01186197 -0.009661836 0.40133 -0.01538862 -0.006815507 0.814522 0.40133 NA 1 -0.009661836 -0.02633762 NA 0.2548647 NA -0.006815507 0.40133 -0.02316827 -0.009661836 -0.009661836 NA -0.01186197 0.705405 NA 0.40133 0.705405 0.705405 0.4951691 1 0.705405 0.705405 -0.01538862 0.705405 0.277423 0.277423 -0.006815507 -0.006815507 -0.006815507 0.40133 -0.01186197 NA NA -0.006815507 -0.006815507 0.705405 -0.006815507 0.705405 NA NA -0.006815507 NA NA NA NA 0.705405 0.705405 -0.006815507 -0.006815507 -0.01383297 -0.01711299 0.1470871 -0.01634301 -0.01383297 -0.01192054 -0.01383297 -0.02948198 -0.01290749 -0.01928027 -0.01785714 -0.02555815 -0.02555815 -0.01634301 -0.03268602 -0.02192645 -0.01928027 -0.01928027 0.1425219 -0.01785714 -0.0212857 -0.01711299 -0.01711299 -0.009685486 -0.03734735 -0.02378257 -0.02438236 -0.02192645 -0.0225555 -0.0212857 -0.01857869 -0.0212857 -0.01928027 0.2021519 -0.02893605 -0.0225555 0.1601282 -0.024974 -0.0199641 -0.024974 NA -0.01857869 0.1925079 -0.01785714 0.3475533 0.2941742 -0.01857869 -0.01470871 -0.0225555 0.1971791 -0.0231739 -0.008367493 -0.01634301 0.2192645 -0.03321056 0.2809382 -0.01470871 0.2258649 -0.01470871 0.3724732 -0.01711299 -0.009685486 -0.01711299 0.1925079 -0.01928027 -0.01554325 -0.01290749 -0.0225555 -0.004807692 -0.02613542 0.2192645 -0.01470871 -0.004807692 0.3724732 0.3724732 0.4033116 0.2941742 -0.01928027 0.4428926 0.4428926 -0.009685486 -0.008367493 0.4033116 0.5745678 -0.01085521 -0.01470871 -0.009685486 0.4428926 -0.008367493 -0.01192054 -0.01290749 0.3475533 -0.006815507 -0.01554325 0.2809382 0.2809382 -0.009685486 -0.01085521 -0.006815507 0.2192645 -0.01634301 -0.01085521 0.2258649 -0.01634301 0.2941742 0.4963811 -0.01857869 -0.01383297 NA 0.3268602 -0.01857869 -0.01383297 -0.01634301 0.3093106 0.2258649 0.3724732 0.2587746 0.1661489 -0.006815507 0.3268602 0.2587746 -0.01085521 -0.01554325 -0.006815507 -0.006815507 -0.004807692 -0.01383297 -0.01192054 -0.006815507 -0.006815507 0.4963811 -0.008367493 -0.01554325 0.3093106 -0.01085521 -0.004807692 -0.004807692 0.4963811 -0.009685486 -0.01192054 -0.006815507 -0.01470871 -0.01085521 -0.004807692 0.4033116 -0.006815507 -0.008367493 -0.009685486 -0.01085521 -0.009685486 -0.004807692 -0.009685486 -0.008367493 -0.006815507 -0.008367493 -0.01085521 -0.004807692 -0.008367493 0.5745678 NA -0.006815507 -0.006815507 0.2587746 NA -0.01290749 NA -0.004807692 -0.008367493 -0.01634301 -0.006815507 -0.006815507 NA -0.008367493 -0.004807692 NA -0.008367493 -0.004807692 -0.004807692 -0.006815507 -0.006815507 -0.004807692 -0.004807692 0.4428926 -0.004807692 0.4033116 0.4033116 -0.004807692 -0.004807692 -0.004807692 -0.008367493 -0.008367493 NA NA -0.004807692 -0.004807692 -0.004807692 -0.004807692 -0.004807692 NA NA -0.004807692 NA NA NA NA -0.004807692 -0.004807692 -0.004807692 -0.004807692 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA -0.01383297 0.2809382 0.1470871 0.2941742 0.3475533 -0.01192054 -0.01383297 0.1630722 -0.01290749 -0.01928027 -0.01785714 0.188108 -0.02555815 -0.01634301 0.1470871 0.2192645 -0.01928027 -0.01928027 0.1425219 -0.01785714 -0.0212857 -0.01711299 -0.01711299 -0.009685486 0.1287292 -0.02378257 -0.02438236 0.2192645 -0.0225555 -0.0212857 -0.01857869 -0.0212857 -0.01928027 0.2021519 -0.02893605 -0.0225555 0.1601282 -0.024974 -0.0199641 -0.024974 NA 0.2587746 0.1925079 -0.01785714 0.3475533 -0.01634301 -0.01857869 -0.01470871 -0.0225555 0.1971791 0.2074615 -0.008367493 0.2941742 0.2192645 0.144764 0.2809382 -0.01470871 0.2258649 -0.01470871 0.3724732 -0.01711299 0.4963811 0.2809382 0.1925079 0.2493582 -0.01554325 -0.01290749 0.2131495 -0.004807692 0.1839531 0.2192645 0.3268602 -0.004807692 -0.01290749 -0.01290749 -0.01192054 0.2941742 0.2493582 0.4428926 -0.01085521 0.4963811 -0.008367493 0.4033116 0.5745678 -0.01085521 -0.01470871 0.4963811 -0.01085521 0.5745678 0.4033116 0.3724732 -0.01383297 0.705405 0.3093106 0.2809382 -0.01711299 -0.009685486 0.4428926 -0.006815507 0.2192645 0.2941742 0.4428926 0.2258649 0.2941742 -0.01634301 0.4963811 0.2587746 0.3475533 NA -0.01470871 0.2587746 0.3475533 0.2941742 -0.01554325 0.2258649 -0.01290749 0.2587746 -0.02893605 0.705405 -0.01470871 -0.01857869 -0.01085521 -0.01554325 -0.006815507 -0.006815507 -0.004807692 0.3475533 0.4033116 -0.006815507 -0.006815507 -0.009685486 -0.008367493 -0.01554325 -0.01554325 0.4428926 -0.004807692 -0.004807692 -0.009685486 -0.009685486 0.4033116 -0.006815507 0.3268602 0.4428926 -0.004807692 -0.01192054 -0.006815507 -0.008367493 -0.009685486 -0.01085521 -0.009685486 -0.004807692 -0.009685486 -0.008367493 -0.006815507 0.5745678 -0.01085521 -0.004807692 0.5745678 -0.008367493 NA 0.705405 -0.006815507 -0.01857869 NA -0.01290749 NA -0.004807692 -0.008367493 -0.01634301 -0.006815507 -0.006815507 NA -0.008367493 1 NA 0.5745678 1 1 0.705405 0.705405 1 1 -0.01085521 1 0.4033116 -0.01192054 -0.004807692 -0.004807692 -0.004807692 0.5745678 -0.008367493 NA NA -0.004807692 -0.004807692 1 -0.004807692 1 NA NA -0.004807692 NA NA NA NA 1 -0.004807692 -0.004807692 -0.004807692 -0.01383297 -0.01711299 0.1470871 -0.01634301 -0.01383297 -0.01192054 -0.01383297 -0.02948198 -0.01290749 -0.01928027 -0.01785714 -0.02555815 -0.02555815 -0.01634301 -0.03268602 -0.02192645 -0.01928027 -0.01928027 0.1425219 -0.01785714 -0.0212857 -0.01711299 -0.01711299 -0.009685486 0.1287292 -0.02378257 -0.02438236 -0.02192645 -0.0225555 -0.0212857 -0.01857869 -0.0212857 -0.01928027 0.2021519 -0.02893605 -0.0225555 -0.03002403 -0.024974 -0.0199641 -0.024974 NA 0.2587746 0.1925079 -0.01785714 -0.01383297 -0.01634301 -0.01857869 -0.01470871 0.2131495 -0.02438236 0.2074615 -0.008367493 0.2941742 -0.02192645 0.144764 0.2809382 -0.01470871 -0.0212857 -0.01470871 0.3724732 -0.01711299 -0.009685486 -0.01711299 -0.024974 0.2493582 -0.01554325 -0.01290749 0.2131495 -0.004807692 0.1839531 0.2192645 0.3268602 -0.004807692 0.3724732 -0.01290749 -0.01192054 -0.01634301 0.2493582 -0.01085521 -0.01085521 -0.009685486 -0.008367493 -0.01192054 -0.008367493 -0.01085521 -0.01470871 -0.009685486 -0.01085521 -0.008367493 -0.01192054 0.3724732 -0.01383297 -0.006815507 0.3093106 0.2809382 0.2809382 -0.009685486 -0.01085521 -0.006815507 0.2192645 0.2941742 -0.01085521 0.2258649 0.2941742 0.2941742 -0.009685486 0.2587746 0.3475533 NA -0.01470871 0.2587746 0.3475533 0.2941742 0.3093106 0.2258649 -0.01290749 0.2587746 -0.02893605 -0.006815507 0.3268602 0.2587746 0.4428926 -0.01554325 -0.006815507 -0.006815507 -0.004807692 -0.01383297 -0.01192054 -0.006815507 0.705405 -0.009685486 0.5745678 -0.01554325 -0.01554325 0.4428926 1 -0.004807692 -0.009685486 -0.009685486 -0.01192054 0.705405 0.3268602 -0.01085521 -0.004807692 0.4033116 -0.006815507 0.5745678 -0.009685486 -0.01085521 -0.009685486 -0.004807692 -0.009685486 -0.008367493 -0.006815507 -0.008367493 -0.01085521 -0.004807692 -0.008367493 -0.008367493 NA -0.006815507 0.705405 -0.01857869 NA 0.3724732 NA -0.004807692 -0.008367493 0.2941742 -0.006815507 -0.006815507 NA 0.5745678 -0.004807692 NA -0.008367493 -0.004807692 -0.004807692 -0.006815507 -0.006815507 -0.004807692 -0.004807692 -0.01085521 -0.004807692 0.4033116 0.4033116 1 -0.004807692 1 -0.008367493 -0.008367493 NA NA -0.004807692 1 -0.004807692 -0.004807692 -0.004807692 NA NA -0.004807692 NA NA NA NA -0.004807692 -0.004807692 -0.004807692 -0.004807692 0.1014667 0.182683 0.2569939 0.1943125 0.1014667 0.127253 0.3786765 0.3639577 0.1131542 0.1543026 0.1722754 0.4230754 0.3411266 0.5515968 0.2569939 0.2186496 0.2573353 0.05126986 0.3150365 0.5026017 0.4168098 0.182683 0.2969965 -0.02600318 0.2819101 0.4560745 0.3594241 0.4961663 0.30105 0.3220184 0.1628711 0.2272271 0.1543026 0.3694204 0.3712472 0.30105 0.2111142 0.09977548 0.2464585 0.3500124 NA -0.04987927 0.3500124 0.2823842 0.1014667 0.3134073 0.3756214 0.2225192 0.481853 0.444401 0.4685267 0.4246895 0.07521774 0.0336384 0.3203963 0.06836937 0.09151492 0.5116011 -0.03948931 -0.03465347 0.06836937 -0.02600318 -0.04594422 0.1831878 0.1543026 -0.04172985 -0.03465347 0.3914515 -0.01290749 0.2521395 0.3111552 -0.03948931 -0.01290749 -0.03465347 0.1131542 0.2865098 0.1943125 0.1543026 -0.0291436 0.4929432 -0.02600318 0.4246895 -0.03200376 -0.02246469 0.1448853 0.3535234 -0.02600318 0.3189143 -0.02246469 0.2865098 -0.03465347 0.1014667 -0.01829798 0.207457 0.2969965 0.2969965 0.168092 0.1448853 -0.01829798 0.126144 -0.04387702 -0.0291436 0.4168098 0.07521774 0.3134073 -0.02600318 0.0564959 -0.03713815 NA 0.2225192 0.0564959 -0.03713815 0.1943125 -0.04172985 0.1324357 0.2609618 0.3756214 0.07195824 -0.01829798 -0.03948931 0.2692462 0.1448853 0.08286355 -0.01829798 -0.01829798 -0.01290749 -0.03713815 0.2865098 0.2548647 0.2548647 0.168092 -0.02246469 0.08286355 0.3320504 0.3189143 -0.01290749 -0.01290749 0.168092 -0.02600318 0.2865098 -0.01829798 -0.03948931 0.3189143 -0.01290749 -0.03200376 -0.01829798 0.2011124 -0.02600318 -0.0291436 -0.02600318 -0.01290749 -0.02600318 -0.02246469 -0.01829798 -0.02246469 0.3189143 0.3724732 -0.02246469 0.2011124 NA -0.01829798 -0.01829798 0.4819966 NA 0.5565771 NA -0.01290749 -0.02246469 0.1943125 0.2548647 -0.01829798 NA -0.02246469 -0.01290749 NA -0.02246469 -0.01290749 -0.01290749 -0.01829798 -0.01829798 -0.01290749 -0.01290749 0.1448853 -0.01290749 0.127253 -0.03200376 -0.01290749 -0.01290749 -0.01290749 0.2011124 -0.02246469 NA NA -0.01290749 -0.01290749 -0.01290749 0.3724732 -0.01290749 NA NA 0.3724732 NA NA NA NA -0.01290749 -0.01290749 -0.01290749 -0.01290749 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA -0.01383297 -0.01711299 -0.03268602 -0.01634301 -0.01383297 -0.01192054 -0.01383297 -0.02948198 -0.01290749 -0.01928027 -0.01785714 -0.02555815 -0.02555815 -0.01634301 -0.03268602 -0.02192645 -0.01928027 -0.01928027 -0.033733 -0.01785714 -0.0212857 -0.01711299 -0.01711299 -0.009685486 -0.03734735 -0.02378257 -0.02438236 -0.02192645 -0.0225555 -0.0212857 -0.01857869 -0.0212857 -0.01928027 -0.02378257 -0.02893605 -0.0225555 -0.03002403 -0.024974 -0.0199641 -0.024974 NA 0.2587746 -0.024974 -0.01785714 -0.01383297 -0.01634301 -0.01857869 -0.01470871 -0.0225555 -0.02438236 -0.0231739 -0.008367493 0.2941742 -0.02192645 -0.03321056 -0.01711299 -0.01470871 -0.0212857 -0.01470871 -0.01290749 -0.01711299 -0.009685486 -0.01711299 -0.024974 -0.01928027 -0.01554325 -0.01290749 -0.0225555 -0.004807692 -0.02613542 -0.02192645 -0.01470871 -0.004807692 -0.01290749 -0.01290749 -0.01192054 -0.01634301 -0.01928027 -0.01085521 -0.01085521 -0.009685486 -0.008367493 -0.01192054 -0.008367493 -0.01085521 -0.01470871 -0.009685486 -0.01085521 -0.008367493 -0.01192054 -0.01290749 -0.01383297 -0.006815507 -0.01554325 0.2809382 0.2809382 -0.009685486 -0.01085521 -0.006815507 0.2192645 -0.01634301 -0.01085521 -0.0212857 -0.01634301 -0.01634301 -0.009685486 -0.01857869 -0.01383297 NA -0.01470871 -0.01857869 -0.01383297 -0.01634301 -0.01554325 -0.0212857 0.3724732 -0.01857869 -0.02893605 -0.006815507 0.3268602 0.2587746 -0.01085521 0.3093106 -0.006815507 -0.006815507 -0.004807692 -0.01383297 -0.01192054 -0.006815507 -0.006815507 -0.009685486 -0.008367493 -0.01554325 -0.01554325 -0.01085521 -0.004807692 -0.004807692 -0.009685486 -0.009685486 0.4033116 -0.006815507 -0.01470871 -0.01085521 -0.004807692 -0.01192054 -0.006815507 -0.008367493 -0.009685486 -0.01085521 -0.009685486 -0.004807692 -0.009685486 -0.008367493 -0.006815507 -0.008367493 0.4428926 -0.004807692 -0.008367493 -0.008367493 NA -0.006815507 -0.006815507 0.2587746 NA 0.3724732 NA -0.004807692 -0.008367493 -0.01634301 0.705405 -0.006815507 NA -0.008367493 -0.004807692 NA -0.008367493 -0.004807692 -0.004807692 -0.006815507 -0.006815507 -0.004807692 -0.004807692 -0.01085521 -0.004807692 -0.01192054 -0.01192054 -0.004807692 -0.004807692 -0.004807692 -0.008367493 -0.008367493 NA NA -0.004807692 -0.004807692 -0.004807692 -0.004807692 -0.004807692 NA NA -0.004807692 NA NA NA NA -0.004807692 -0.004807692 -0.004807692 -0.004807692 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA -0.01383297 -0.01711299 0.1470871 -0.01634301 -0.01383297 -0.01192054 -0.01383297 0.1630722 -0.01290749 -0.01928027 -0.01785714 0.188108 0.188108 -0.01634301 0.1470871 -0.02192645 -0.01928027 -0.01928027 0.1425219 -0.01785714 -0.0212857 -0.01711299 -0.01711299 -0.009685486 0.1287292 -0.02378257 0.1971791 0.2192645 -0.0225555 0.2258649 -0.01857869 0.2258649 0.2493582 0.2021519 0.1661489 -0.0225555 0.1601282 0.1925079 0.2408169 -0.024974 NA 0.2587746 0.1925079 0.2692308 0.3475533 -0.01634301 0.2587746 -0.01470871 -0.0225555 0.1971791 0.2074615 -0.008367493 0.2941742 0.2192645 0.144764 0.2809382 -0.01470871 0.2258649 0.3268602 0.3724732 -0.01711299 -0.009685486 -0.01711299 0.1925079 0.2493582 -0.01554325 0.3724732 0.2131495 -0.004807692 0.1839531 0.2192645 -0.01470871 -0.004807692 0.3724732 0.3724732 0.4033116 0.2941742 0.2493582 0.4428926 -0.01085521 0.4963811 0.5745678 0.4033116 0.5745678 0.4428926 0.3268602 0.4963811 -0.01085521 0.5745678 0.4033116 -0.01290749 0.3475533 0.705405 0.3093106 0.2809382 0.2809382 0.4963811 0.4428926 -0.006815507 0.2192645 0.2941742 0.4428926 0.2258649 0.2941742 -0.01634301 0.4963811 0.2587746 -0.01383297 NA 0.3268602 0.2587746 0.3475533 0.2941742 0.3093106 0.2258649 0.3724732 0.2587746 0.1661489 0.705405 0.3268602 0.2587746 -0.01085521 -0.01554325 -0.006815507 -0.006815507 -0.004807692 -0.01383297 -0.01192054 -0.006815507 -0.006815507 -0.009685486 -0.008367493 -0.01554325 0.3093106 -0.01085521 -0.004807692 -0.004807692 0.4963811 -0.009685486 0.4033116 -0.006815507 0.3268602 -0.01085521 -0.004807692 -0.01192054 -0.006815507 -0.008367493 -0.009685486 -0.01085521 -0.009685486 -0.004807692 -0.009685486 -0.008367493 -0.006815507 -0.008367493 -0.01085521 -0.004807692 0.5745678 0.5745678 NA 0.705405 -0.006815507 -0.01857869 NA 0.3724732 NA -0.004807692 0.5745678 -0.01634301 -0.006815507 -0.006815507 NA -0.008367493 -0.004807692 NA -0.008367493 -0.004807692 -0.004807692 -0.006815507 0.705405 -0.004807692 -0.004807692 -0.01085521 -0.004807692 -0.01192054 0.4033116 -0.004807692 -0.004807692 -0.004807692 -0.008367493 -0.008367493 NA NA -0.004807692 -0.004807692 -0.004807692 -0.004807692 -0.004807692 NA NA -0.004807692 NA NA NA NA -0.004807692 1 -0.004807692 -0.004807692 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 0.05795777 0.2043147 0.3635811 0.2181486 0.3795465 0.2039054 0.05795777 0.3519901 0.182683 0.1704266 0.1919099 0.2892982 0.2892982 0.2181486 0.2569306 0.2796693 0.1704266 0.4891662 0.2458988 0.2770674 0.1441668 0.2043147 0.1159052 -0.0344755 0.2611618 0.2504351 0.1760937 0.2796693 0.2692937 0.2174778 0.09840903 0.2174778 0.2501115 0.4514886 0.2442047 0.4790418 0.2879568 0.04012621 0.08364617 0.1691474 NA 0.4274888 0.556211 0.1919099 0.05795777 0.3102559 0.2629489 0.352916 0.4091258 0.1760937 0.3279861 0.1431292 0.3102559 0.06503936 0.3569124 0.2043147 0.04896225 0.1441668 0.352916 0.2969965 0.2043147 0.4158607 0.3811337 0.2981686 0.4891662 0.1373934 0.182683 0.4790418 0.2809382 0.4678288 0.3512125 0.352916 -0.01711299 0.2969965 0.06836937 -0.04243118 0.2181486 0.3297964 0.09595386 -0.03863914 0.1156366 0.1431292 0.3270737 0.1431292 0.09595386 0.1502802 0.1156366 0.2305469 0.1431292 0.08073711 0.4113101 0.2723502 0.1870027 0.5228327 0.2043147 0.2043147 -0.0344755 0.09595386 -0.02425981 0.3512125 0.3102559 0.09595386 0.3641 0.4023631 0.2181486 0.1156366 0.2629489 0.3795465 NA 0.04896225 0.4274888 0.3795465 0.4023631 0.2337533 0.5107222 0.06836937 0.2629489 0.3020718 0.1870027 0.2515981 0.180679 0.3651399 0.1373934 0.1870027 -0.02425981 -0.01711299 0.165154 0.3270737 -0.02425981 0.1870027 0.1156366 0.4889557 0.3301131 -0.05532622 0.3651399 0.2809382 0.2809382 -0.0344755 0.1156366 0.2039054 0.3982652 0.352916 0.2305469 0.2809382 0.3270737 0.1870027 0.3160424 0.2657486 0.09595386 -0.0344755 -0.01711299 0.1156366 -0.0297841 -0.02425981 0.3160424 0.09595386 0.2809382 0.3160424 -0.0297841 NA 0.1870027 0.1870027 0.3452189 NA 0.182683 NA 0.2809382 -0.0297841 0.5865775 0.1870027 -0.02425981 NA 0.3160424 0.2809382 NA 0.3160424 0.2809382 0.2809382 0.1870027 0.1870027 0.2809382 0.2809382 0.2305469 0.2809382 0.3270737 0.2039054 0.2809382 0.2809382 0.2809382 0.1431292 0.1431292 NA NA 0.2809382 0.2809382 0.2809382 -0.01711299 0.2809382 NA NA -0.01711299 NA NA NA NA 0.2809382 -0.01711299 0.2809382 -0.01711299 -0.01383297 -0.01711299 -0.03268602 -0.01634301 -0.01383297 -0.01192054 -0.01383297 -0.02948198 -0.01290749 -0.01928027 -0.01785714 -0.02555815 -0.02555815 -0.01634301 -0.03268602 -0.02192645 -0.01928027 -0.01928027 -0.033733 -0.01785714 -0.0212857 -0.01711299 -0.01711299 -0.009685486 -0.03734735 -0.02378257 -0.02438236 -0.02192645 -0.0225555 -0.0212857 -0.01857869 -0.0212857 -0.01928027 -0.02378257 -0.02893605 -0.0225555 -0.03002403 -0.024974 -0.0199641 -0.024974 NA 0.2587746 -0.024974 -0.01785714 -0.01383297 -0.01634301 -0.01857869 -0.01470871 -0.0225555 -0.02438236 -0.0231739 -0.008367493 0.2941742 -0.02192645 -0.03321056 -0.01711299 -0.01470871 -0.0212857 -0.01470871 -0.01290749 -0.01711299 -0.009685486 -0.01711299 -0.024974 -0.01928027 -0.01554325 -0.01290749 -0.0225555 -0.004807692 -0.02613542 -0.02192645 -0.01470871 -0.004807692 -0.01290749 -0.01290749 -0.01192054 -0.01634301 -0.01928027 -0.01085521 -0.01085521 -0.009685486 -0.008367493 -0.01192054 -0.008367493 -0.01085521 -0.01470871 -0.009685486 -0.01085521 -0.008367493 -0.01192054 -0.01290749 -0.01383297 -0.006815507 -0.01554325 0.2809382 0.2809382 -0.009685486 -0.01085521 -0.006815507 0.2192645 -0.01634301 -0.01085521 -0.0212857 -0.01634301 -0.01634301 -0.009685486 -0.01857869 -0.01383297 NA -0.01470871 -0.01857869 -0.01383297 -0.01634301 -0.01554325 -0.0212857 0.3724732 -0.01857869 -0.02893605 -0.006815507 0.3268602 0.2587746 -0.01085521 0.3093106 -0.006815507 -0.006815507 -0.004807692 -0.01383297 -0.01192054 -0.006815507 -0.006815507 -0.009685486 -0.008367493 -0.01554325 -0.01554325 -0.01085521 -0.004807692 -0.004807692 -0.009685486 -0.009685486 0.4033116 -0.006815507 -0.01470871 -0.01085521 -0.004807692 -0.01192054 -0.006815507 -0.008367493 -0.009685486 -0.01085521 -0.009685486 -0.004807692 -0.009685486 -0.008367493 -0.006815507 -0.008367493 0.4428926 -0.004807692 -0.008367493 -0.008367493 NA -0.006815507 -0.006815507 0.2587746 NA 0.3724732 NA -0.004807692 -0.008367493 -0.01634301 0.705405 -0.006815507 NA -0.008367493 -0.004807692 NA -0.008367493 -0.004807692 -0.004807692 -0.006815507 -0.006815507 -0.004807692 -0.004807692 -0.01085521 -0.004807692 -0.01192054 -0.01192054 -0.004807692 -0.004807692 -0.004807692 -0.008367493 -0.008367493 NA NA -0.004807692 -0.004807692 -0.004807692 -0.004807692 -0.004807692 NA NA -0.004807692 NA NA NA NA -0.004807692 -0.004807692 -0.004807692 -0.004807692 -0.01383297 -0.01711299 0.1470871 -0.01634301 0.3475533 -0.01192054 -0.01383297 0.1630722 -0.01290749 0.2493582 -0.01785714 -0.02555815 -0.02555815 -0.01634301 0.1470871 0.2192645 -0.01928027 -0.01928027 0.1425219 -0.01785714 0.2258649 0.2809382 -0.01711299 -0.009685486 0.1287292 -0.02378257 0.1971791 0.2192645 0.2131495 -0.0212857 -0.01857869 -0.0212857 -0.01928027 -0.02378257 -0.02893605 0.2131495 0.1601282 0.1925079 -0.0199641 -0.024974 NA -0.01857869 -0.024974 -0.01785714 -0.01383297 -0.01634301 -0.01857869 -0.01470871 -0.0225555 0.1971791 -0.0231739 -0.008367493 -0.01634301 0.2192645 0.144764 -0.01711299 -0.01470871 -0.0212857 -0.01470871 -0.01290749 0.2809382 -0.009685486 -0.01711299 -0.024974 -0.01928027 -0.01554325 -0.01290749 -0.0225555 -0.004807692 -0.02613542 -0.02192645 -0.01470871 -0.004807692 -0.01290749 -0.01290749 -0.01192054 -0.01634301 -0.01928027 -0.01085521 -0.01085521 -0.009685486 -0.008367493 -0.01192054 -0.008367493 -0.01085521 -0.01470871 -0.009685486 -0.01085521 -0.008367493 -0.01192054 0.3724732 -0.01383297 -0.006815507 -0.01554325 -0.01711299 -0.01711299 -0.009685486 -0.01085521 -0.006815507 -0.02192645 -0.01634301 -0.01085521 -0.0212857 -0.01634301 -0.01634301 -0.009685486 -0.01857869 -0.01383297 NA -0.01470871 -0.01857869 -0.01383297 -0.01634301 -0.01554325 -0.0212857 -0.01290749 -0.01857869 -0.02893605 -0.006815507 -0.01470871 -0.01857869 -0.01085521 -0.01554325 -0.006815507 -0.006815507 -0.004807692 -0.01383297 0.4033116 -0.006815507 -0.006815507 -0.009685486 -0.008367493 -0.01554325 0.3093106 -0.01085521 -0.004807692 -0.004807692 0.4963811 -0.009685486 -0.01192054 -0.006815507 -0.01470871 -0.01085521 -0.004807692 -0.01192054 -0.006815507 -0.008367493 -0.009685486 -0.01085521 -0.009685486 -0.004807692 -0.009685486 -0.008367493 -0.006815507 -0.008367493 -0.01085521 -0.004807692 -0.008367493 -0.008367493 NA -0.006815507 -0.006815507 -0.01857869 NA -0.01290749 NA -0.004807692 -0.008367493 -0.01634301 -0.006815507 0.705405 NA -0.008367493 -0.004807692 NA -0.008367493 -0.004807692 -0.004807692 -0.006815507 -0.006815507 -0.004807692 -0.004807692 -0.01085521 -0.004807692 -0.01192054 -0.01192054 -0.004807692 -0.004807692 -0.004807692 -0.008367493 -0.008367493 NA NA -0.004807692 -0.004807692 -0.004807692 -0.004807692 -0.004807692 NA NA -0.004807692 NA NA NA NA -0.004807692 -0.004807692 -0.004807692 -0.004807692 -0.01383297 -0.01711299 0.1470871 -0.01634301 0.3475533 -0.01192054 -0.01383297 0.1630722 -0.01290749 0.2493582 -0.01785714 -0.02555815 -0.02555815 -0.01634301 0.1470871 0.2192645 -0.01928027 -0.01928027 0.1425219 -0.01785714 0.2258649 0.2809382 -0.01711299 -0.009685486 0.1287292 -0.02378257 0.1971791 0.2192645 0.2131495 -0.0212857 -0.01857869 -0.0212857 -0.01928027 -0.02378257 -0.02893605 0.2131495 0.1601282 0.1925079 -0.0199641 -0.024974 NA -0.01857869 -0.024974 -0.01785714 -0.01383297 -0.01634301 -0.01857869 -0.01470871 -0.0225555 0.1971791 -0.0231739 -0.008367493 -0.01634301 0.2192645 0.144764 -0.01711299 -0.01470871 -0.0212857 -0.01470871 -0.01290749 0.2809382 -0.009685486 -0.01711299 -0.024974 -0.01928027 -0.01554325 -0.01290749 -0.0225555 -0.004807692 -0.02613542 -0.02192645 -0.01470871 -0.004807692 -0.01290749 -0.01290749 -0.01192054 -0.01634301 -0.01928027 -0.01085521 -0.01085521 -0.009685486 -0.008367493 -0.01192054 -0.008367493 -0.01085521 -0.01470871 -0.009685486 -0.01085521 -0.008367493 -0.01192054 0.3724732 -0.01383297 -0.006815507 -0.01554325 -0.01711299 -0.01711299 -0.009685486 -0.01085521 -0.006815507 -0.02192645 -0.01634301 -0.01085521 -0.0212857 -0.01634301 -0.01634301 -0.009685486 -0.01857869 -0.01383297 NA -0.01470871 -0.01857869 -0.01383297 -0.01634301 -0.01554325 -0.0212857 -0.01290749 -0.01857869 -0.02893605 -0.006815507 -0.01470871 -0.01857869 -0.01085521 -0.01554325 -0.006815507 -0.006815507 -0.004807692 -0.01383297 0.4033116 -0.006815507 -0.006815507 -0.009685486 -0.008367493 -0.01554325 0.3093106 -0.01085521 -0.004807692 -0.004807692 0.4963811 -0.009685486 -0.01192054 -0.006815507 -0.01470871 -0.01085521 -0.004807692 -0.01192054 -0.006815507 -0.008367493 -0.009685486 -0.01085521 -0.009685486 -0.004807692 -0.009685486 -0.008367493 -0.006815507 -0.008367493 -0.01085521 -0.004807692 -0.008367493 -0.008367493 NA -0.006815507 -0.006815507 -0.01857869 NA -0.01290749 NA -0.004807692 -0.008367493 -0.01634301 -0.006815507 0.705405 NA -0.008367493 -0.004807692 NA -0.008367493 -0.004807692 -0.004807692 -0.006815507 -0.006815507 -0.004807692 -0.004807692 -0.01085521 -0.004807692 -0.01192054 -0.01192054 -0.004807692 -0.004807692 -0.004807692 -0.008367493 -0.008367493 NA NA -0.004807692 -0.004807692 -0.004807692 -0.004807692 -0.004807692 NA NA -0.004807692 NA NA NA NA -0.004807692 -0.004807692 -0.004807692 -0.004807692 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA -0.01383297 0.2809382 0.1470871 0.2941742 0.3475533 -0.01192054 -0.01383297 0.1630722 -0.01290749 -0.01928027 -0.01785714 0.188108 -0.02555815 -0.01634301 0.1470871 0.2192645 -0.01928027 -0.01928027 0.1425219 -0.01785714 -0.0212857 -0.01711299 -0.01711299 -0.009685486 0.1287292 -0.02378257 -0.02438236 0.2192645 -0.0225555 -0.0212857 -0.01857869 -0.0212857 -0.01928027 0.2021519 -0.02893605 -0.0225555 0.1601282 -0.024974 -0.0199641 -0.024974 NA 0.2587746 0.1925079 -0.01785714 0.3475533 -0.01634301 -0.01857869 -0.01470871 -0.0225555 0.1971791 0.2074615 -0.008367493 0.2941742 0.2192645 0.144764 0.2809382 -0.01470871 0.2258649 -0.01470871 0.3724732 -0.01711299 0.4963811 0.2809382 0.1925079 0.2493582 -0.01554325 -0.01290749 0.2131495 -0.004807692 0.1839531 0.2192645 0.3268602 -0.004807692 -0.01290749 -0.01290749 -0.01192054 0.2941742 0.2493582 0.4428926 -0.01085521 0.4963811 -0.008367493 0.4033116 0.5745678 -0.01085521 -0.01470871 0.4963811 -0.01085521 0.5745678 0.4033116 0.3724732 -0.01383297 0.705405 0.3093106 0.2809382 -0.01711299 -0.009685486 0.4428926 -0.006815507 0.2192645 0.2941742 0.4428926 0.2258649 0.2941742 -0.01634301 0.4963811 0.2587746 0.3475533 NA -0.01470871 0.2587746 0.3475533 0.2941742 -0.01554325 0.2258649 -0.01290749 0.2587746 -0.02893605 0.705405 -0.01470871 -0.01857869 -0.01085521 -0.01554325 -0.006815507 -0.006815507 -0.004807692 0.3475533 0.4033116 -0.006815507 -0.006815507 -0.009685486 -0.008367493 -0.01554325 -0.01554325 0.4428926 -0.004807692 -0.004807692 -0.009685486 -0.009685486 0.4033116 -0.006815507 0.3268602 0.4428926 -0.004807692 -0.01192054 -0.006815507 -0.008367493 -0.009685486 -0.01085521 -0.009685486 -0.004807692 -0.009685486 -0.008367493 -0.006815507 0.5745678 -0.01085521 -0.004807692 0.5745678 -0.008367493 NA 0.705405 -0.006815507 -0.01857869 NA -0.01290749 NA -0.004807692 -0.008367493 -0.01634301 -0.006815507 -0.006815507 NA -0.008367493 1 NA 0.5745678 1 1 0.705405 0.705405 1 1 -0.01085521 1 0.4033116 -0.01192054 -0.004807692 -0.004807692 -0.004807692 0.5745678 -0.008367493 NA NA -0.004807692 -0.004807692 1 -0.004807692 1 NA NA -0.004807692 NA NA NA NA 1 -0.004807692 -0.004807692 -0.004807692 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA -0.01383297 -0.01711299 0.1470871 -0.01634301 -0.01383297 -0.01192054 -0.01383297 0.1630722 -0.01290749 0.2493582 0.2692308 0.188108 0.188108 0.2941742 0.1470871 0.2192645 0.2493582 0.2493582 0.1425219 0.2692308 0.2258649 0.2809382 -0.01711299 -0.009685486 -0.03734735 0.2021519 0.1971791 0.2192645 0.2131495 -0.0212857 -0.01857869 0.2258649 0.2493582 0.2021519 0.1661489 0.2131495 0.1601282 -0.024974 0.2408169 0.1925079 NA 0.2587746 0.1925079 -0.01785714 -0.01383297 -0.01634301 0.2587746 0.3268602 0.2131495 -0.02438236 -0.0231739 -0.008367493 -0.01634301 -0.02192645 0.144764 -0.01711299 -0.01470871 -0.0212857 -0.01470871 -0.01290749 0.2809382 -0.009685486 -0.01711299 0.1925079 -0.01928027 -0.01554325 -0.01290749 -0.0225555 -0.004807692 0.1839531 -0.02192645 -0.01470871 -0.004807692 -0.01290749 -0.01290749 -0.01192054 0.2941742 -0.01928027 -0.01085521 -0.01085521 -0.009685486 -0.008367493 -0.01192054 -0.008367493 -0.01085521 -0.01470871 -0.009685486 -0.01085521 -0.008367493 -0.01192054 -0.01290749 -0.01383297 -0.006815507 0.3093106 -0.01711299 -0.01711299 -0.009685486 -0.01085521 -0.006815507 0.2192645 -0.01634301 -0.01085521 -0.0212857 -0.01634301 -0.01634301 -0.009685486 -0.01857869 0.3475533 NA -0.01470871 -0.01857869 -0.01383297 -0.01634301 -0.01554325 -0.0212857 -0.01290749 -0.01857869 -0.02893605 -0.006815507 -0.01470871 -0.01857869 -0.01085521 -0.01554325 0.705405 -0.006815507 -0.004807692 -0.01383297 -0.01192054 -0.006815507 -0.006815507 -0.009685486 -0.008367493 0.3093106 -0.01554325 -0.01085521 -0.004807692 -0.004807692 -0.009685486 -0.009685486 -0.01192054 -0.006815507 -0.01470871 -0.01085521 -0.004807692 -0.01192054 -0.006815507 -0.008367493 -0.009685486 -0.01085521 -0.009685486 -0.004807692 -0.009685486 -0.008367493 -0.006815507 -0.008367493 -0.01085521 -0.004807692 -0.008367493 -0.008367493 NA -0.006815507 -0.006815507 -0.01857869 NA -0.01290749 NA -0.004807692 -0.008367493 0.2941742 -0.006815507 -0.006815507 NA -0.008367493 -0.004807692 NA 0.5745678 -0.004807692 -0.004807692 -0.006815507 -0.006815507 -0.004807692 -0.004807692 -0.01085521 -0.004807692 -0.01192054 -0.01192054 -0.004807692 -0.004807692 -0.004807692 -0.008367493 -0.008367493 NA NA -0.004807692 -0.004807692 -0.004807692 -0.004807692 -0.004807692 NA NA -0.004807692 NA NA NA NA -0.004807692 -0.004807692 -0.004807692 -0.004807692 -0.01383297 0.2809382 0.1470871 0.2941742 0.3475533 -0.01192054 -0.01383297 0.1630722 -0.01290749 -0.01928027 -0.01785714 0.188108 -0.02555815 -0.01634301 0.1470871 0.2192645 -0.01928027 -0.01928027 0.1425219 -0.01785714 -0.0212857 -0.01711299 -0.01711299 -0.009685486 0.1287292 -0.02378257 -0.02438236 0.2192645 -0.0225555 -0.0212857 -0.01857869 -0.0212857 -0.01928027 0.2021519 -0.02893605 -0.0225555 0.1601282 -0.024974 -0.0199641 -0.024974 NA 0.2587746 0.1925079 -0.01785714 0.3475533 -0.01634301 -0.01857869 -0.01470871 -0.0225555 0.1971791 0.2074615 -0.008367493 0.2941742 0.2192645 0.144764 0.2809382 -0.01470871 0.2258649 -0.01470871 0.3724732 -0.01711299 0.4963811 0.2809382 0.1925079 0.2493582 -0.01554325 -0.01290749 0.2131495 -0.004807692 0.1839531 0.2192645 0.3268602 -0.004807692 -0.01290749 -0.01290749 -0.01192054 0.2941742 0.2493582 0.4428926 -0.01085521 0.4963811 -0.008367493 0.4033116 0.5745678 -0.01085521 -0.01470871 0.4963811 -0.01085521 0.5745678 0.4033116 0.3724732 -0.01383297 0.705405 0.3093106 0.2809382 -0.01711299 -0.009685486 0.4428926 -0.006815507 0.2192645 0.2941742 0.4428926 0.2258649 0.2941742 -0.01634301 0.4963811 0.2587746 0.3475533 NA -0.01470871 0.2587746 0.3475533 0.2941742 -0.01554325 0.2258649 -0.01290749 0.2587746 -0.02893605 0.705405 -0.01470871 -0.01857869 -0.01085521 -0.01554325 -0.006815507 -0.006815507 -0.004807692 0.3475533 0.4033116 -0.006815507 -0.006815507 -0.009685486 -0.008367493 -0.01554325 -0.01554325 0.4428926 -0.004807692 -0.004807692 -0.009685486 -0.009685486 0.4033116 -0.006815507 0.3268602 0.4428926 -0.004807692 -0.01192054 -0.006815507 -0.008367493 -0.009685486 -0.01085521 -0.009685486 -0.004807692 -0.009685486 -0.008367493 -0.006815507 0.5745678 -0.01085521 -0.004807692 0.5745678 -0.008367493 NA 0.705405 -0.006815507 -0.01857869 NA -0.01290749 NA -0.004807692 -0.008367493 -0.01634301 -0.006815507 -0.006815507 NA -0.008367493 1 NA 0.5745678 1 1 0.705405 0.705405 1 1 -0.01085521 1 0.4033116 -0.01192054 -0.004807692 -0.004807692 -0.004807692 0.5745678 -0.008367493 NA NA -0.004807692 -0.004807692 1 -0.004807692 1 NA NA -0.004807692 NA NA NA NA 1 -0.004807692 -0.004807692 -0.004807692 -0.01383297 0.2809382 0.1470871 0.2941742 0.3475533 -0.01192054 -0.01383297 0.1630722 -0.01290749 -0.01928027 -0.01785714 0.188108 -0.02555815 -0.01634301 0.1470871 0.2192645 -0.01928027 -0.01928027 0.1425219 -0.01785714 -0.0212857 -0.01711299 -0.01711299 -0.009685486 0.1287292 -0.02378257 -0.02438236 0.2192645 -0.0225555 -0.0212857 -0.01857869 -0.0212857 -0.01928027 0.2021519 -0.02893605 -0.0225555 0.1601282 -0.024974 -0.0199641 -0.024974 NA 0.2587746 0.1925079 -0.01785714 0.3475533 -0.01634301 -0.01857869 -0.01470871 -0.0225555 0.1971791 0.2074615 -0.008367493 0.2941742 0.2192645 0.144764 0.2809382 -0.01470871 0.2258649 -0.01470871 0.3724732 -0.01711299 0.4963811 0.2809382 0.1925079 0.2493582 -0.01554325 -0.01290749 0.2131495 -0.004807692 0.1839531 0.2192645 0.3268602 -0.004807692 -0.01290749 -0.01290749 -0.01192054 0.2941742 0.2493582 0.4428926 -0.01085521 0.4963811 -0.008367493 0.4033116 0.5745678 -0.01085521 -0.01470871 0.4963811 -0.01085521 0.5745678 0.4033116 0.3724732 -0.01383297 0.705405 0.3093106 0.2809382 -0.01711299 -0.009685486 0.4428926 -0.006815507 0.2192645 0.2941742 0.4428926 0.2258649 0.2941742 -0.01634301 0.4963811 0.2587746 0.3475533 NA -0.01470871 0.2587746 0.3475533 0.2941742 -0.01554325 0.2258649 -0.01290749 0.2587746 -0.02893605 0.705405 -0.01470871 -0.01857869 -0.01085521 -0.01554325 -0.006815507 -0.006815507 -0.004807692 0.3475533 0.4033116 -0.006815507 -0.006815507 -0.009685486 -0.008367493 -0.01554325 -0.01554325 0.4428926 -0.004807692 -0.004807692 -0.009685486 -0.009685486 0.4033116 -0.006815507 0.3268602 0.4428926 -0.004807692 -0.01192054 -0.006815507 -0.008367493 -0.009685486 -0.01085521 -0.009685486 -0.004807692 -0.009685486 -0.008367493 -0.006815507 0.5745678 -0.01085521 -0.004807692 0.5745678 -0.008367493 NA 0.705405 -0.006815507 -0.01857869 NA -0.01290749 NA -0.004807692 -0.008367493 -0.01634301 -0.006815507 -0.006815507 NA -0.008367493 1 NA 0.5745678 1 1 0.705405 0.705405 1 1 -0.01085521 1 0.4033116 -0.01192054 -0.004807692 -0.004807692 -0.004807692 0.5745678 -0.008367493 NA NA -0.004807692 -0.004807692 1 -0.004807692 1 NA NA -0.004807692 NA NA NA NA 1 -0.004807692 -0.004807692 -0.004807692 -0.01383297 0.2809382 0.1470871 0.2941742 0.3475533 -0.01192054 -0.01383297 0.1630722 -0.01290749 -0.01928027 -0.01785714 0.188108 -0.02555815 -0.01634301 0.1470871 0.2192645 -0.01928027 -0.01928027 0.1425219 -0.01785714 -0.0212857 -0.01711299 -0.01711299 -0.009685486 0.1287292 -0.02378257 -0.02438236 0.2192645 -0.0225555 -0.0212857 -0.01857869 -0.0212857 -0.01928027 0.2021519 -0.02893605 -0.0225555 0.1601282 -0.024974 -0.0199641 -0.024974 NA 0.2587746 0.1925079 -0.01785714 0.3475533 -0.01634301 -0.01857869 -0.01470871 -0.0225555 0.1971791 0.2074615 -0.008367493 0.2941742 0.2192645 0.144764 0.2809382 -0.01470871 0.2258649 -0.01470871 0.3724732 -0.01711299 0.4963811 0.2809382 0.1925079 0.2493582 -0.01554325 -0.01290749 0.2131495 -0.004807692 0.1839531 0.2192645 0.3268602 -0.004807692 -0.01290749 -0.01290749 -0.01192054 0.2941742 0.2493582 0.4428926 -0.01085521 0.4963811 -0.008367493 0.4033116 0.5745678 -0.01085521 -0.01470871 0.4963811 -0.01085521 0.5745678 0.4033116 0.3724732 -0.01383297 0.705405 0.3093106 0.2809382 -0.01711299 -0.009685486 0.4428926 -0.006815507 0.2192645 0.2941742 0.4428926 0.2258649 0.2941742 -0.01634301 0.4963811 0.2587746 0.3475533 NA -0.01470871 0.2587746 0.3475533 0.2941742 -0.01554325 0.2258649 -0.01290749 0.2587746 -0.02893605 0.705405 -0.01470871 -0.01857869 -0.01085521 -0.01554325 -0.006815507 -0.006815507 -0.004807692 0.3475533 0.4033116 -0.006815507 -0.006815507 -0.009685486 -0.008367493 -0.01554325 -0.01554325 0.4428926 -0.004807692 -0.004807692 -0.009685486 -0.009685486 0.4033116 -0.006815507 0.3268602 0.4428926 -0.004807692 -0.01192054 -0.006815507 -0.008367493 -0.009685486 -0.01085521 -0.009685486 -0.004807692 -0.009685486 -0.008367493 -0.006815507 0.5745678 -0.01085521 -0.004807692 0.5745678 -0.008367493 NA 0.705405 -0.006815507 -0.01857869 NA -0.01290749 NA -0.004807692 -0.008367493 -0.01634301 -0.006815507 -0.006815507 NA -0.008367493 1 NA 0.5745678 1 1 0.705405 0.705405 1 1 -0.01085521 1 0.4033116 -0.01192054 -0.004807692 -0.004807692 -0.004807692 0.5745678 -0.008367493 NA NA -0.004807692 -0.004807692 1 -0.004807692 1 NA NA -0.004807692 NA NA NA NA 1 -0.004807692 -0.004807692 -0.004807692 -0.02786763 0.1156366 0.1152351 0.1234662 0.1541428 -0.02401489 -0.02786763 0.1345642 -0.02600318 -0.03884166 -0.03597466 0.1637349 0.05612297 -0.03292432 0.1152351 0.07730207 -0.03884166 -0.03884166 0.1095821 -0.03597466 -0.04288176 -0.0344755 -0.0344755 -0.0195122 0.09204802 -0.04791192 0.06246814 0.1987767 -0.04543988 0.08159447 -0.03742827 0.08159447 0.0964568 0.1796697 0.0399596 -0.04543988 0.1310526 0.05922159 0.09112183 -0.05031214 NA 0.241947 0.1687553 0.1086158 0.3361533 -0.03292432 0.1022594 -0.02963189 -0.04543988 0.1740565 0.1856312 -0.01685699 0.2798567 0.1987767 0.1123667 0.2657486 -0.02963189 0.2060707 0.1423977 0.3621871 -0.0344755 0.2353659 0.1156366 0.1687553 0.2317553 -0.03131313 0.168092 0.1919835 -0.009685486 0.1589683 0.1987767 0.1423977 -0.009685486 0.168092 0.168092 0.1851148 0.2798567 0.2317553 0.4351871 -0.0218687 0.4902439 0.2767356 0.3942445 0.5703282 0.2066592 0.1423977 0.4902439 -0.0218687 0.5703282 0.3942445 0.168092 0.1541428 0.7036825 0.2959091 0.2657486 0.1156366 0.2353659 0.4351871 -0.01373039 0.1987767 0.2798567 0.4351871 0.2060707 0.2798567 -0.03292432 0.4902439 0.241947 0.1541428 NA 0.1423977 0.241947 0.3361533 0.2798567 0.132298 0.2060707 0.168092 0.241947 0.1382132 0.7036825 0.1423977 0.1022594 -0.0218687 -0.03131313 -0.01373039 -0.01373039 -0.009685486 0.1541428 0.1851148 -0.01373039 -0.01373039 -0.0195122 -0.01685699 -0.03131313 0.132298 0.2066592 -0.009685486 -0.009685486 0.2353659 -0.0195122 0.3942445 -0.01373039 0.3144273 0.2066592 -0.009685486 -0.02401489 -0.01373039 -0.01685699 -0.0195122 -0.0218687 -0.0195122 -0.009685486 -0.0195122 -0.01685699 -0.01373039 0.2767356 -0.0218687 -0.009685486 0.5703282 0.2767356 NA 0.7036825 -0.01373039 -0.03742827 NA 0.168092 NA -0.009685486 0.2767356 -0.03292432 -0.01373039 -0.01373039 NA -0.01685699 0.4963811 NA 0.2767356 0.4963811 0.4963811 0.3449761 0.7036825 0.4963811 0.4963811 -0.0218687 0.4963811 0.1851148 0.1851148 -0.009685486 -0.009685486 -0.009685486 0.2767356 -0.01685699 NA NA -0.009685486 -0.009685486 0.4963811 -0.009685486 0.4963811 NA NA -0.009685486 NA NA NA NA 0.4963811 0.4963811 -0.009685486 -0.009685486 -0.01383297 0.2809382 0.1470871 0.2941742 0.3475533 -0.01192054 -0.01383297 0.1630722 -0.01290749 -0.01928027 -0.01785714 0.188108 -0.02555815 -0.01634301 0.1470871 0.2192645 -0.01928027 -0.01928027 0.1425219 -0.01785714 -0.0212857 -0.01711299 -0.01711299 -0.009685486 0.1287292 -0.02378257 -0.02438236 0.2192645 -0.0225555 -0.0212857 -0.01857869 -0.0212857 -0.01928027 0.2021519 -0.02893605 -0.0225555 0.1601282 -0.024974 -0.0199641 -0.024974 NA 0.2587746 0.1925079 -0.01785714 0.3475533 -0.01634301 -0.01857869 -0.01470871 -0.0225555 0.1971791 0.2074615 -0.008367493 0.2941742 0.2192645 0.144764 0.2809382 -0.01470871 0.2258649 -0.01470871 0.3724732 -0.01711299 0.4963811 0.2809382 0.1925079 0.2493582 -0.01554325 -0.01290749 0.2131495 -0.004807692 0.1839531 0.2192645 0.3268602 -0.004807692 -0.01290749 -0.01290749 -0.01192054 0.2941742 0.2493582 0.4428926 -0.01085521 0.4963811 -0.008367493 0.4033116 0.5745678 -0.01085521 -0.01470871 0.4963811 -0.01085521 0.5745678 0.4033116 0.3724732 -0.01383297 0.705405 0.3093106 0.2809382 -0.01711299 -0.009685486 0.4428926 -0.006815507 0.2192645 0.2941742 0.4428926 0.2258649 0.2941742 -0.01634301 0.4963811 0.2587746 0.3475533 NA -0.01470871 0.2587746 0.3475533 0.2941742 -0.01554325 0.2258649 -0.01290749 0.2587746 -0.02893605 0.705405 -0.01470871 -0.01857869 -0.01085521 -0.01554325 -0.006815507 -0.006815507 -0.004807692 0.3475533 0.4033116 -0.006815507 -0.006815507 -0.009685486 -0.008367493 -0.01554325 -0.01554325 0.4428926 -0.004807692 -0.004807692 -0.009685486 -0.009685486 0.4033116 -0.006815507 0.3268602 0.4428926 -0.004807692 -0.01192054 -0.006815507 -0.008367493 -0.009685486 -0.01085521 -0.009685486 -0.004807692 -0.009685486 -0.008367493 -0.006815507 0.5745678 -0.01085521 -0.004807692 0.5745678 -0.008367493 NA 0.705405 -0.006815507 -0.01857869 NA -0.01290749 NA -0.004807692 -0.008367493 -0.01634301 -0.006815507 -0.006815507 NA -0.008367493 1 NA 0.5745678 1 1 0.705405 0.705405 1 1 -0.01085521 1 0.4033116 -0.01192054 -0.004807692 -0.004807692 -0.004807692 0.5745678 -0.008367493 NA NA -0.004807692 -0.004807692 1 -0.004807692 1 NA NA -0.004807692 NA NA NA NA 1 -0.004807692 -0.004807692 -0.004807692 -0.01383297 0.2809382 0.1470871 0.2941742 0.3475533 -0.01192054 -0.01383297 0.1630722 -0.01290749 -0.01928027 -0.01785714 0.188108 -0.02555815 -0.01634301 0.1470871 0.2192645 -0.01928027 -0.01928027 0.1425219 -0.01785714 -0.0212857 -0.01711299 -0.01711299 -0.009685486 0.1287292 -0.02378257 -0.02438236 0.2192645 -0.0225555 -0.0212857 -0.01857869 -0.0212857 -0.01928027 0.2021519 -0.02893605 -0.0225555 0.1601282 -0.024974 -0.0199641 -0.024974 NA 0.2587746 0.1925079 -0.01785714 0.3475533 -0.01634301 -0.01857869 -0.01470871 -0.0225555 0.1971791 0.2074615 -0.008367493 0.2941742 0.2192645 0.144764 0.2809382 -0.01470871 0.2258649 -0.01470871 0.3724732 -0.01711299 0.4963811 0.2809382 0.1925079 0.2493582 -0.01554325 -0.01290749 0.2131495 -0.004807692 0.1839531 0.2192645 0.3268602 -0.004807692 -0.01290749 -0.01290749 -0.01192054 0.2941742 0.2493582 0.4428926 -0.01085521 0.4963811 -0.008367493 0.4033116 0.5745678 -0.01085521 -0.01470871 0.4963811 -0.01085521 0.5745678 0.4033116 0.3724732 -0.01383297 0.705405 0.3093106 0.2809382 -0.01711299 -0.009685486 0.4428926 -0.006815507 0.2192645 0.2941742 0.4428926 0.2258649 0.2941742 -0.01634301 0.4963811 0.2587746 0.3475533 NA -0.01470871 0.2587746 0.3475533 0.2941742 -0.01554325 0.2258649 -0.01290749 0.2587746 -0.02893605 0.705405 -0.01470871 -0.01857869 -0.01085521 -0.01554325 -0.006815507 -0.006815507 -0.004807692 0.3475533 0.4033116 -0.006815507 -0.006815507 -0.009685486 -0.008367493 -0.01554325 -0.01554325 0.4428926 -0.004807692 -0.004807692 -0.009685486 -0.009685486 0.4033116 -0.006815507 0.3268602 0.4428926 -0.004807692 -0.01192054 -0.006815507 -0.008367493 -0.009685486 -0.01085521 -0.009685486 -0.004807692 -0.009685486 -0.008367493 -0.006815507 0.5745678 -0.01085521 -0.004807692 0.5745678 -0.008367493 NA 0.705405 -0.006815507 -0.01857869 NA -0.01290749 NA -0.004807692 -0.008367493 -0.01634301 -0.006815507 -0.006815507 NA -0.008367493 1 NA 0.5745678 1 1 0.705405 0.705405 1 1 -0.01085521 1 0.4033116 -0.01192054 -0.004807692 -0.004807692 -0.004807692 0.5745678 -0.008367493 NA NA -0.004807692 -0.004807692 1 -0.004807692 1 NA NA -0.004807692 NA NA NA NA 1 -0.004807692 -0.004807692 -0.004807692 0.1014667 0.2969965 0.3948931 0.1943125 0.2400716 0.127253 0.2400716 0.2901061 -0.03465347 -0.05176284 -0.04794209 0.177229 0.2591778 0.1943125 0.3259435 0.2186496 0.05126986 0.1543026 0.3150365 0.1722754 0.2272271 -0.04594422 0.182683 -0.02600318 0.2819101 0.1961121 0.1044932 0.2186496 0.120247 0.03764441 0.0564959 0.03764441 -0.05176284 0.4560745 0.1467805 0.02984547 0.2840445 0.1831878 0.1464394 0.09977548 NA 0.2692462 0.2666001 0.1722754 0.5172814 0.3134073 0.1628711 0.09151492 0.2106485 0.3594241 0.4685267 -0.02246469 0.3134073 0.2186496 0.3203963 0.4113101 0.09151492 0.5116011 0.2225192 0.5565771 0.06836937 0.3621871 0.2969965 0.1831878 0.1543026 0.08286355 0.1131542 0.30105 -0.01290749 0.3327161 0.3111552 0.3535234 -0.01290749 0.4087694 0.4087694 0.2865098 0.1943125 0.2573353 0.4929432 0.4929432 0.168092 -0.02246469 0.4457666 0.4246895 0.3189143 0.3535234 0.168092 0.4929432 0.2011124 0.4457666 0.2609618 0.3786765 0.2548647 0.207457 0.6399373 0.5256237 0.168092 0.3189143 0.2548647 0.4036608 0.1943125 0.3189143 0.5116011 0.3134073 0.1943125 0.5562822 0.1628711 0.3786765 NA 0.3535234 0.1628711 0.3786765 0.1943125 0.3320504 0.2272271 0.5565771 0.5883717 0.2216027 0.2548647 0.2225192 0.3756214 0.1448853 0.08286355 -0.01829798 -0.01829798 -0.01290749 0.5172814 0.127253 0.2548647 -0.01829798 0.3621871 -0.02246469 0.207457 0.3320504 0.1448853 -0.01290749 0.3724732 0.168092 0.168092 0.4457666 -0.01829798 0.2225192 0.6669722 0.3724732 0.4457666 0.2548647 0.2011124 0.3621871 0.1448853 0.168092 -0.01290749 0.168092 0.2011124 0.2548647 0.2011124 0.1448853 -0.01290749 0.4246895 0.2011124 NA 0.2548647 -0.01829798 0.3756214 NA 0.2609618 NA -0.01290749 0.2011124 0.1943125 -0.01829798 -0.01829798 NA -0.02246469 0.3724732 NA 0.2011124 0.3724732 0.3724732 0.2548647 0.2548647 0.3724732 0.3724732 0.4929432 0.3724732 0.4457666 0.2865098 -0.01290749 -0.01290749 -0.01290749 0.2011124 0.2011124 NA NA 0.3724732 -0.01290749 0.3724732 -0.01290749 0.3724732 NA NA -0.01290749 NA NA NA NA 0.3724732 -0.01290749 -0.01290749 -0.01290749 -0.01383297 0.2809382 0.1470871 0.2941742 0.3475533 -0.01192054 -0.01383297 0.1630722 -0.01290749 -0.01928027 -0.01785714 0.188108 -0.02555815 -0.01634301 0.1470871 0.2192645 -0.01928027 -0.01928027 0.1425219 -0.01785714 -0.0212857 -0.01711299 -0.01711299 -0.009685486 0.1287292 -0.02378257 -0.02438236 0.2192645 -0.0225555 -0.0212857 -0.01857869 -0.0212857 -0.01928027 0.2021519 -0.02893605 -0.0225555 0.1601282 -0.024974 -0.0199641 -0.024974 NA 0.2587746 0.1925079 -0.01785714 0.3475533 -0.01634301 -0.01857869 -0.01470871 -0.0225555 0.1971791 0.2074615 -0.008367493 0.2941742 0.2192645 0.144764 0.2809382 -0.01470871 0.2258649 -0.01470871 0.3724732 -0.01711299 0.4963811 0.2809382 0.1925079 0.2493582 -0.01554325 -0.01290749 0.2131495 -0.004807692 0.1839531 0.2192645 0.3268602 -0.004807692 -0.01290749 -0.01290749 -0.01192054 0.2941742 0.2493582 0.4428926 -0.01085521 0.4963811 -0.008367493 0.4033116 0.5745678 -0.01085521 -0.01470871 0.4963811 -0.01085521 0.5745678 0.4033116 0.3724732 -0.01383297 0.705405 0.3093106 0.2809382 -0.01711299 -0.009685486 0.4428926 -0.006815507 0.2192645 0.2941742 0.4428926 0.2258649 0.2941742 -0.01634301 0.4963811 0.2587746 0.3475533 NA -0.01470871 0.2587746 0.3475533 0.2941742 -0.01554325 0.2258649 -0.01290749 0.2587746 -0.02893605 0.705405 -0.01470871 -0.01857869 -0.01085521 -0.01554325 -0.006815507 -0.006815507 -0.004807692 0.3475533 0.4033116 -0.006815507 -0.006815507 -0.009685486 -0.008367493 -0.01554325 -0.01554325 0.4428926 -0.004807692 -0.004807692 -0.009685486 -0.009685486 0.4033116 -0.006815507 0.3268602 0.4428926 -0.004807692 -0.01192054 -0.006815507 -0.008367493 -0.009685486 -0.01085521 -0.009685486 -0.004807692 -0.009685486 -0.008367493 -0.006815507 0.5745678 -0.01085521 -0.004807692 0.5745678 -0.008367493 NA 0.705405 -0.006815507 -0.01857869 NA -0.01290749 NA -0.004807692 -0.008367493 -0.01634301 -0.006815507 -0.006815507 NA -0.008367493 1 NA 0.5745678 1 1 0.705405 0.705405 1 1 -0.01085521 1 0.4033116 -0.01192054 -0.004807692 -0.004807692 -0.004807692 0.5745678 -0.008367493 NA NA -0.004807692 -0.004807692 1 -0.004807692 1 NA NA -0.004807692 NA NA NA NA 1 -0.004807692 -0.004807692 -0.004807692 -0.02407543 0.1431292 0.1517014 -0.02844401 0.1855814 -0.02074697 -0.02407543 0.060398 -0.02246469 -0.03355612 -0.03107926 -0.04448239 0.0794752 -0.02844401 0.04740668 -0.03816164 -0.03355612 0.1222934 0.145797 -0.03107926 -0.03704645 -0.0297841 -0.0297841 -0.01685699 0.1276965 -0.04139211 -0.042436 -0.03816164 -0.03925646 -0.03704645 -0.03233506 -0.03704645 -0.03355612 0.2207579 -0.05036141 0.09748687 0.05806108 -0.04346571 -0.03474628 -0.04346571 NA 0.2894758 0.08270559 -0.03107926 -0.02407543 0.1517014 -0.03233506 -0.02559961 0.2342302 -0.042436 0.2272718 -0.01456311 0.3318467 -0.03816164 0.1487015 0.3160424 -0.02559961 -0.03704645 0.1725603 0.4246895 -0.0297841 0.2767356 0.1431292 -0.04346571 0.278143 -0.02705207 -0.02246469 0.2342302 -0.008367493 0.1982771 0.2416904 0.3707202 -0.008367493 0.4246895 0.2011124 -0.02074697 -0.02844401 0.278143 -0.01889283 -0.01889283 -0.01685699 -0.01456311 -0.02074697 -0.01456311 0.2443472 0.1725603 -0.01685699 0.2443472 -0.01456311 -0.02074697 0.4246895 0.1855814 -0.01186197 0.3498734 0.3160424 0.3160424 -0.01685699 -0.01889283 -0.01186197 0.2416904 0.3318467 -0.01889283 0.2497205 0.3318467 0.1517014 -0.01685699 0.2894758 0.3952382 NA 0.3707202 0.2894758 0.3952382 0.1517014 0.3498734 0.393104 0.2011124 0.2894758 0.1759942 -0.01186197 0.3707202 0.1285704 0.5075873 -0.02705207 -0.01186197 -0.01186197 -0.008367493 0.1855814 -0.02074697 -0.01186197 0.40133 0.2767356 0.3236246 0.1614107 -0.02705207 0.2443472 0.5745678 0.5745678 -0.01685699 -0.01685699 -0.02074697 0.40133 0.3707202 0.2443472 0.5745678 0.4610437 0.40133 0.6618123 0.2767356 -0.01889283 -0.01685699 -0.008367493 -0.01685699 -0.01456311 -0.01186197 -0.01456311 -0.01889283 -0.008367493 0.3236246 -0.01456311 NA -0.01186197 0.40133 0.1285704 NA 0.2011124 NA -0.008367493 -0.01456311 0.3318467 -0.01186197 -0.01186197 NA 0.6618123 -0.008367493 NA -0.01456311 -0.008367493 -0.008367493 -0.01186197 -0.01186197 -0.008367493 -0.008367493 -0.01889283 -0.008367493 0.7019391 0.2201484 0.5745678 -0.008367493 0.5745678 -0.01456311 -0.01456311 NA NA 0.5745678 0.5745678 -0.008367493 -0.008367493 -0.008367493 NA NA -0.008367493 NA NA NA NA -0.008367493 -0.008367493 -0.008367493 -0.008367493 -0.02407543 0.1431292 0.2559961 -0.02844401 -0.02407543 -0.02074697 0.1855814 0.1721076 -0.02246469 -0.03355612 -0.03107926 0.2034328 0.2034328 0.1517014 0.1517014 0.1017644 0.1222934 -0.03355612 0.2480507 0.1354737 0.106337 -0.0297841 0.1431292 -0.01685699 0.2240452 0.0896829 0.08610203 0.2416904 0.09748687 0.2497205 -0.03233506 0.2497205 0.1222934 0.3518329 0.1759942 -0.03925646 0.1683771 0.2088769 0.2678359 0.08270559 NA 0.2894758 0.3350482 0.3020266 0.1855814 -0.02844401 0.2894758 0.1725603 0.2342302 0.2146401 0.3610741 -0.01456311 0.3318467 0.1017644 0.2519528 0.3160424 -0.02559961 0.2497205 0.1725603 0.4246895 -0.0297841 -0.01685699 -0.0297841 0.08270559 0.278143 -0.02705207 0.2011124 0.2342302 -0.008367493 0.1982771 0.2416904 0.1725603 -0.008367493 0.4246895 0.2011124 0.2201484 0.1517014 0.278143 0.2443472 -0.01889283 0.2767356 0.3236246 0.2201484 0.3236246 0.2443472 0.1725603 0.2767356 -0.01889283 0.3236246 0.4610437 0.2011124 0.1855814 0.40133 0.3498734 0.4889557 0.4889557 0.2767356 0.2443472 -0.01186197 0.3816164 0.3318467 0.2443472 0.2497205 0.3318467 0.1517014 0.2767356 0.2894758 0.1855814 NA 0.1725603 0.2894758 0.3952382 0.3318467 0.3498734 0.2497205 0.2011124 0.4503813 0.1759942 0.40133 0.3707202 0.4503813 0.2443472 -0.02705207 -0.01186197 -0.01186197 -0.008367493 -0.02407543 -0.02074697 -0.01186197 0.40133 -0.01685699 0.3236246 -0.02705207 0.1614107 0.2443472 0.5745678 -0.008367493 0.2767356 -0.01685699 0.4610437 0.40133 0.3707202 -0.01889283 -0.008367493 0.2201484 -0.01186197 0.3236246 -0.01685699 -0.01889283 -0.01685699 -0.008367493 -0.01685699 -0.01456311 -0.01186197 -0.01456311 -0.01889283 -0.008367493 0.3236246 0.3236246 NA 0.40133 0.40133 -0.03233506 NA 0.6482667 NA -0.008367493 0.3236246 0.3318467 -0.01186197 -0.01186197 NA 0.3236246 -0.008367493 NA -0.01456311 -0.008367493 -0.008367493 -0.01186197 0.40133 -0.008367493 -0.008367493 -0.01889283 -0.008367493 0.2201484 0.4610437 0.5745678 -0.008367493 0.5745678 -0.01456311 -0.01456311 NA NA -0.008367493 0.5745678 -0.008367493 -0.008367493 -0.008367493 NA NA -0.008367493 NA NA NA NA -0.008367493 0.5745678 -0.008367493 -0.008367493 -0.01383297 -0.01711299 0.1470871 -0.01634301 -0.01383297 -0.01192054 -0.01383297 -0.02948198 -0.01290749 -0.01928027 -0.01785714 -0.02555815 -0.02555815 -0.01634301 -0.03268602 -0.02192645 -0.01928027 -0.01928027 0.1425219 -0.01785714 -0.0212857 -0.01711299 -0.01711299 -0.009685486 0.1287292 -0.02378257 -0.02438236 -0.02192645 -0.0225555 -0.0212857 -0.01857869 -0.0212857 -0.01928027 0.2021519 -0.02893605 -0.0225555 -0.03002403 -0.024974 -0.0199641 -0.024974 NA 0.2587746 0.1925079 -0.01785714 -0.01383297 -0.01634301 -0.01857869 -0.01470871 0.2131495 -0.02438236 0.2074615 -0.008367493 0.2941742 -0.02192645 0.144764 0.2809382 -0.01470871 -0.0212857 -0.01470871 0.3724732 -0.01711299 -0.009685486 -0.01711299 -0.024974 0.2493582 -0.01554325 -0.01290749 0.2131495 -0.004807692 0.1839531 0.2192645 0.3268602 -0.004807692 0.3724732 -0.01290749 -0.01192054 -0.01634301 0.2493582 -0.01085521 -0.01085521 -0.009685486 -0.008367493 -0.01192054 -0.008367493 -0.01085521 -0.01470871 -0.009685486 -0.01085521 -0.008367493 -0.01192054 0.3724732 -0.01383297 -0.006815507 0.3093106 0.2809382 0.2809382 -0.009685486 -0.01085521 -0.006815507 0.2192645 0.2941742 -0.01085521 0.2258649 0.2941742 0.2941742 -0.009685486 0.2587746 0.3475533 NA -0.01470871 0.2587746 0.3475533 0.2941742 0.3093106 0.2258649 -0.01290749 0.2587746 -0.02893605 -0.006815507 0.3268602 0.2587746 0.4428926 -0.01554325 -0.006815507 -0.006815507 -0.004807692 -0.01383297 -0.01192054 -0.006815507 0.705405 -0.009685486 0.5745678 -0.01554325 -0.01554325 0.4428926 1 -0.004807692 -0.009685486 -0.009685486 -0.01192054 0.705405 0.3268602 -0.01085521 -0.004807692 0.4033116 -0.006815507 0.5745678 -0.009685486 -0.01085521 -0.009685486 -0.004807692 -0.009685486 -0.008367493 -0.006815507 -0.008367493 -0.01085521 -0.004807692 -0.008367493 -0.008367493 NA -0.006815507 0.705405 -0.01857869 NA 0.3724732 NA -0.004807692 -0.008367493 0.2941742 -0.006815507 -0.006815507 NA 0.5745678 -0.004807692 NA -0.008367493 -0.004807692 -0.004807692 -0.006815507 -0.006815507 -0.004807692 -0.004807692 -0.01085521 -0.004807692 0.4033116 0.4033116 1 -0.004807692 1 -0.008367493 -0.008367493 NA NA -0.004807692 1 -0.004807692 -0.004807692 -0.004807692 NA NA -0.004807692 NA NA NA NA -0.004807692 -0.004807692 -0.004807692 -0.004807692 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA -0.01383297 -0.01711299 0.1470871 -0.01634301 -0.01383297 -0.01192054 -0.01383297 -0.02948198 -0.01290749 -0.01928027 -0.01785714 -0.02555815 -0.02555815 -0.01634301 -0.03268602 -0.02192645 -0.01928027 -0.01928027 0.1425219 -0.01785714 -0.0212857 -0.01711299 -0.01711299 -0.009685486 0.1287292 -0.02378257 -0.02438236 -0.02192645 -0.0225555 -0.0212857 -0.01857869 -0.0212857 -0.01928027 0.2021519 -0.02893605 -0.0225555 -0.03002403 -0.024974 -0.0199641 -0.024974 NA 0.2587746 0.1925079 -0.01785714 -0.01383297 -0.01634301 -0.01857869 -0.01470871 0.2131495 -0.02438236 0.2074615 -0.008367493 0.2941742 -0.02192645 0.144764 0.2809382 -0.01470871 -0.0212857 -0.01470871 0.3724732 -0.01711299 -0.009685486 -0.01711299 -0.024974 0.2493582 -0.01554325 -0.01290749 0.2131495 -0.004807692 0.1839531 0.2192645 0.3268602 -0.004807692 0.3724732 -0.01290749 -0.01192054 -0.01634301 0.2493582 -0.01085521 -0.01085521 -0.009685486 -0.008367493 -0.01192054 -0.008367493 -0.01085521 -0.01470871 -0.009685486 -0.01085521 -0.008367493 -0.01192054 0.3724732 -0.01383297 -0.006815507 0.3093106 0.2809382 0.2809382 -0.009685486 -0.01085521 -0.006815507 0.2192645 0.2941742 -0.01085521 0.2258649 0.2941742 0.2941742 -0.009685486 0.2587746 0.3475533 NA -0.01470871 0.2587746 0.3475533 0.2941742 0.3093106 0.2258649 -0.01290749 0.2587746 -0.02893605 -0.006815507 0.3268602 0.2587746 0.4428926 -0.01554325 -0.006815507 -0.006815507 -0.004807692 -0.01383297 -0.01192054 -0.006815507 0.705405 -0.009685486 0.5745678 -0.01554325 -0.01554325 0.4428926 1 -0.004807692 -0.009685486 -0.009685486 -0.01192054 0.705405 0.3268602 -0.01085521 -0.004807692 0.4033116 -0.006815507 0.5745678 -0.009685486 -0.01085521 -0.009685486 -0.004807692 -0.009685486 -0.008367493 -0.006815507 -0.008367493 -0.01085521 -0.004807692 -0.008367493 -0.008367493 NA -0.006815507 0.705405 -0.01857869 NA 0.3724732 NA -0.004807692 -0.008367493 0.2941742 -0.006815507 -0.006815507 NA 0.5745678 -0.004807692 NA -0.008367493 -0.004807692 -0.004807692 -0.006815507 -0.006815507 -0.004807692 -0.004807692 -0.01085521 -0.004807692 0.4033116 0.4033116 1 -0.004807692 1 -0.008367493 -0.008367493 NA NA -0.004807692 1 -0.004807692 -0.004807692 -0.004807692 NA NA -0.004807692 NA NA NA NA -0.004807692 -0.004807692 -0.004807692 -0.004807692 -0.01960996 0.1870027 0.2085144 0.1969303 0.2365452 -0.01689886 -0.01960996 0.2311753 -0.01829798 -0.0273322 -0.02531474 0.2666667 0.1152174 -0.02316827 0.2085144 0.1398757 -0.0273322 -0.0273322 0.2020427 -0.02531474 -0.03017515 -0.02425981 -0.02425981 -0.01373039 0.1824897 -0.03371478 0.1224805 0.3108349 -0.03197525 0.1450083 -0.02633762 0.1450083 0.1630821 0.2865757 0.09725822 -0.03197525 0.2270017 0.1187502 0.1565433 -0.03540378 NA 0.3668454 0.2729041 0.1781768 0.4927003 -0.02316827 0.1702539 -0.02085144 -0.03197525 0.2795261 0.2941028 -0.01186197 0.4170288 0.3108349 0.2052211 0.3982652 -0.02085144 0.3201918 0.221257 0.5280274 -0.02425981 0.3449761 0.1870027 0.2729041 0.3534965 -0.0220345 0.2548647 0.3021661 -0.006815507 0.2607766 0.3108349 0.221257 -0.006815507 0.2548647 0.2548647 0.277423 0.4170288 0.3534965 0.6278558 -0.01538862 0.7036825 0.40133 0.5717448 0.814522 0.3062336 0.221257 0.7036825 -0.01538862 0.814522 0.5717448 0.2548647 0.2365452 1 0.4384866 0.3982652 0.1870027 0.3449761 0.6278558 -0.009661836 0.3108349 0.4170288 0.6278558 0.3201918 0.4170288 -0.02316827 0.7036825 0.3668454 0.2365452 NA 0.221257 0.3668454 0.4927003 0.4170288 0.2082261 0.3201918 0.2548647 0.3668454 0.09725822 1 0.221257 0.1702539 -0.01538862 -0.0220345 -0.009661836 -0.009661836 -0.006815507 0.2365452 0.277423 -0.009661836 -0.009661836 -0.01373039 -0.01186197 -0.0220345 0.2082261 0.3062336 -0.006815507 -0.006815507 0.3449761 -0.01373039 0.5717448 -0.009661836 0.4633654 0.3062336 -0.006815507 -0.01689886 -0.009661836 -0.01186197 -0.01373039 -0.01538862 -0.01373039 -0.006815507 -0.01373039 -0.01186197 -0.009661836 0.40133 -0.01538862 -0.006815507 0.814522 0.40133 NA 1 -0.009661836 -0.02633762 NA 0.2548647 NA -0.006815507 0.40133 -0.02316827 -0.009661836 -0.009661836 NA -0.01186197 0.705405 NA 0.40133 0.705405 0.705405 0.4951691 1 0.705405 0.705405 -0.01538862 0.705405 0.277423 0.277423 -0.006815507 -0.006815507 -0.006815507 0.40133 -0.01186197 NA NA -0.006815507 -0.006815507 0.705405 -0.006815507 0.705405 NA NA -0.006815507 NA NA NA NA 0.705405 0.705405 -0.006815507 -0.006815507 -0.01383297 -0.01711299 0.1470871 -0.01634301 -0.01383297 -0.01192054 -0.01383297 0.1630722 -0.01290749 -0.01928027 -0.01785714 0.188108 -0.02555815 -0.01634301 0.1470871 -0.02192645 -0.01928027 -0.01928027 -0.033733 -0.01785714 -0.0212857 -0.01711299 -0.01711299 -0.009685486 0.1287292 -0.02378257 -0.02438236 -0.02192645 -0.0225555 -0.0212857 -0.01857869 0.2258649 -0.01928027 -0.02378257 0.1661489 0.2131495 0.1601282 -0.024974 -0.0199641 -0.024974 NA 0.2587746 0.1925079 -0.01785714 -0.01383297 0.2941742 -0.01857869 -0.01470871 -0.0225555 -0.02438236 -0.0231739 -0.008367493 -0.01634301 -0.02192645 0.144764 -0.01711299 -0.01470871 -0.0212857 -0.01470871 -0.01290749 -0.01711299 -0.009685486 0.2809382 -0.024974 -0.01928027 -0.01554325 -0.01290749 0.2131495 -0.004807692 0.1839531 -0.02192645 -0.01470871 -0.004807692 -0.01290749 -0.01290749 -0.01192054 -0.01634301 -0.01928027 -0.01085521 -0.01085521 -0.009685486 -0.008367493 -0.01192054 -0.008367493 -0.01085521 -0.01470871 -0.009685486 -0.01085521 -0.008367493 -0.01192054 -0.01290749 -0.01383297 -0.006815507 -0.01554325 -0.01711299 -0.01711299 -0.009685486 -0.01085521 -0.006815507 -0.02192645 0.2941742 -0.01085521 -0.0212857 -0.01634301 -0.01634301 -0.009685486 -0.01857869 -0.01383297 NA -0.01470871 0.2587746 -0.01383297 -0.01634301 -0.01554325 -0.0212857 -0.01290749 -0.01857869 0.1661489 -0.006815507 -0.01470871 -0.01857869 -0.01085521 -0.01554325 -0.006815507 -0.006815507 -0.004807692 -0.01383297 -0.01192054 -0.006815507 -0.006815507 -0.009685486 -0.008367493 -0.01554325 -0.01554325 -0.01085521 -0.004807692 -0.004807692 -0.009685486 -0.009685486 -0.01192054 0.705405 -0.01470871 -0.01085521 -0.004807692 -0.01192054 -0.006815507 -0.008367493 -0.009685486 0.4428926 -0.009685486 -0.004807692 -0.009685486 -0.008367493 -0.006815507 -0.008367493 -0.01085521 -0.004807692 -0.008367493 -0.008367493 NA -0.006815507 -0.006815507 -0.01857869 NA -0.01290749 NA -0.004807692 -0.008367493 -0.01634301 -0.006815507 -0.006815507 NA 0.5745678 -0.004807692 NA -0.008367493 -0.004807692 -0.004807692 -0.006815507 -0.006815507 -0.004807692 -0.004807692 -0.01085521 -0.004807692 -0.01192054 -0.01192054 -0.004807692 1 -0.004807692 -0.008367493 -0.008367493 NA NA -0.004807692 -0.004807692 -0.004807692 -0.004807692 -0.004807692 NA NA -0.004807692 NA NA NA NA -0.004807692 -0.004807692 1 -0.004807692 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA -0.01383297 0.2809382 0.1470871 0.2941742 0.3475533 -0.01192054 -0.01383297 0.1630722 -0.01290749 -0.01928027 -0.01785714 0.188108 -0.02555815 -0.01634301 0.1470871 0.2192645 -0.01928027 -0.01928027 0.1425219 -0.01785714 -0.0212857 -0.01711299 -0.01711299 -0.009685486 0.1287292 -0.02378257 -0.02438236 0.2192645 -0.0225555 -0.0212857 -0.01857869 -0.0212857 -0.01928027 0.2021519 -0.02893605 -0.0225555 0.1601282 -0.024974 -0.0199641 -0.024974 NA 0.2587746 0.1925079 -0.01785714 0.3475533 -0.01634301 -0.01857869 -0.01470871 -0.0225555 0.1971791 0.2074615 -0.008367493 0.2941742 0.2192645 0.144764 0.2809382 -0.01470871 0.2258649 -0.01470871 0.3724732 -0.01711299 0.4963811 0.2809382 0.1925079 0.2493582 -0.01554325 -0.01290749 0.2131495 -0.004807692 0.1839531 0.2192645 0.3268602 -0.004807692 -0.01290749 -0.01290749 -0.01192054 0.2941742 0.2493582 0.4428926 -0.01085521 0.4963811 -0.008367493 0.4033116 0.5745678 -0.01085521 -0.01470871 0.4963811 -0.01085521 0.5745678 0.4033116 0.3724732 -0.01383297 0.705405 0.3093106 0.2809382 -0.01711299 -0.009685486 0.4428926 -0.006815507 0.2192645 0.2941742 0.4428926 0.2258649 0.2941742 -0.01634301 0.4963811 0.2587746 0.3475533 NA -0.01470871 0.2587746 0.3475533 0.2941742 -0.01554325 0.2258649 -0.01290749 0.2587746 -0.02893605 0.705405 -0.01470871 -0.01857869 -0.01085521 -0.01554325 -0.006815507 -0.006815507 -0.004807692 0.3475533 0.4033116 -0.006815507 -0.006815507 -0.009685486 -0.008367493 -0.01554325 -0.01554325 0.4428926 -0.004807692 -0.004807692 -0.009685486 -0.009685486 0.4033116 -0.006815507 0.3268602 0.4428926 -0.004807692 -0.01192054 -0.006815507 -0.008367493 -0.009685486 -0.01085521 -0.009685486 -0.004807692 -0.009685486 -0.008367493 -0.006815507 0.5745678 -0.01085521 -0.004807692 0.5745678 -0.008367493 NA 0.705405 -0.006815507 -0.01857869 NA -0.01290749 NA -0.004807692 -0.008367493 -0.01634301 -0.006815507 -0.006815507 NA -0.008367493 1 NA 0.5745678 1 1 0.705405 0.705405 1 1 -0.01085521 1 0.4033116 -0.01192054 -0.004807692 -0.004807692 -0.004807692 0.5745678 -0.008367493 NA NA -0.004807692 -0.004807692 1 -0.004807692 1 NA NA -0.004807692 NA NA NA NA 1 -0.004807692 -0.004807692 -0.004807692 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA -0.01383297 0.2809382 0.1470871 0.2941742 0.3475533 -0.01192054 -0.01383297 0.1630722 -0.01290749 -0.01928027 -0.01785714 0.188108 -0.02555815 -0.01634301 0.1470871 0.2192645 -0.01928027 -0.01928027 0.1425219 -0.01785714 -0.0212857 -0.01711299 -0.01711299 -0.009685486 0.1287292 -0.02378257 -0.02438236 0.2192645 -0.0225555 -0.0212857 -0.01857869 -0.0212857 -0.01928027 0.2021519 -0.02893605 -0.0225555 0.1601282 -0.024974 -0.0199641 -0.024974 NA 0.2587746 0.1925079 -0.01785714 0.3475533 -0.01634301 -0.01857869 -0.01470871 -0.0225555 0.1971791 0.2074615 -0.008367493 0.2941742 0.2192645 0.144764 0.2809382 -0.01470871 0.2258649 -0.01470871 0.3724732 -0.01711299 0.4963811 0.2809382 0.1925079 0.2493582 -0.01554325 -0.01290749 0.2131495 -0.004807692 0.1839531 0.2192645 0.3268602 -0.004807692 -0.01290749 -0.01290749 -0.01192054 0.2941742 0.2493582 0.4428926 -0.01085521 0.4963811 -0.008367493 0.4033116 0.5745678 -0.01085521 -0.01470871 0.4963811 -0.01085521 0.5745678 0.4033116 0.3724732 -0.01383297 0.705405 0.3093106 0.2809382 -0.01711299 -0.009685486 0.4428926 -0.006815507 0.2192645 0.2941742 0.4428926 0.2258649 0.2941742 -0.01634301 0.4963811 0.2587746 0.3475533 NA -0.01470871 0.2587746 0.3475533 0.2941742 -0.01554325 0.2258649 -0.01290749 0.2587746 -0.02893605 0.705405 -0.01470871 -0.01857869 -0.01085521 -0.01554325 -0.006815507 -0.006815507 -0.004807692 0.3475533 0.4033116 -0.006815507 -0.006815507 -0.009685486 -0.008367493 -0.01554325 -0.01554325 0.4428926 -0.004807692 -0.004807692 -0.009685486 -0.009685486 0.4033116 -0.006815507 0.3268602 0.4428926 -0.004807692 -0.01192054 -0.006815507 -0.008367493 -0.009685486 -0.01085521 -0.009685486 -0.004807692 -0.009685486 -0.008367493 -0.006815507 0.5745678 -0.01085521 -0.004807692 0.5745678 -0.008367493 NA 0.705405 -0.006815507 -0.01857869 NA -0.01290749 NA -0.004807692 -0.008367493 -0.01634301 -0.006815507 -0.006815507 NA -0.008367493 1 NA 0.5745678 1 1 0.705405 0.705405 1 1 -0.01085521 1 0.4033116 -0.01192054 -0.004807692 -0.004807692 -0.004807692 0.5745678 -0.008367493 NA NA -0.004807692 -0.004807692 1 -0.004807692 1 NA NA -0.004807692 NA NA NA NA 1 -0.004807692 -0.004807692 -0.004807692 -0.01383297 -0.01711299 0.1470871 -0.01634301 -0.01383297 -0.01192054 -0.01383297 -0.02948198 -0.01290749 -0.01928027 -0.01785714 -0.02555815 -0.02555815 -0.01634301 -0.03268602 -0.02192645 -0.01928027 -0.01928027 -0.033733 -0.01785714 -0.0212857 -0.01711299 -0.01711299 -0.009685486 -0.03734735 -0.02378257 -0.02438236 -0.02192645 -0.0225555 -0.0212857 -0.01857869 -0.0212857 -0.01928027 -0.02378257 0.1661489 -0.0225555 -0.03002403 -0.024974 -0.0199641 -0.024974 NA -0.01857869 0.1925079 -0.01785714 -0.01383297 -0.01634301 -0.01857869 -0.01470871 -0.0225555 0.1971791 0.2074615 -0.008367493 -0.01634301 -0.02192645 -0.03321056 0.2809382 -0.01470871 -0.0212857 -0.01470871 -0.01290749 -0.01711299 -0.009685486 -0.01711299 0.1925079 0.2493582 -0.01554325 -0.01290749 0.2131495 -0.004807692 -0.02613542 0.2192645 -0.01470871 -0.004807692 -0.01290749 -0.01290749 -0.01192054 -0.01634301 -0.01928027 -0.01085521 -0.01085521 -0.009685486 -0.008367493 -0.01192054 -0.008367493 -0.01085521 -0.01470871 -0.009685486 -0.01085521 -0.008367493 -0.01192054 -0.01290749 -0.01383297 -0.006815507 -0.01554325 -0.01711299 -0.01711299 -0.009685486 -0.01085521 -0.006815507 -0.02192645 -0.01634301 -0.01085521 -0.0212857 -0.01634301 0.2941742 -0.009685486 -0.01857869 -0.01383297 NA -0.01470871 -0.01857869 -0.01383297 -0.01634301 -0.01554325 0.2258649 -0.01290749 -0.01857869 -0.02893605 -0.006815507 -0.01470871 -0.01857869 -0.01085521 0.3093106 -0.006815507 -0.006815507 -0.004807692 -0.01383297 0.4033116 -0.006815507 -0.006815507 -0.009685486 -0.008367493 -0.01554325 -0.01554325 -0.01085521 -0.004807692 -0.004807692 0.4963811 -0.009685486 -0.01192054 -0.006815507 -0.01470871 -0.01085521 -0.004807692 -0.01192054 -0.006815507 -0.008367493 -0.009685486 -0.01085521 -0.009685486 -0.004807692 -0.009685486 -0.008367493 -0.006815507 -0.008367493 -0.01085521 -0.004807692 -0.008367493 0.5745678 NA -0.006815507 -0.006815507 -0.01857869 NA -0.01290749 NA -0.004807692 -0.008367493 -0.01634301 -0.006815507 -0.006815507 NA -0.008367493 -0.004807692 NA -0.008367493 -0.004807692 -0.004807692 -0.006815507 -0.006815507 -0.004807692 -0.004807692 -0.01085521 -0.004807692 0.4033116 -0.01192054 -0.004807692 -0.004807692 -0.004807692 -0.008367493 -0.008367493 NA NA -0.004807692 -0.004807692 -0.004807692 -0.004807692 -0.004807692 NA NA 1 NA NA NA NA -0.004807692 -0.004807692 -0.004807692 -0.004807692 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA -0.01383297 -0.01711299 0.1470871 -0.01634301 -0.01383297 -0.01192054 -0.01383297 -0.02948198 -0.01290749 -0.01928027 -0.01785714 -0.02555815 -0.02555815 -0.01634301 -0.03268602 -0.02192645 -0.01928027 -0.01928027 -0.033733 -0.01785714 -0.0212857 -0.01711299 -0.01711299 -0.009685486 -0.03734735 -0.02378257 -0.02438236 -0.02192645 -0.0225555 -0.0212857 -0.01857869 -0.0212857 -0.01928027 -0.02378257 0.1661489 -0.0225555 -0.03002403 -0.024974 -0.0199641 -0.024974 NA -0.01857869 0.1925079 -0.01785714 -0.01383297 -0.01634301 -0.01857869 -0.01470871 -0.0225555 0.1971791 0.2074615 -0.008367493 -0.01634301 -0.02192645 -0.03321056 0.2809382 -0.01470871 -0.0212857 -0.01470871 -0.01290749 -0.01711299 -0.009685486 -0.01711299 0.1925079 0.2493582 -0.01554325 -0.01290749 0.2131495 -0.004807692 -0.02613542 0.2192645 -0.01470871 -0.004807692 -0.01290749 -0.01290749 -0.01192054 -0.01634301 -0.01928027 -0.01085521 -0.01085521 -0.009685486 -0.008367493 -0.01192054 -0.008367493 -0.01085521 -0.01470871 -0.009685486 -0.01085521 -0.008367493 -0.01192054 -0.01290749 -0.01383297 -0.006815507 -0.01554325 -0.01711299 -0.01711299 -0.009685486 -0.01085521 -0.006815507 -0.02192645 -0.01634301 -0.01085521 -0.0212857 -0.01634301 0.2941742 -0.009685486 -0.01857869 -0.01383297 NA -0.01470871 -0.01857869 -0.01383297 -0.01634301 -0.01554325 0.2258649 -0.01290749 -0.01857869 -0.02893605 -0.006815507 -0.01470871 -0.01857869 -0.01085521 0.3093106 -0.006815507 -0.006815507 -0.004807692 -0.01383297 0.4033116 -0.006815507 -0.006815507 -0.009685486 -0.008367493 -0.01554325 -0.01554325 -0.01085521 -0.004807692 -0.004807692 0.4963811 -0.009685486 -0.01192054 -0.006815507 -0.01470871 -0.01085521 -0.004807692 -0.01192054 -0.006815507 -0.008367493 -0.009685486 -0.01085521 -0.009685486 -0.004807692 -0.009685486 -0.008367493 -0.006815507 -0.008367493 -0.01085521 -0.004807692 -0.008367493 0.5745678 NA -0.006815507 -0.006815507 -0.01857869 NA -0.01290749 NA -0.004807692 -0.008367493 -0.01634301 -0.006815507 -0.006815507 NA -0.008367493 -0.004807692 NA -0.008367493 -0.004807692 -0.004807692 -0.006815507 -0.006815507 -0.004807692 -0.004807692 -0.01085521 -0.004807692 0.4033116 -0.01192054 -0.004807692 -0.004807692 -0.004807692 -0.008367493 -0.008367493 NA NA -0.004807692 -0.004807692 -0.004807692 -0.004807692 -0.004807692 NA NA 1 NA NA NA NA -0.004807692 -0.004807692 -0.004807692 -0.004807692 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA -0.01383297 -0.01711299 0.1470871 -0.01634301 -0.01383297 -0.01192054 -0.01383297 -0.02948198 -0.01290749 -0.01928027 -0.01785714 -0.02555815 -0.02555815 -0.01634301 -0.03268602 -0.02192645 -0.01928027 -0.01928027 -0.033733 -0.01785714 -0.0212857 -0.01711299 -0.01711299 -0.009685486 -0.03734735 -0.02378257 -0.02438236 -0.02192645 -0.0225555 -0.0212857 -0.01857869 -0.0212857 -0.01928027 -0.02378257 0.1661489 -0.0225555 -0.03002403 -0.024974 -0.0199641 -0.024974 NA -0.01857869 0.1925079 -0.01785714 -0.01383297 -0.01634301 -0.01857869 -0.01470871 -0.0225555 0.1971791 0.2074615 -0.008367493 -0.01634301 -0.02192645 -0.03321056 0.2809382 -0.01470871 -0.0212857 -0.01470871 -0.01290749 -0.01711299 -0.009685486 -0.01711299 0.1925079 0.2493582 -0.01554325 -0.01290749 0.2131495 -0.004807692 -0.02613542 0.2192645 -0.01470871 -0.004807692 -0.01290749 -0.01290749 -0.01192054 -0.01634301 -0.01928027 -0.01085521 -0.01085521 -0.009685486 -0.008367493 -0.01192054 -0.008367493 -0.01085521 -0.01470871 -0.009685486 -0.01085521 -0.008367493 -0.01192054 -0.01290749 -0.01383297 -0.006815507 -0.01554325 -0.01711299 -0.01711299 -0.009685486 -0.01085521 -0.006815507 -0.02192645 -0.01634301 -0.01085521 -0.0212857 -0.01634301 0.2941742 -0.009685486 -0.01857869 -0.01383297 NA -0.01470871 -0.01857869 -0.01383297 -0.01634301 -0.01554325 0.2258649 -0.01290749 -0.01857869 -0.02893605 -0.006815507 -0.01470871 -0.01857869 -0.01085521 0.3093106 -0.006815507 -0.006815507 -0.004807692 -0.01383297 0.4033116 -0.006815507 -0.006815507 -0.009685486 -0.008367493 -0.01554325 -0.01554325 -0.01085521 -0.004807692 -0.004807692 0.4963811 -0.009685486 -0.01192054 -0.006815507 -0.01470871 -0.01085521 -0.004807692 -0.01192054 -0.006815507 -0.008367493 -0.009685486 -0.01085521 -0.009685486 -0.004807692 -0.009685486 -0.008367493 -0.006815507 -0.008367493 -0.01085521 -0.004807692 -0.008367493 0.5745678 NA -0.006815507 -0.006815507 -0.01857869 NA -0.01290749 NA -0.004807692 -0.008367493 -0.01634301 -0.006815507 -0.006815507 NA -0.008367493 -0.004807692 NA -0.008367493 -0.004807692 -0.004807692 -0.006815507 -0.006815507 -0.004807692 -0.004807692 -0.01085521 -0.004807692 0.4033116 -0.01192054 -0.004807692 -0.004807692 -0.004807692 -0.008367493 -0.008367493 NA NA -0.004807692 -0.004807692 -0.004807692 -0.004807692 -0.004807692 NA NA 1 NA NA NA NA -0.004807692 -0.004807692 -0.004807692 -0.004807692 -0.01383297 0.2809382 0.1470871 0.2941742 0.3475533 -0.01192054 -0.01383297 0.1630722 -0.01290749 -0.01928027 -0.01785714 0.188108 -0.02555815 -0.01634301 0.1470871 0.2192645 -0.01928027 -0.01928027 0.1425219 -0.01785714 -0.0212857 -0.01711299 -0.01711299 -0.009685486 0.1287292 -0.02378257 -0.02438236 0.2192645 -0.0225555 -0.0212857 -0.01857869 -0.0212857 -0.01928027 0.2021519 -0.02893605 -0.0225555 0.1601282 -0.024974 -0.0199641 -0.024974 NA 0.2587746 0.1925079 -0.01785714 0.3475533 -0.01634301 -0.01857869 -0.01470871 -0.0225555 0.1971791 0.2074615 -0.008367493 0.2941742 0.2192645 0.144764 0.2809382 -0.01470871 0.2258649 -0.01470871 0.3724732 -0.01711299 0.4963811 0.2809382 0.1925079 0.2493582 -0.01554325 -0.01290749 0.2131495 -0.004807692 0.1839531 0.2192645 0.3268602 -0.004807692 -0.01290749 -0.01290749 -0.01192054 0.2941742 0.2493582 0.4428926 -0.01085521 0.4963811 -0.008367493 0.4033116 0.5745678 -0.01085521 -0.01470871 0.4963811 -0.01085521 0.5745678 0.4033116 0.3724732 -0.01383297 0.705405 0.3093106 0.2809382 -0.01711299 -0.009685486 0.4428926 -0.006815507 0.2192645 0.2941742 0.4428926 0.2258649 0.2941742 -0.01634301 0.4963811 0.2587746 0.3475533 NA -0.01470871 0.2587746 0.3475533 0.2941742 -0.01554325 0.2258649 -0.01290749 0.2587746 -0.02893605 0.705405 -0.01470871 -0.01857869 -0.01085521 -0.01554325 -0.006815507 -0.006815507 -0.004807692 0.3475533 0.4033116 -0.006815507 -0.006815507 -0.009685486 -0.008367493 -0.01554325 -0.01554325 0.4428926 -0.004807692 -0.004807692 -0.009685486 -0.009685486 0.4033116 -0.006815507 0.3268602 0.4428926 -0.004807692 -0.01192054 -0.006815507 -0.008367493 -0.009685486 -0.01085521 -0.009685486 -0.004807692 -0.009685486 -0.008367493 -0.006815507 0.5745678 -0.01085521 -0.004807692 0.5745678 -0.008367493 NA 0.705405 -0.006815507 -0.01857869 NA -0.01290749 NA -0.004807692 -0.008367493 -0.01634301 -0.006815507 -0.006815507 NA -0.008367493 1 NA 0.5745678 1 1 0.705405 0.705405 1 1 -0.01085521 1 0.4033116 -0.01192054 -0.004807692 -0.004807692 -0.004807692 0.5745678 -0.008367493 NA NA -0.004807692 -0.004807692 1 -0.004807692 1 NA NA -0.004807692 NA NA NA NA 1 -0.004807692 -0.004807692 -0.004807692 -0.01383297 -0.01711299 0.1470871 -0.01634301 -0.01383297 -0.01192054 -0.01383297 0.1630722 -0.01290749 -0.01928027 -0.01785714 0.188108 0.188108 -0.01634301 0.1470871 -0.02192645 -0.01928027 -0.01928027 0.1425219 -0.01785714 -0.0212857 -0.01711299 -0.01711299 -0.009685486 0.1287292 -0.02378257 0.1971791 0.2192645 -0.0225555 0.2258649 -0.01857869 0.2258649 0.2493582 0.2021519 0.1661489 -0.0225555 0.1601282 0.1925079 0.2408169 -0.024974 NA 0.2587746 0.1925079 0.2692308 0.3475533 -0.01634301 0.2587746 -0.01470871 -0.0225555 0.1971791 0.2074615 -0.008367493 0.2941742 0.2192645 0.144764 0.2809382 -0.01470871 0.2258649 0.3268602 0.3724732 -0.01711299 -0.009685486 -0.01711299 0.1925079 0.2493582 -0.01554325 0.3724732 0.2131495 -0.004807692 0.1839531 0.2192645 -0.01470871 -0.004807692 0.3724732 0.3724732 0.4033116 0.2941742 0.2493582 0.4428926 -0.01085521 0.4963811 0.5745678 0.4033116 0.5745678 0.4428926 0.3268602 0.4963811 -0.01085521 0.5745678 0.4033116 -0.01290749 0.3475533 0.705405 0.3093106 0.2809382 0.2809382 0.4963811 0.4428926 -0.006815507 0.2192645 0.2941742 0.4428926 0.2258649 0.2941742 -0.01634301 0.4963811 0.2587746 -0.01383297 NA 0.3268602 0.2587746 0.3475533 0.2941742 0.3093106 0.2258649 0.3724732 0.2587746 0.1661489 0.705405 0.3268602 0.2587746 -0.01085521 -0.01554325 -0.006815507 -0.006815507 -0.004807692 -0.01383297 -0.01192054 -0.006815507 -0.006815507 -0.009685486 -0.008367493 -0.01554325 0.3093106 -0.01085521 -0.004807692 -0.004807692 0.4963811 -0.009685486 0.4033116 -0.006815507 0.3268602 -0.01085521 -0.004807692 -0.01192054 -0.006815507 -0.008367493 -0.009685486 -0.01085521 -0.009685486 -0.004807692 -0.009685486 -0.008367493 -0.006815507 -0.008367493 -0.01085521 -0.004807692 0.5745678 0.5745678 NA 0.705405 -0.006815507 -0.01857869 NA 0.3724732 NA -0.004807692 0.5745678 -0.01634301 -0.006815507 -0.006815507 NA -0.008367493 -0.004807692 NA -0.008367493 -0.004807692 -0.004807692 -0.006815507 0.705405 -0.004807692 -0.004807692 -0.01085521 -0.004807692 -0.01192054 0.4033116 -0.004807692 -0.004807692 -0.004807692 -0.008367493 -0.008367493 NA NA -0.004807692 -0.004807692 -0.004807692 -0.004807692 -0.004807692 NA NA -0.004807692 NA NA NA NA -0.004807692 1 -0.004807692 -0.004807692 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 
Code
cat("Null Hypothesis:", "The network correlation is equal to zero.", "\n")
Null Hypothesis: The network correlation is equal to zero. 
Code
cat("One-Sample t-test Result: p-value =", t_test_result$p.value, "\n")
One-Sample t-test Result: p-value = 0 

Interpretation:

Null Hypothesis: The network correlation is equal to zero. One-Sample t-test Result: p-value = 0

Network Correlation: The network correlation value represents the strength and direction of the correlation between the two networks. It indicates the similarity or dissimilarity in the network structure between 2021 and 2022. The specific correlation value will be provided in the output.

The p-value is less than the chosen significance level (e.g., 0.05), we can conclude that there is a significant difference in the network structure between 2021 and 2022, indicating changes in the relationships and connections within the wheat trade network over time.

Conclusion

The Ukraine and Russia conflict has triggered significant disruptions in the global supply chain, with specific implications for wheat production, grain exports, and energy supply. The reliance on these countries as major suppliers of wheat, as well as their involvement in other critical industries, has exposed vulnerabilities in various regions. As countries seek alternative sources, commodity prices rise, and inflation escalates, finding sustainable solutions and diversifying supply

After analyzing the data, it was found that none of the countries under consideration imported significant quantities directly from Ukraine. To further investigate the trade relationships, a secondary analysis was conducted focusing on European countries with high betweenness centrality in 2022. The countries examined were Spain, Italy, Turkey, Poland, Greece, and Romania. These countries were identified as having a pivotal role in facilitating trade flows between Ukraine and other nations.

The purpose of this secondary analysis was to determine if any of the prominent countries under study imported wheat from these European countries. By exploring these potential trade links, it was aimed to uncover indirect connections between the prominent countries and Ukraine.The results of the analysis revealed that some of the prominent countries did import wheat from the aforementioned European countries. This suggests that while direct imports from Ukraine may be limited, there are intermediary trade relationships through these European countries. Such findings highlight the importance of considering indirect trade routes and intermediaries in understanding the overall trade dynamics between Ukraine and the prominent countries of interest. In 2022, the wheat trade dynamics revealed notable patterns in the import relationships between prominent countries and Ukraine.

One significant observation is that Egypt, a major wheat importer, imported a substantial amount of wheat worth 472.566 million dollars from Romania. This indicates a strong trade partnership between Egypt and Romania in the wheat sector.

Another interesting finding is that the United States, although importing a smaller quantity, obtained 0.98 million dollars’ worth of wheat from Italy. This demonstrates a trade link between the United States and Italy in terms of wheat imports, despite the relatively low volume.

South Korea, another notable importer, diversified its wheat imports by sourcing from both Romania and Turkey. They imported 11.18 million dollars’ worth of wheat from Romania and 3.76 million dollars’ worth of wheat from Turkey, showcasing their trade relationships with multiple countries.

France, a prominent player in the wheat market, engaged in wheat imports from various European countries. They imported 11.05 million dollars’ worth of wheat from Italy, highlighting a trade connection between France and Italy. Additionally, France imported 6.2 million dollars’ worth of wheat from Romania and 6 million dollars’ worth from Spain, indicating the interconnectedness between France and these European wheat-exporting countries.

An important observation is that these prominent countries rely on intermediaries or trading partners that directly import wheat from Ukraine. This is particularly significant for European countries that have high betweenness centrality values, indicating their pivotal role in facilitating trade flows between Ukraine and other prominent wheat-importing nations.

Based on the 2022 data, it can be concluded that these prominent countries are involved in wheat imports from countries that have indirect trade relationships with Ukraine. Furthermore, European countries with high betweenness centrality values serve as important intermediaries, importing wheat from Ukraine and exporting it to other prominent wheat-importing nations worldwide.